首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of surface growth (two-dimensional microcarriers) and three-dimensional growth (aggregates and macroporous supports) in agitated, suspended batch culture systems upon growth and productivity of BHK was compared. Cultures using three porous microcarriers (CultiSpher G, Cellsnow EX, and Cytocell), one nonporous microcarrier (Cytodex 3) and natural aggregates were performed in stirred tanks using two different agitation rates (60 and 100 RPM). With the exception of Cytocell, cell growth, viability, and productivity were similar when three-dimensional structures (porous microcarriers and aggregates) were used. Nonporous microcarriers only compared well at 60 RPM as growth ceased under overagitation. These results suggest that cultures less susceptible to fluid shear are advantageous for scale-up. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
Zhao D  Huang Y  Jin Z  Qu W  Lu D 《Plant cell reports》2003,21(11):1129-1133
Cell suspension cultures of Saussurea medusa were grown in shake flasks and a 5-l stirred tank bioreactor. Biomass and jaceosidin distribution in cell aggregates of different sizes were investigated during the cultivation period. The results showed that on day 10, jaceosidin accumulation showed an increase with increasing size of the cell aggregate to 4 mm in diameter, with the highest jaceosidin accumulation being 12.2 mg/g. An inverse tendency was observed with cell aggregates larger than 4 mm in diameter, with the lowest accumulation being 3.1 mg/g. However, all of the cell aggregates, despite their size, synthesized almost the same amount of jaceosidin at day 12. Oxygen diffusion limitation and cell-cell contact may explain this behavior. In comparison with cells cultivated in shake flasks, decreased biomass and decreased jaceosidin concentration were observed when the cells were cultivated in a stirred tank bioreactor. The sublytic effects caused by the hydrodynamic stress in combination with insufficient nutrients in the bioreactor may cause cell damage.  相似文献   

3.
Changes in animal cell natural aggregates in suspended batch cultures   总被引:4,自引:0,他引:4  
Some anchorage-dependent animal cells can form natural aggregates in stirred tanks. Baby hamster kidney (BHK) natural aggregates are described and characterized. Total cell concentration and viability could be obtained after aggregate mechanical aissociation, with negligible cell lysis and no change in cell membrane permeability. During a normal batch run, aggregates were formed immediately after inoculation, a few spherical aggregates increasing size during the initial growth phase. At the end of the growth phase, an increase in aggregate concentration was observed, without a considerable increase in aggregate diameter. At the end of the batch run, 160 h after inoculation, aggregates disintegrated into smaller, non-spherical units, following a sharp viability decrease. Cell concentrations of 1. 2 · 106 cells/ml were obtained, with 60% of the total cells being in aggregates; the cell concentration in aggregates achieved 5 · 108 cells/ml, with a porosity of 55%. Viability was consistently in the range 85–90%, both for aggregate and suspended cells.  相似文献   

4.
Fenge  Christel  Klein  Cornelia  Heuer  Carsten  Siegel  Ursula  Fraune  Elisabeth 《Cytotechnology》1993,11(3):233-244
For an optimized bioreactor design which is adapted to the cultivation of sensitive animal cells different modular bioreactor components for gentle agitation, sufficient aeration and long-term perfusion were developed and investigated with respect to their suitability from laboratory to production scale. Aeration systems have been designed for both shear sensitive cells and cells which tolerate bubbles. The systems are based on either membranes for bubble-free aeration or stainless steel sparger systems. They were characterized by determination of their oxygen transfer capacity and optimized in cultivation processes of different cell lines under process conditions such as batch and perfusion mode.Different impellers for suspension cells and cells grown on carriers were investigated for their suitability to ensure homogeneous gentle mixing. A large pitch blade impeller as well as a novel 3-blade segment impeller are appropriate for homogeneous mixing at low shear rates. Especially with the 3-blade segment impeller fluid mechanical stress can be reduced at a given stirrer speed which is advantageous for the cultivation of cells attached to microcarriers or extremely shear sensitive suspension cells. However, our results indicate that shear sensitivity of animal cells has been generally overestimated.Continuous perfusion of both suspension cell cultures and cells cultivated on microcarriers could be successfully performed over extended periods of time using stainless steel spinfilters with appropriate pore sizes and systems based on microporous hydrophilic membranes. Spinfilters are suitable cell retention systems for technical scale bioreactors allowing continuous perfusion cultures of suspension cells (pore size 10 to 20 m) as well as anchorage dependent cells grown on microcarriers (pore size 75 m) over six weeks to 3 months.Applying the developed modules for agitation, aeration and perfusion process adapted bioreactor set-ups can be realized which ensure optimum growth and product formation conditions in order to maximize cell and product yields.  相似文献   

