首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given that enzymes in urea-rich cells are believed to be just as sensitive to urea effects as enzymes in non-urea-rich cells, it is argued that time-dependent inactivation of enzymes by urea could become a factor of overriding importance in the biology of urea-rich cells. Time-independent parameters (e.g. Tm, k(cat), and Km) involving protein stability and enzyme function have generally been the focus of inquiries into the efficacy of naturally occurring osmolytes like trimethylamine-N-oxide (TMAO), to offset the deleterious effects of urea on the intracellular proteins in the urea-rich cells of elasmobranchs. However, using urea concentrations found in urea-rich cells of elasmobranches, we have found time-dependent effects on lactate dehydrogenase activity which indicate that TMAO plays the important biological role of slowing urea-induced dissociation of multimeric intracellular proteins. TMAO greatly diminishes the rate of lactate dehydrogenase dissociation and affords significant protection of the enzyme against urea-induced time-dependent inactivation. The effects of TMAO on enzyme inactivation by urea adds a temporal dimension that is an important part of the biology of the adaptation paradigm.  相似文献   

2.
Earlier studies have reported that trimethylamine N-oxide (TMAO), a naturally occurring osmolyte, is a universal stabilizer of proteins because it folds unstructured proteins and counteracts the deleterious effects of urea and salts on the structure and function of proteins. This conclusion has been reached from the studies of the effect of TMAO on proteins in the pH range 6.0-8.0. In this pH range TMAO is almost neutral (zwitterionic form), for it has a pK(a) of 4.66 +/- 0.10. We have asked the question of whether the effect of TMAO on protein stability is pH-dependent. To answer this question we have carried out thermal denaturation studies of lysozyme, ribonuclease-A, and apo-alpha-lactalbumin in the presence of various TMAO concentrations at different pH values above and below the pK(a) of TMAO. The main conclusion of this study is that near room temperature TMAO destabilizes proteins at pH values below its pK(a), whereas it stabilizes proteins at pH values above its pK(a). This conclusion was reached by determining the T(m) (midpoint of denaturation), delta H(m) (denaturational enthalpy change at T(m)), delta C(p) (constant pressure heat capacity change), and delta G(D) degrees (denaturational Gibbs energy change at 25 degrees C) of proteins in the presence of different TMAO concentrations. Other conclusions of this study are that T(m) and delta G(D) degrees depend on TMAO concentration at each pH value and that delta H(m) and the delta C(p) are not significantly changed in presence of TMAO.  相似文献   

3.
Oxidative stress damages cells. NaCl and urea are high in renal medullary interstitial fluid, which is necessary to concentrate urine, but which causes oxidative stress by elevating reactive oxygen species (ROS). Here, we measured the antioxidant enzyme superoxide dismutases (SODs, MnSOD, and Cu/ZnSOD) and catalase in mouse kidney that might mitigate the oxidative stress. MnSOD protein increases progressively from the cortex to the inner medulla, following the gradient of increasing NaCl and urea. MnSOD activity increases proportionately, but MnSOD mRNA does not. Water restriction, which elevates renal medullary NaCl and urea, increases MnSOD protein, accompanied by a proportionate increase in MnSOD enzymatic activity in the inner medulla, but not in the cortex or the outer medulla. In contrast, Cu/ZnSOD and TNF-α (an important regulator of MnSOD) do not vary between the regions of the kidney, and expression of catalase protein actually decreases from the cortex to the inner medulla. Water restriction increases activity of mitochondrial enzymes that catalyze production of ROS in the inner medulla, but reduces NADPH oxidase activity there. We also examined the effect of high NaCl and urea on MnSOD in Madin-Darby canine kidney (MDCK) cells. High NaCl and high urea both increase MnSOD in MDCK cells. This increase in MnSOD protein apparently depends on the elevation of ROS since it is eliminated by the antioxidant N-acetylcysteine, and it occurs without raising osmolality when ROS are elevated by antimycin A or xanthine oxidase plus xanthine. We conclude that ROS, induced by high NaCl and urea, increase MnSOD activity in the renal inner medulla, which moderates oxidative stress.  相似文献   

