首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin (IL)-25, which is a member of the IL-17 family of cytokines, induces production of such Th2 cytokines as IL-4, IL-5, IL-9 and/or IL-13 by various types of cells, including Th2 cells, Th9 cells and group 2 innate lymphoid cells (ILC2). On the other hand, IL-25 can suppress Th1- and Th17-associated immune responses by enhancing Th2-type immune responses. Supporting this, IL-25 is known to suppress development of experimental autoimmune encephalitis, which is an IL-17-mediated autoimmune disease in mice. However, the role of IL-25 in development of IL-17-mediated arthritis is not fully understood. Therefore, we investigated this using IL-1 receptor antagonist-deficient (IL-1Ra-/-) mice, which spontaneously develop IL-17-dependent arthritis. However, development of spontaneous arthritis (incidence rate, disease severity, proliferation of synovial cells, infiltration of PMNs, and bone erosion in joints) and differentiation of Th17 cells in draining lymph nodes in IL-25-/- IL-1Ra-/- mice were similar to in control IL-25+/+ IL-1Ra-/- mice. These observations indicate that IL-25 does not exert any inhibitory and/or pathogenic effect on development of IL-17-mediated spontaneous arthritis in IL-1Ra-/- mice.  相似文献   

2.
3.
IL-23 is secreted by macrophages and dendritic cells in response to microbial products and inflammatory cytokines. IL-23 is a heterodimer composed of the unique IL-23p19 subunit linked to the common p40 subunit that it shares with IL-12. IL-23 is implicated in autoimmune diseases, where it supports the expansion of IL-17A-producing CD4+ Th17 cells. IL-23 also regulates granulopoiesis in a neutrostat regulatory feedback loop through IL-17A-producing neutrophil regulatory (Tn) cells, most of which express gammadelta TCR. This homeostatic system is disrupted in mice lacking adhesion molecules like beta2-integrins (Itgb2-/-) which have defective neutrophil trafficking and neutrophilia. To test the role of IL-23 in the homeostatic regulation of circulating neutrophil numbers, we measured blood neutrophil numbers in p40-deficient (IL12b-/-) mice and found them reduced compared with wild-type mice. IL12b-/-Itgb2-/- mice, lacking beta2-integrins, IL-12, and IL-23 showed significantly blunted neutrophilia compared with Itgb2-/- mice. Treatment of both IL12b-/- and IL12b-/-Itgb2-/- mice with IL-23, but not IL-12, restored circulating neutrophil counts. Serum levels of IL-17A were readily detectable in Itgb2-/- mice, but not in IL12b-/-Itgb2-/- mice, suggesting that IL-17A production is reduced when IL-23 is absent. Similarly, tissue mRNA expression of IL-17A was reduced in IL12b-/-Itgb2-/-mice compared with Itgb2-/- controls. The total number of CD3+ IL-17A-producing Tn cells were significantly reduced in the spleen and lamina propria of IL12b-/-Itgb2-/- mice, with the largest reduction found in gammadelta+ T cells. Our results suggest a prominent role of IL-23 in the regulation of granulopoiesis and the prevalence of IL-17A-producing Tn cells.  相似文献   

4.
We have used the synthetic microtubule inhibitor Tubulozole C in order to study the role of the microtubule system in human lymphocyte activation. Microtubule disruption prior to activation with phytohemagglutinin (PHA) resulted in a drastic reduction of IL-2 production. Similarly, using OKT3 or PHA as stimulators, a substantial decrease in proliferation was observed. Although IL-2 receptor analysis performed on the stimulated and antitubular-treated lymphocytes showed a 2-fold decrease in high-affinity and a 100-fold decrease in low-affinity IL-2 receptor expression, a proliferative response to externally added rIL-2 was noticed. This occurred provided the triggering agent was excluded or added in suboptimal concentrations. These results indicate that intact microtubules are necessary for PHA/OKT3-induced proliferation and IL-2 production, but not for IL-2-induced proliferation.  相似文献   