5.
Cells of the human embryonic kidney cell line (HEK 293) grown in repeated suspension and perfusion systems were characterized and described. Cell aggregates that formed immediately after the HEK 293 cells were inoculated in stirred vessels in serum-containing Dulbecco’s modified Eagle’s medium (D-MEM)/F-12 medium. The mean diameter of the cell aggregates reflecting the aggregate size increased with culture time, shifting from 63 to 239 μm after 1 and 8 days of culture in spinner flasks, respectively. No significant differences in cell performance were observed between HEK 293 cell populations grown as suspended aggregates and those grown as anchored monolayers. Replacing the D-MEM/F-12 with CD 293 medium caused the compact spherical cell aggregates to dissociate into single cells and small irregular aggregates without any apparent effect on cell performance. Moreover, the spherical cell aggregates could reform from individual cells and small aggregates when exposed to the serum-containing D-MEM/F-12 dominant medium. Perfusion culture of HEK 293 cells grown as suspended aggregates in a 7.5-l stirred tank bioreactor for 17 days resulted in a maximum viable cell density of 1.2×107 cells ml−1. These results demonstrate the feasibility and proof-of-concept for using aggregates as an immobilization system in large-scale stirred bioreactors because a small-scale culture can be used as easily as the inoculum for larger bioreactors.The first two authors contributed equally to this work.  相似文献   

6.
Natural aggregates of Baby Hamster Kidney cells were grown in stirred vessels operated as repeated-batch cultures during more than 600 hours. Different protocols were applied to passaging different fractions of the initial culture: single cells, large size distributed aggregates and large aggregates. When single cells or aggregates with the same size distribution found in culture are used as inoculum, it is possible to maintain semi-continuous cultures during more than 600 hours while keeping cell growth and viability. These results suggest that aggregate culture in large scale might be feasible, since a small scale culture can easily be used as inoculum for larger vessels without noticeable modification of the aggregate chacteristics. However, when only the large aggregates are used as inoculum, it was shown that much lower cell concentrations are obtained, cell viability in aggregates dropping to less than 60%. Under this selection procedure, aggregates maintain a constant size, larger than under batch experiments, up to approximately 400 hours; after this time, aggregate size increases to almost twice the size expected from batch cultures.  相似文献   

7.
With the aim to utilize human mesenchymal stem cells (hMSCs) grown in large scale for regenerative medicine, effects of agitation rate on aggregation during beads-to-beads subcultivation of microcarrier culture of hMSCs were studied. hMSCs could attach and grew on surface-type microcarriers of Cytodex 1, whereas almost no cell elongation and growth were observed on porous type microcarriers of Cytopores. The percentages of aggregated Cytodex 1 microcarriers at an agitation rate of 60 and 90 rpm were lower than that at 30 rpm, which was the lowest agitation rate necessary for the suspension of Cytodex 1 microcarriers, and the cells grew fastest at 60 rpm. hMSC could be subcultivated on Cytodex 1 by the beads-to-beads method at both 30 and 60 rpm without trypsinization. However, agitation at 60 rpm resulted in a markedly lower percentage of aggregated microcarriers not only before but also after subcultivation. The percentages of CD90- and CD166-positive cells among cells grown on Cytodex 1 at 60 rpm (91.5 and 87.6 %) were comparable to those of cells grown in the pre-culture on dishes. In conclusion, hMSCs could be subcultivated on Cytodex 1 by beads-to-beads method maintaining the expressions of the cell surface antigens CD90 and CD166, while adjusting agitation rate could decrease the microcarrier aggregation.  相似文献   

8.
The growth and productivity of an Sp2/0 cell line, F3b10, expressing a recombinant antibody (rAb) and BHK21 cells expressing either the same rAb from the same plasmids (BHK.IgG) or secreted alkaline phosphatase (SEAP) (BHK.SEAP) were investigated. The F3b10 line was grown as a single cell suspension. The BHK lines were grown either as suspended natural aggregates or on Cytodex 3 microcarriers. The data for F3b10 showed that the cell-specific rAb production rate (Qs rAb) increased in parallel with increases in the specific growth rate (). A similar result was obtained for suspended aggregate cultures of both recombinant BHK cell lines. In contrast, for microcarrier cultures of both BHK cell lines, Qs product increased as decreased. This report shows that the relationship between cell growth and Qs product for the cell lines and products studied is dependent upon the culture process. In systems where recombinant cells are growing as a single cell suspension or within a natural suspension aggregate, Qs product increased with increases in . In such systems, the cells have a rounded morphology. When cells were grown on microcarriers, Qs product decreased as increased. Cells growing attached to a surface are flat and elongated. The observed differences in the relationship of Qs product to are correlated with changes in cell morphology. The relationship between Qs product and is also affected by the choice of cell line. Correspondence to: A. J. Racher  相似文献   