4.
During cell volume regulation, intracellular concentration changes occur in both inorganic and organic osmolytes in order to balance the extracellular osmotic stress and maintain cell volume homeostasis. Generally, salt and urea increase the Km's of enzymes and trimethylamine N-oxide (TMAO) counteracts these effects by decreasing Km's. The hypothesis to account for these effects is that urea and salt shift the native state ensemble of the enzyme toward conformers that are substrate-binding incompetent (BI), while TMAO shifts the ensemble toward binding competent (BC) species. Km's are often complex assemblies of rate constants involving several elementary steps in catalysis, so to better understand osmolyte effects we have focused on a single elementary event, substrate binding. We test the conformational shift hypothesis by evaluating the effects of salt, urea, and TMAO on the mechanism of binding glycerol 3-phosphate, a substrate analogue, to yeast triosephosphate isomerase. Temperature-jump kinetic measurements promote a mechanism consistent with osmolyte-induced shifts in the [BI]/[BC] ratio of enzyme conformers. Importantly, salt significantly affects the binding constant through its effect on the activity coefficients of substrate, enzyme, and enzyme-substrate complex, and it is likely that TMAO and urea affect activity coefficients as well. Results indicate that the conformational shift hypothesis alone does not account for the effects of osmolytes on Km's.  相似文献   

5.
Osmolytes form a class of naturally occurring small compounds known to protect proteins in their native folded and functional states. Among the osmolytes, trimethylamine-N-oxide (TMAO) has received special interest lately because it has shown an extraordinary capability to support folding of denatured to native-like species, which show significant functional activity. Most enzymes and/or proteins are commonly stored in glycerol to maintain their activity/function. In the present study, we tested whether TMAO can be a better solute than glycerol for two commonly used proteases, trypsin and chymotrypsin. Our enzyme kinetic data suggest that the enzyme activity of trypsin is significantly enhanced in TMAO compared to glycerol, whereas chymotrypsin activity is not significantly changed in either case. These results are in accordance with the osmolyte effects on the folding of these enzymes, as judged by data from fluorescence emission spectroscopy. These results suggest that TMAO may be a better solute than glycerol to maintain optimal tryptic enzyme activity.  相似文献   

6.
Trimethylamine oxide (TMAO) is typically accumulated as an organic osmolyte in marine elasmobranchs to levels second only to urea (which can reach >400 mM); however, little is known about the whole animal regulation of TMAO in elasmobranchs. In the present study on the winter skate (Leucoraja ocellata), we determine whether this species can maintain levels of TMAO in the absence of feeding, and if so, is this due to endogenous synthesis or low whole animal losses. Winter skates maintain plasma TMAO levels for up to 45 days without feeding. The liver displays methimazole oxidation, which is consistent with the presence of flavin-containing monooxygenase (E.C. 1.14.13.8) activity, the class of enzymes responsible for the physiological oxygenation of trimethylamine (TMA) to TMAO in mammals. However, no evidence for TMA oxygenation by winter skates was found using in vivo or in vitro techniques, indicating no significant capacity for endogenous TMAO synthesis. Fed skates displayed low, but measurable ( approximately 4-13 micromol.kg(-1).h(-1)), efflux of TMAO (plus TMA), whereas fasted skates did not. Using the loss of injected [14C]TMAO, it was determined that whole animal TMAO losses are likely <1% of whole body TMAO per day. These results demonstrate that winter skates utilize low whole animal TMAO losses, rather than endogenous synthesis, to maintain TMAO levels when not feeding.  相似文献   

7.
Urea synthesis via the hepatic ornithine urea cycle (OUC) has been well described in elasmobranchs, but it is unknown whether OUC enzymes are also present in extrahepatic tissues. Muscle and liver urea, trimethylamine oxide (TMAO), and other organic osmolytes, as well as selected OUC enzymes (carbamoyl phosphate synthetase III, ornithine transcarbamoylase, arginase, and the accessory enzyme glutamine synthetase), were measured in adult little skates (Raja erinacea) exposed to 100% or 75% seawater for 5 d. Activities of all four OUC enzymes were detected in the muscle. There were no changes in muscle OUC activities in skates exposed to 75% seawater; however, arginase activity was significantly lower in the liver, compared to controls. Urea, TMAO, and several other osmolytes were significantly lower in the muscle of little skates exposed to 75% seawater, whereas only glycerophosphorylcholine was significantly lower in the liver. Urea excretion rates were twofold higher in skates exposed to 75% seawater. Taken together, these data suggest that a functional OUC may be present in the skeletal muscle tissues of R. erinacea. As well, enhanced urea excretion rates and the downregulation of the anchor OUC enzyme, arginase, in the liver may be critical in regulating tissue urea content under dilute-seawater stress.  相似文献   