5.
6.
7.
Mouse mast cell development and survival are largely controlled by the cytokines IL-3 and stem cell factor (SCF). We have found that IL-3 stimulation of bone marrow cells induces the production of TNF via a PI3K- and MAPK kinase/ERK-dependent pathway. Specifically, Mac-1-positive cells were responsible for TNF production, which peaked on days 7-10 of culture and decreased rapidly thereafter. The importance of IL-3-induced TNF secretion was demonstrated by the failure of TNF-deficient bone marrow cells to survive for >3 wk when cultured in IL-3 and SCF, a defect that was reversed by the addition of soluble TNF. The development of human mast cells from bone marrow progenitors was similarly hampered by the addition of TNF-blocking Abs. Cell death was due to apoptosis, which occurred with changes in mitochondrial membrane potential and caspase activation. Apoptosis appeared to be due to loss of IL-3 signaling, because TNF-deficient cells were less responsive than their wild-type counterparts to IL-3-mediated survival. In vitro cultured mast cells from TNF-deficient mice also demonstrated reduced expression of the high affinity IgE receptor, which was restored to normal levels by the addition of soluble TNF. Finally, TNF-deficient mice demonstrated a 50% reduction in peritoneal mast cell numbers, indicating that TNF is an important mast cell survival factor both in vitro and in vivo.  相似文献   

8.
In infection with the trematode helminth Schistosoma mansoni, the severity of CD4 T cell-mediated hepatic granulomatous and fibrosing inflammation against parasite eggs varies considerably in humans and among mouse strains. In mice, either the natural high pathology, or high pathology induced by concomitant immunization with schistosome egg Ags (SEA) in CFA (SEA/CFA), results from a failure to contain a net proinflammatory cytokine environment. We previously demonstrated that the induction of severe immunopathology was dependent on the IL-12/IL-23 common p40 subunit, and correlated with an increase in IL-17, thus implying IL-23 in the pathogenesis. We now show that mice lacking the IL-23-specific subunit p19 are impaired in developing severe immunopathology following immunization with SEA/CFA, which is associated with a marked drop of IL-17 in the granulomas, but not in the draining mesenteric lymph nodes, and with a markedly suppressed SEA-specific IFN-gamma response regulated by a striking increase in IL-10. The granulomas are characterized by a significant reduction in Gr-1(+) cell recruitment and by alternative macrophage activation. Taken together, these results demonstrate that IL-23 per se is not necessary for the generation of IL-17-producing T cells, but is essential for the development of severe schistosome egg-induced immunopathology, and its absence cannot be overcome with other possible compensatory mechanisms.  相似文献   

9.
Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.  相似文献   

10.
Dendritic cell (DC) maturation at the site of inflammation and migration into draining lymph nodes is fundamental to initiate Ag-specific immune responses. Although several proinflammatory cytokines, including IL-1, are known to promote DC maturation in vitro, their contributions to DC activation and migration within peripheral inflamed tissue compartments are not yet fully understood. We show here that endogenous IL-1 receptor antagonist (IL-1ra) controls the activation state of liver-recruited DCs and their migration in a Propionibacterium acnes-induced murine granulomatous liver disease model. After P. acnes treatment, formation of portal tract-associated lymphoid tissue was conversely impaired in IL-1ra-deficient mice. IL-1ra-deficient mice developed hepatic granulomas within 3 days after P. acnes administration and showed a more pronounced granuloma formation than wild-type mice. Although sinusoidal granulomas contained numerous CD11c+ DCs at day 7, expressions of CCR7, IL-12p40 by these DCs were dramatically decreased in IL-1ra-deficient mice, suggesting aberrant DC maturation and sinusoid portal migration in the absence of endogenous IL-1ra. This was accompanied with enhanced intrahepatic Th2 cytokine production and severe hepatocellular damage. Thus, hepatocyte-derived IL-1ra may control optimal activation and migration of inflammatory DCs within the liver and thereby determine the local immune responses in granulomatous liver disease.  相似文献   