9.
Process scaleup for stirred-tank animal cell cultures such as suspension and microcarrier cultures often begins at the bench scale in small spinner vessels. In order to initiate process development under the proper conditions, it is essential to know the physical conditions under which the cells are grown. In this article, power inputs and surface oxygen transfer rates to culture medium in 500-mL Corning spinner vessels were determined as a function of the impeller geometry, impeller height, and agitation speed. The results obtained indicate that power dissipation dependency differs from literature correlations and may compromise scale up at constant power input from these vessels. These results are of general utility to researchers using small-scale vessels.  相似文献   

10.
Hydrodynamic effects on cells in agitated tissue culture reactors   总被引:4,自引:0,他引:4  
Tissue cells are known to be sensitive to mechanical stresses imposed on them by agitation in bioreactors. The amount of agitation provided in a microcarrier or suspension bioreactor should be only enough to provide an effective homogeneity. Three distinct flow regions can be identified in the reactor: bulk turbulent flow, bulk laminar flow, and boundary-layer flows. Possible mechanisms of cell damage are examined by analyzing the motion of microcarriers or free cells relative to the surrounding fluid, to each other, and to moving or stationary solid surfaces. The primary mechanisms of cell damage appear to result from (a) direct interaction between microcarriers and turbulent eddies, (b) collisions between microcarriers in turbulent flow, and (c) collisions against the impeller or other stationary surfaces. If the smallest eddies of turbulent flow are of the same size as the microcarrier beads, they may cause high shear stresses on the cells. Eddies the size of the average interbead spacing may cause bead-bead collisions which damage cells. The severity of the collisions increases when the eddies are also of the same size as the beads. Bead size and the interbead distance are virtually equal in typical microcarrier suspensions. Impeller collisions occur when the beads cannot avoid the impeller leading edge as it advances through the liquid. The implications of the results of this analysis on the design and operation of tissue culture bioreactors are also discussed.  相似文献   

11.
Widespread use of embryonic and adult stem cells for therapeutic applications will require reproducible production of large numbers of well-characterized cells under well-controlled conditions in bioreactors. During the past two years, substantial progress has been made towards this goal. Human mesenchymal stem cells expanded in perfused scaffolds retained multi-lineage potential. Mouse neural stem cells were expanded as aggregates in serum-free medium for 44 days in stirred bioreactors. Mouse embryonic stem cells expanded as aggregates and on microcarriers in stirred vessels retained expression of stem cell markers and could form embryoid bodies. Embryoid body formation from dissociated mouse embryonic stem cells, followed by embryoid body expansion and directed differentiation, was scaled up to gas-sparged, 2-l instrumented bioreactors with pH and oxygen control.  相似文献   

12.
The morphology of filamentous organisms in submerged cultures varies between the pelleted and the dispersed forms depending on the strain of organism and the culture conditions. The dispersed form consists of branched and unbranched hyphae (freely dispersed form) and clumps (filamentous material in aggregates). In agitated systems, the choice of impeller geometry as well as the total power input determines the mechanical forces that might affect the morphology of filamentous species (e.g. by fragmentation) with simultaneous effects on their growth and productivity. To find out more about fragmentation of Penicillium chrysogenum caused by mechanical forces of different impeller types and agitation intensities, a population balance model has been developed. The projected area measured by image analysis was used to characterise the morphology (size) of the mycelia. In the model, the kinetics of mycelial fragmentation were expressed by a breakage rate constant K, which was assumed to be only dependent on the agitation conditions. The fragmentation rate was considered to follow a first order process in size (area) which was based on assumptions made for the mechanism of mycelial break-up, and work reported in the literature. Previously published mean and distributional data from off-line fragmentation experiments in ungassed vessels of sizes from 1.4 to 180?l were used to validate the model. For the first time a model has been found that is capable of fitting changes in mycelial morphology caused by mechanical forces generated by different impellers at various power inputs and scales. Besides the mean projected areas of the mycelia, the model allowed simulations of the projected area distributions, and changes in those distributions because of the agitation. At the small scale (1.4?l), the breakage rate constant K could be correlated well with either impeller tip speed or the “energy dissipation/circulation function”, which is based on mycelial circulation through the impeller region. The simpler but commonly used power input per unit tank volume did not correlate K adequately. The scale up data showed that only the “energy dissipation/circulation function” correlated mycelial fragmentation well. The dependence of K on biomass concentration, and its detailed dependence (if any) on the fermentation conditions at sampling, which might indicate likely breakage mechanisms, remain to be elucidated.  相似文献   