8.
I Baskakov  A Wang    D W Bolen 《Biophysical journal》1998,74(5):2666-2673
Trimethylamine-N-oxide (TMAO) in the cells of sharks and rays is believed to counteract the deleterious effects of the high intracellular concentrations of urea in these animals. It has been hypothesized that TMAO has the generic ability to counteract the effects of urea on protein structure and function, regardless of whether that protein actually evolved in the presence of these two solutes. Rabbit muscle lactate dehydrogenase (LDH) did not evolve in the presence of either solute, and it is used here to test the validity of the counteraction hypothesis. With pyruvate as substrate, results show that its Km and the combined Km of pyruvate and NADH are increased by urea, decreased by TMAO, and in 1:1 and 2:1 mixtures of urea:TMAO the Km values are essentially equivalent to the Km values obtained in the absence of the two solutes. In contrast, values of k(cat) and the Km for NADH as a substrate are unperturbed by urea, TMAO, or urea:TMAO mixtures. All of these effects are consistent with TMAO counteraction of the effects of urea on LDH kinetic parameters, supporting the premise that counteraction is a property of the solvent system and is independent of the evolutionary history of the protein.  相似文献   

9.
Degradation of microbiodies in the methanolutilizing yeastCandida boidinii was mainly studies by electron microscopical observation. The yeast cells precultured on methanol medium contained five to six microbodies per section and showed high activities of alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase. When the precultured cells were transferred into an ethanol medium the number of microbodies and concomitantly the activities of alcohol oxidase and catalase decreased. After 6 h of cultivation microbodies were hardly detected. Also the activity of alcohol oxidase was not measurable and catalase activity was reduced to one tenth, whereas the activities of formaldehyde dehydrogenase and formate dehydrogenase decreased only to about 70%. Experiments with methanol-grown cells transferred into an ethanol medium without nitrogen source indicated that the inactivation of alcohol oxidase and catalase does not require protein synthesis. However, the reappearance of these enzymes is presumably due to de novo protein synthesis as shown by experiments with cycloheximide.  相似文献   

10.
The thermal unfolding of full-length human recombinant alpha-helical prion protein (alpha-PrP) in neutral pH is reversible, whereas, in the presence of the osmolyte N-trimethylamine oxide (TMAO), the protein acquires a beta-sheet structure at higher temperatures and the thermal unfolding of the protein is irreversible. Lysozyme, an amyloidogenic protein similar to prion protein, regains alpha-helical structure on cooling from its thermally unfolded form in buffer and in TMAO solutions. The thermal stability of alpha-PrP decreases, whereas that of lysozyme increases in TMAO solution. Light-scattering and turbidity values indicate that beta-sheet prion protein exists as soluble oligomers that increase thioflavin T fluorescence and bind to 1-anilino 8-naphthalene sulfonic acid (ANS). The oligomers are resistant to proteinase K digestion and during incubation for long periods they form linear amyloids>5 microm long. The comparable fluorescence polarization of the tryptophan groups and their accessibility to acrylamide in alpha-PrP and oligomers indicate that the unstructured N-terminal segments of the protein, which contain the tryptophan groups, do not associate among themselves during oligomerization. Partial unfolding of alpha-helical prion protein in TMAO solution leads to its structural conversion to misfolded beta-sheet form. The formation of the misfolded prion protein oligomers and their polymerization to amyloids in TMAO are unusual, since the osmolyte generally induces denatured protein to fold to a native-like state and protects proteins from thermal denaturation and aggregation.  相似文献   