11.
IL-27, a member of the IL-6/IL-12 family, activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130 subunits, resulting in augmentation of Th1 differentiation and suppression of proinflammatory cytokine production. In the present study, we investigated the role of STAT3 in the IL-27-mediated immune functions. IL-27 induced phosphorylation of STAT1, -2, -3 and -5 in wild-type naive CD4+ T cells, but failed to induce that of STAT3 and STAT5 in STAT3-deficient cohorts. IL-27 induced not only proinflammatory responses including up-regulation of ICAM-1, T-box expressed in T cells, and IL-12Rbeta2 and Th1 differentiation, but also anti-inflammatory responses including suppression of proinflammatory cytokine production such as IL-2, IL-4, and IL-13 even in STAT3-deficient naive CD4+ T cells. In contrast, IL-27 augmented c-Myc and Pim-1 expression and induced cell proliferation in wild-type naive CD4+ T cells but not in STAT3-deficient cohorts. Moreover, IL-27 failed to activate STAT3, augment c-Myc and Pim-1 expression, and induce cell proliferation in pro-B BaF/3 transfectants expressing mutant gp130, in which the putative STAT3-binding four Tyr residues in the YXXQ motif of the cytoplasmic region was replaced by Phe. These results suggest that STAT3 is activated through gp130 by IL-27 and is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. Thus, IL-27 may be a cytokine, which activates both STAT1 and STAT3 through distinct receptor subunits, WSX-1 and gp130, respectively, to mediate its individual immune functions.  相似文献   

12.
13.
Excessive mucus production is an important pathological feature of asthma. The Th2 cytokines IL-4 and IL-13 have both been implicated in allergen-induced mucus production, inflammation, and airway hyperreactivity. Both of these cytokines use receptors that contain the IL-4Ralpha subunit, and these receptors are expressed on many cell types in the lung. It has been difficult to determine whether allergen-induced mucus production is strictly dependent on direct effects of IL-4 and IL-13 on epithelial cells or whether other independent mechanisms exist. To address this question, we used a cell type-specific inducible gene-targeting strategy to selectively disrupt the IL-4Ralpha gene in Clara cells, an airway epithelial cell population that gives rise to mucus-producing goblet cells. Clara cell-specific IL-4Ralpha-deficient mice and control mice developed similar elevations in serum IgE levels, airway inflammatory cell numbers, Th2 cytokine production, and airway reactivity following OVA sensitization and challenge. However, compared with control mice, Clara cell-specific IL-4Ralpha-deficient mice were nearly completely protected from allergen-induced mucus production. Because only IL-13 and IL-4 are thought to signal via IL-4Ralpha, we conclude that direct effects of IL-4 and/or IL-13 on Clara cells are required for allergen-induced mucus production in the airway epithelium.  相似文献   

14.
15.
16.
IL-23, a clinically novel cytokine, targets CD4(+) T cells. Recent IL-1Ra(-/-) mouse studies have demonstrated that IL-23 indirectly stimulates the differentiation of osteoclast precursors by enhancing IL-17 release from CD4(+) T cells. IL-17, in turn, stimulates osteoclastogenesis in osteoclast precursor cells. In this study, we found that IL-23 up-regulates receptor activator of NF-kappaB ligand expression by CD4(+) T cells, and thus contributes to osteoclastogenesis. This indirect pathway is mediated by NF-kappaB and STAT3. We have also demonstrated that IL-23 can influence osteoclastogenesis positively under the special conditions in the IL-1-dominant milieu of IL-1Ra(-/-) mice. We propose that IL-23-enhanced osteoclastogenesis is mediated mainly by CD4(+) T cells. The results of this study show that IL-23 is a promising therapeutic target for the treatment of arthritis-associated bone destruction.  相似文献   

17.

Background

Idiopathic pulmonary fibrosis is a devastating as yet untreatable disease. We demonstrated recently the predominant role of the NLRP3 inflammasome activation and IL-1β expression in the establishment of pulmonary inflammation and fibrosis in mice.

Methods

The contribution of IL-23 or IL-17 in pulmonary inflammation and fibrosis was assessed using the bleomycin model in deficient mice.