13.
The effects on human mesenchymal stem cell growth of choosing either of two spinner flask impeller geometries, two microcarrier concentrations and two cell concentrations (seeding densities) were investigated. Cytodex 3 microcarriers were not damaged when held at the minimum speed, NJS, for their suspension, using either impeller, nor was there any observable damage to the cells. The maximum cell density was achieved after 8–10 days of culture with up to a 20-fold expansion in terms of cells per microcarrier. An increase in microcarrier concentration or seeding density generally had a deleterious or neutral effect, as previously observed for human fibroblast cultures. The choice of impeller was significant, as was incorporation of a 1 day delay before agitation to allow initial attachment of cells. The best conditions for cell expansion on the microcarriers in the flasks were 3,000 microcarriers ml−1 (ca. 1 g dry weight l−1), a seeding density of 5 cells per microcarrier with a 1 day delay before agitation began at NJS (30 rpm), using a horizontally suspended flea impeller with an added vertical paddle. These findings were interpreted using Kolmogorov’s theory of isotropic turbulence.  相似文献   

14.
A simple and accurate method for determining the distribution of sizes of single cells and aggregates of Azotobacter vinelandii by image analysis has been developed. A staining procedure using methylene blue helps to enhance the contrast between aggregates and background without altering aggregate size distribution. Sample dilution affected the distribution of the population and therefore should be avoided. Mixing and aeration conditions during culture play an important role in the aggregation of A. vinelandii. Cells grown under mild mixing conditions (unbaffled flasks) presented a thick slime layer and formed aggregates of up to 35 microm of average equivalent diameter. In contrast, under strong agitation conditions (baffled flasks) practically no aggregates were formed throughout cultivation. The method described can be used for the characterization of aggregation of other microbial cultures.  相似文献   

15.
Comparison of manufacturing techniques for adenovirus production   总被引:2,自引:0,他引:2  
We have compared three different production methods, which may be suitable for the large scale production of adenovirus vectors for human clinical trials. The procedures compared 293 cells adapted to suspension growth in serum-free medium in a stirred tank bioreactor, 293 cells on microcarriers in serum-containing medium in a stirred tank bioreactor, and 293 cells grown in standard tissue culture plasticware. With a given virus, yields varied between 2000 and 10,000 infectious units/cell. The stirred tank bioreactor routinely produced between 4000 and 7000 infectious units/cell when 293 cells were grown on microcarriers. The 293 cells adapted to suspension growth in serum-free medium in the same stirred tank bioreactor yielded between 2000 and 7000 infectious units/cell. Yields obtained from standard tissue culture plasticware were up to 10,000 infectious units/cell. Cell culture conditions were monitored for glucose consumption, lactate production, and ammonia accumulation. Glucose consumption and lactate accumulation correlated well with the cell growth parameters. Ammonia production does not appear to be significant. Based on virus yields, ease of operation and linear scalability, large-scale adenovirus production seems feasible using 293 cells (adapted to suspension/serum free medium or on microcarriers in serum containing medium) in a stirred tank bioreactor. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The aim of this study was to develop a robust, quality controlled and reproducible large-scale culture system using serum-free (SF) medium to obtain vast numbers of embryonic stem (ES) cells as a starting source for potential applications in tissue regeneration, as well as for drug screening studies. Mouse ES (mES) cells were firstly cultured on microcarriers in spinner flasks to investigate the effect of different parameters such as the agitation rate and the feeding regimen. Cells were successfully expanded at agitation rates up to 60 rpm using the SF medium and no significant differences in terms of growth kinetics or metabolic profiles were found between the two feeding regimens evaluated: 50% medium renewal every 24 h or 25% every 12 h. Overall, cells reached maximum concentrations of (4.2 ± 0.4) and (5.6 ± 0.8) ×10(6) cells/mL at Day 8 for cells fed once or twice per day; which corresponds to an increase in total cell number of 85 ± 7 and 108 ± 16, respectively. To have a more precise control over culture conditions and to yield a higher number of cells, the scale-up of the spinner flask culture system was successfully accomplished by using a fully controlled stirred tank bioreactor. In this case, the concentration of mES cells cultured on microcarriers increased 85 ± 15-fold over 11 days. Importantly, mES cells expanded under stirred conditions, in both spinner flask and fully controlled stirred tank bioreactor, using SF medium, retained the expression of pluripotency markers such as Oct-4, Nanog, and SSEA-1 and their differentiation potential into cells of the three embryonic germ layers.  相似文献   