11.
The thermal stability of horse muscle acylphosphatase was investigated by measuring the inactivation constants at various pH and temperature values, and by differential spectra technique. This enzyme has high thermal stability in an acidic environment but is inactivated in an alkaline medium. It was found that the enzyme can be protected against such inactivation at pH 8.0 by increasing its concentration and the ionic strength of the solution. The effect of high urea concentrations on stability was also measured. It was found that spectral changes at 230 nm are related to urea inactivation of the enzyme, and that the enzymatic activity can be instantly and almost completely restored by dilution of the urea.  相似文献   

12.
The effect of ischemia-reperfusion on activity, protein and m-RNA levels of catalase, copper-zinc and manganese containing superoxide dismutases and glutathione peroxidase, the enzymes that are involved in free radical detoxification was studied in rat kidney. Ischemia alone did not alter either the activities or protein levels of superoxide dismutase and glutathione peroxidase. However, catalase activity was found to be inhibited to 82% of control. The inhibition of catalase was due to the inactivation of the enzyme as there was no significant change in enzyme protein level. Reperfusion following ischemia, however, led to a significant decrease in both the activities as well as the protein levels of all the antioxidant enzymes. The observed overall decrease in total superoxide dismutase activity was the net effect of a decrease in copper-zinc superoxide dismutase while manganese superoxide dismutase activity was found to be increased following reperfusion. This observed increased manganese superoxide dismutase activity was the result of its increased protein level. The mRNA levels for catalase, superoxide dismutases, and glutathione peroxidase were observed to be increased (100–145% of controls) following ischemia; reperfusion of ischemic kidneys, however, resulted in a significant decrease in the levels of mRNAs coding for all the enzymes except manganese superoxide dismutase which remained high. These results suggest that in tissue, the down regulation of the antioxidant enzyme system could be responsible for the pathophysiology of ischemia-reperfusion injury.  相似文献   

13.
Urea amidolyase (UAL) is a multifunctional biotin‐dependent enzyme that contributes to both bacterial and fungal pathogenicity by catalyzing the ATP‐dependent cleavage of urea into ammonia and CO2. UAL is comprised of two enzymatic components: urea carboxylase (UC) and allophanate hydrolase (AH). These enzyme activities are encoded on separate but proximally related genes in prokaryotes while, in most fungi, they are encoded by a single gene that produces a fusion enzyme on a single polypeptide chain. It is unclear whether the UC and AH activities are connected through substrate channeling or other forms of direct communication. Here, we use multiple biochemical approaches to demonstrate that there is no substrate channeling or interdomain/intersubunit communication between UC and AH. Neither stable nor transient interactions can be detected between prokaryotic UC and AH and the catalytic efficiencies of UC and AH are independent of one another. Furthermore, an artificial fusion of UC and AH does not significantly alter the AH enzyme activity or catalytic efficiency. These results support the surprising functional independence of AH from UC in both the prokaryotic and fungal UAL enzymes and serve as an important reminder that the evolution of multifunctional enzymes through gene fusion events does not always correlate with enhanced catalytic function.  相似文献   

14.
Varying osmolarity with sucrose/KCl media resulted in similar effects on the oxidation of glutamate by mitochondria isolated from the livers of an elasmobranch, Raja erinacea, and a teleost, Pseudopleuronectes americanus. In both species trimethylamine oxide (TMAO) inhibited mitochondrial oxidation of glutamate. Urea penetrated the inner mitochondrial membrane of both species and equilibrated with a ratio ureai/ureao of unity. Urea had little effect on the oxidation of glutamate in both species at concentrations as high as 760 mM. Addition of urea (urea/TMAO, 2:1) did not overcome the detrimental effects of TMAO in the mitochondria of either species. In the case of the elasmobranch, the osmolarity of the urea/TMAO media giving the optimal rate of respiration was hypoosmotic with respect to the intracellular osmolarity. The rate of glutamate oxidation steadily declined as osmolarity increased above this value. Assuming the osmotic profile obtained with the urea/TMAO (2:1) medium resembled most closely the in vivo situation, higher rates of oxidation or organic solutes at low osmolarity would help deplete the cell of these solutes and could contribute to cell volume regulation during hypoosmotic stress. It is suggested that two broad classes of intracellular solutes can be defined based on their effects on mitochondrial respiration. Solutes such as K+, C1-, and TMAO penetrate the inner mitochondrial membrane slowly or not at all. Increasing concentrations of these solutes result in lower rates of oxidation. This capacity may be important in regulating intracellular levels of organic solutes during osmotic stress. Solutes such as urea rapidly penetrate the cell and inner mitochondrial membrane reducing the mitochondrial volume changes associated with osmotic stress. The known detrimental effects of urea on protein structure may prevent its exclusive use as an intracellular osmotic effector.  相似文献   