Results

We show that bleomycin or IL-1β-induced lung injury leads to increased expression of early IL-23p19, and IL-17A or IL-17F expression. Early IL-23p19 and IL-17A, but not IL-17F, and IL-17RA signaling are required for inflammatory response to BLM as shown with gene deficient mice or mice treated with neutralizing antibodies. Using FACS analysis, we show a very early IL-17A and IL-17F expression by RORγt+ γδ T cells and to a lesser extent by CD4αβ+ T cells, but not by iNKT cells, 24 hrs after BLM administration. Moreover, IL-23p19 and IL-17A expressions or IL-17RA signaling are necessary to pulmonary TGF-β1 production, collagen deposition and evolution to fibrosis.

Conclusions

Our findings demonstrate the existence of an early IL-1β-IL-23-IL-17A axis leading to pulmonary inflammation and fibrosis and identify innate IL-23 and IL-17A as interesting drug targets for IL-1β driven lung pathology.  相似文献   

18.
19.
IRAK-4 is an essential component of the signal transduction complex downstream of the IL-1- and Toll-like receptors. Although regarded as the first kinase in the signaling cascade, the role of IRAK-4 kinase activity versus its scaffold function is still controversial. To investigate the role of IRAK-4 kinase function in vivo, "knock-in" mice were generated by replacing the wild type IRAK-4 gene with a mutant gene encoding kinase-deficient IRAK-4 protein (IRAK-4 KD). IRAK-4 kinase was rendered inactive by mutating the conserved lysine residues in the ATP pocket essential for coordinating ATP. Analyses of embryonic fibroblasts and macrophages obtained from IRAK-4 KD mice demonstrate lack of cellular responsiveness to stimulation with IL-1beta or a Toll-like receptor 7 (TLR7) agonist. IRAK-4 kinase deficiency prevents the recruitment of IRAK-1 to the IL-1 receptor complex and its subsequent phosphorylation and degradation. IRAK-4 KD cells are severely impaired in NFkappaB, JNK, and p38 activation in response to IL-1beta or TLR7 ligand. As a consequence, IL-1 receptor/TLR7-mediated production of cytokines and chemokines is largely absent in these cells. Additionally, microarray analysis identified IL-1beta response genes and revealed that the induction of IL-1beta-responsive mRNAs is largely ablated in IRAK-4 KD cells. In summary, our results suggest that IRAK-4 kinase activity plays a critical role in IL-1 receptor (IL-1R)/TLR7-mediated induction of inflammatory responses.  相似文献   

20.
IL-23 is a heterodimeric cytokine composed of the IL-12p40 "soluble receptor" subunit and a novel cytokine-like subunit related to IL-12p35, termed p19. Human and mouse IL-23 exhibit some activities similar to IL-12, but differ in their capacities to stimulate particular populations of memory T cells. Like IL-12, IL-23 binds to the IL-12R subunit IL-12Rbeta1. However, it does not use IL-12Rbeta2. In this study, we identify a novel member of the hemopoietin receptor family as a subunit of the receptor for IL-23, "IL-23R." IL-23R pairs with IL-12Rbeta1 to confer IL-23 responsiveness on cells expressing both subunits. Human IL-23, but not IL-12, exhibits detectable affinity for human IL-23R. Anti-IL-12Rbeta1 and anti-IL-23R Abs block IL-23 responses of an NK cell line and Ba/F3 cells expressing the two receptor chains. IL-23 activates the same Jak-stat signaling molecules as IL-12: Jak2, Tyk2, and stat1, -3, -4, and -5, but stat4 activation is substantially weaker and different DNA-binding stat complexes form in response to IL-23 compared with IL-12. IL-23R associates constitutively with Jak2 and in a ligand-dependent manner with stat3. The ability of cells to respond to IL-23 or IL-12 correlates with expression of IL-23R or IL-12Rbeta2, respectively. The human IL-23R gene is on human chromosome 1 within 150 kb of IL-12Rbeta2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号