15.
Strong denaturants can be used to distinguish between heat-induced changes in the primary structure of the enzyme molecule and heat-induced changes in higher orders of structure. In this paper, we report on an attempt to use urea in studying the mechanism of thermal inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F. Addition of urea at> 2 (without heating) resulted in inactivation which was, however, reversible. Diluting to concentrations < 2 urea completely restored proteolytic activity. The rate of inactivation at 100°C of the proteinase was increased when 6 urea was present during heat treatment. Also at lower urea concentrations, the inactivation rate at 100°C was increased. Addition of 6 urea to the enzyme solution after heat treatment also increased the extent of inactivation while low urea concentrations (< 1 ) did not. It was concluded that cyanate formed from urea at high temperature was the cause of increased inactivation since addition of cyanate could increase the inactivation rate while a treatment to remove cyanate from a heated urea solution could prevent increase tnactivation. The use of urea does not appear to be suitable for the elucidation of the mechanism of thermal inactivation of the extracellular proteinase from P. fluorescens 22F, but might be applicable to other enzymes when treated (cyanate free) urea is used after heat treatment; however, use of urea (even if cyanate free) during heat treatment is not possible because cyanate is induced by the very heat treatment.  相似文献   

16.
Zhadin N  Callender R 《Biochemistry》2011,50(10):1582-1589
Laser-induced temperature jump relaxation spectroscopy was used to probe the effect of osmolytes on the microscopic rate constants of the lactate dehydrogenase-catalyzed reaction. NADH fluorescence and absorption relaxation kinetics were measured for the lactate dehydrogenase (LDH) reaction system in the presence of varying amounts of trimethylamine N-oxide (TMAO), a protein-stabilizing osmolyte, or urea, a protein-destabilizing osmolyte. Trimethylamine N-oxide (TMAO) at a concentration of 1 M strongly increases the rate of hydride transfer, nearly nullifies its activation energy, and also slightly increases the enthalpy of hydride transfer. In 1 M urea, the hydride transfer enthalpy is almost nullified, but the activation energy of the step is not affected significantly. TMAO increases the preference of the closed conformation of the active site loop in the LDH·NAD(+)·lactate complex; urea decreases it. The loop opening rate in the LDH·NADH·pyruvate complex changes its temperature dependence to inverse Arrhenius with TMAO. In this complex, urea accelerates the loop motion, without changing the loop opening enthalpy. A strong, non-Arrhenius decrease in the pyruvate binding rate in the presence of TMAO offers a decrease in the fraction of the open loop, pyruvate binding competent form at higher temperatures. The pyruvate off rate is not affected by urea but decreases with TMAO. Thus, the osmolytes strongly affect the rates and thermodynamics of specific events along the LDH-catalyzed reaction: binding of substrates, loop closure, and the chemical event. Qualitatively, these results can be understood as an osmolyte-induced change in the energy landscape of the protein complexes, shifting the conformational nature of functional substates within the protein ensemble.  相似文献   

17.
The effect of the active bioantioxidant polydisulfide of gallic acid (PDSG) on the catalytic activity and operational and thermal stability of catalase was studied in three media: distilled water (pH approximately 5.6), phosphate buffer, pH 7.4, and reversed micelles of Aerosol OT (AOT) in heptane of varied hydration degree w0. PDSG inhibited the catalase-induced decomposition of H2O2 by the mixed or noncompetitive mechanism: in various media the inactivation constant Ki varied in the range of (0.63-2.32).10-5 M. PDSG nearly twofold decreased the rate constant of interaction of the complex I of catalase with H2O2 (k2, M-1.sec-1) in water and reversed micelles of AOT and 3-5 times increased the effective rate constant of catalase thermal inactivation, k*in, sec-1, depending on the reaction medium. PDSG significantly decreased the rate constant of catalase inactivation during the enzymatic reaction, kin, sec-1, and thus increased the enzyme operational stability in water and reversed AOT micelles in heptane. The interaction of PDSG with catalase in water and in phosphate buffer was accompanied by significant changes in CD spectra in the far UV-region that indicated disturbances in the secondary structure of catalase subunits induced by the bioantioxidant; the latter was suggested to initiate the reaction of thiol--disulfide exchange with the enzyme. The problem of the compatibility of catalase with disulfide bioantioxidants is discussed.  相似文献   

18.
A partially active and a latent form of multicatalytic protease (MCP) were isolated from fish skeletal muscle. Both forms were inactive against protein substrates, but their activity against peptide substrates differed in one order of magnitude. The chymotrypsin-like activity of the partially active form was moderately stimulated by fatty acids and SDS, whereas its trypsin-like activity was inhibited by the same reagents. In contrast, both activities of the latent form were strongly stimulated by SDS. The chymotrypsin-like activity of the latent form was also stimulated by heating or high urea concentrations, whereas its trypsin-like activity did not change or was inhibited respectively by these treatments. These activation effects were irreversible. Pre-treatment of the latent form with SDS or urea in the absence of substrate led to its irreversible inactivation, whereas activation by pre-heating occurred in the presence or absence of substrate. These results suggest that MCP can exist in several active states with distinct properties. Studies on the distribution of MCP in fish tissues showed a much higher level of the enzyme in gonads than in any other tissue, suggesting a role of MCP in development.Abbreviations MCP multicatalytic proteinase - Suc succinyl - Bz benzoyl - Z carbobenzoxy - NMec 4-methyl-7-coumarylamide - CTAB cetyl trimethylammonium bromide  相似文献   

19.
Reactive molecules O(-)(2), H(2)O(2), and nitrogen monoxide (NO) are produced from macrophages following exposure to lipopolysaccharide (LPS) and involved in cellular signaling for gene expression. Experiments were carried out to determine whether these molecules regulate inducible nitric oxide synthase (iNOS) gene expression in RAW264.7 macrophages exposed to LPS. NO production was inhibited by the antioxidative enzymes catalase, horseradish peroxidase, and myeloperoxidase but not by superoxide dismutase (SOD). In contrast, the NO-producing activity of LPS-stimulated RAW264.7 cells was enhanced by the NO scavengers hemoglobin (Hb) and myoglobin. The antioxidant enzymes decreased levels of iNOS mRNA and protein in LPS-stimulated RAW264.7 cells, whereas the NOS inhibitor N(G)-monomethyl-L-arginine as well as Hb increased the level of iNOS protein but not mRNA, indicating that NO inhibits iNOS protein expression. NF-kappa B was activated in LPS-stimulated RAW264.7 cells and the activation was significantly inhibited by antioxidant enzymes, but not by Hb. Similar results were obtained using LPS-stimulated rodent peritoneal macrophages. Extracellular O(-)(2) generation by LPS-stimulated macrophages was suppressed by SOD, but not by antioxidative enzymes, while accumulation of intracellular reactive oxygen species was inhibited by antioxidative enzymes, but not by SOD. Exogenous H(2)O(2) induced NF-kappa B activation in macrophages, which was inhibited by catalase and pyrroline dithiocarbamate (PDTC). H(2)O(2) enhanced iNOS expression and NO production in peritoneal macrophages when added with interferon-gamma, and the effect of H(2)O(2) was inhibited by catalase and PDTC. These findings suggest that H(2)O(2) production from LPS-stimulated macrophages participates in the upregulation of iNOS expression via NF-kappa B activation and that NO is a negative feedback inhibitor of iNOS protein expression.  相似文献   

20.
The physiological osmolyte trimethylamine-N-oxide (TMAO) stabilizes proteins by decreasing the entropy of the unfolded state through a solvophobic effect. Our studies on the effect of TMAO on the reductive unfolding of onconase (ONC) to form its reductive intermediate, des [30-75], indicate that TMAO diminishes the reductive unfolding rate of the protein although it does not significantly affect the stability of the native protein relative to its denatured state. Since the reductive unfolding of ONC is a local event, our studies provide direct evidence for a TMAO-induced local structural change that reduces the rate of redox-dependent protein unfolding. The implications of our findings for protein folding/unfolding are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号