17.
Mouse embryonic stem cell (ESC) lines, and more recently human ESC lines, have become valuable tools for studying early mammalian development. Increasing interest in ESCs and their differentiated progeny in drug discovery and as potential therapeutic agents has highlighted the fact that current two‐dimensional (2D) static culturing techniques are inadequate for large‐scale production. The culture of mammalian cells in three‐dimensional (3D) agitated systems has been shown to overcome many of the restrictions of 2D and is therefore likely to be effective for ESC proliferation. Using murine ESCs as our initial model, we investigated the effectiveness of different 3D culture environments for the expansion of pluripotent ESCs. Solohill Collagen, Solohill FACT, and Cultispher‐S microcarriers were employed and used in conjunction with stirred bioreactors. Initial seeding parameters, including cell number and agitation conditions, were found to be critical in promoting attachment to microcarriers and minimizing the size of aggregates formed. While all microcarriers supported the growth of undifferentiated mESCs, Cultispher‐S out‐performed the Solohill microcarriers. When cultured for successive passages on Cultispher‐S microcarriers, mESCs maintained their pluripotency, demonstrated by self‐renewal, expression of pluripotency markers and the ability to undergo multi‐lineage differentiation. When these optimized conditions were applied to unweaned human ESCs, Cultispher‐S microcarriers supported the growth of hESCs that retained expression of pluripotency markers including SSEA4, Tra‐1–60, NANOG, and OCT‐4. Our study highlights the importance of optimization of initial seeding parameters and provides proof‐of‐concept data demonstrating the utility of microcarriers and bioreactors for the expansion of hESCs. Biotechnol. Bioeng. 2010;107:683–695. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Cultivation of plant cells in a stirred vessel: effect of impeller design   总被引:2,自引:0,他引:2  
Suspension cultures of Nicotiana tabacum were grown in a batch fermentor using different agitation systems. The effects of the impeller type, size, and agitation speed on the productivity of cell mass and secondary metabolites (phenolics) have been investigated. The use of a large, flat-bladed impeller (diameter 7.6 cm; width 14.0 cm) improved culture growth significantly over systems using a regular, flat-bladed impeller (diameter 5.6 cm; width 1.5 cm). An impeller of the same dimensions as the 14.0-cm-wide, large, flat-bladed impeller with sail cloth blades yielded a higher maximum growth rate in the exponential phase but resulted in a longer lag phase. Overall (intracellular and extracellular) phenolics concentration showed a direct relationship to culture growth rate whereas extracellular concentrations were a function of agitation conditions. Power consumption and flow pattern studies were also completed to further characterize the different impellers tested.  相似文献   

19.
Photomixotrophic suspensions of Glycine max (soybean) and Pinus elliottii (slash pine) have been successfully cultured in a hybrid stirred tank photobioreactor using a novel cell-lift impeller. A cell-lift impeller exhibited cell viabilities over 90% and an average cell aggregate size of 1.0 mm or less. Flat-bladed turbines produced equivalent biomass to the cell-lift impeller, but cell viability was reduced (85%) and cell aggregate size increased (3-5 mm diameter). Maximum fresh weights of 82 g L(-1) (soybean) and 52 g L(-1) (slash pine) were achieved in 15 days using continuous lighting (90-100 muE m(-2) s(-1)) and supplemental 2% CO(2) inlet gas. Maximum biomass was achieved using an impeller speed of 60 rpm with air-flow rate of 0.2 vvm for the cell-lift impeller and the pair of flat bladed turbines. The lag and early exponential phases were characterized by (1) rapid hydrolysis of sucrose followed by preferential use of glucose and (2) a reduction in chlorophyll levels. Carbon dioxide (2%-5%) was an essential nutrient for photomixotrophic cell culture in the bioreactors.  相似文献   

20.
The effect of medium viscosity on the specific death rate of bovine embryonic kidney (BEK) cells cultured in spinner flask microcarrier cultures has been examined for various impeller speeds. Two types of media were used, a serum-containing growth medium and a serum-free maintenance medium. The latter does not support cell growth. We found that increasing medium viscosity suppresses cell death rates in both growth and maintenance medium cultures in an agitation-intensity-dependent fashion; the beneficial effect of medium viscosity in reducing the specific death rate is amplified as the agitation rate is increased. Furthermore, increasing medium viscosity has no effect on the specific death rate of the cells when the agitation rate is below a critical level. A model based on the turbulent energy content of eddies in the dissipation spectrum of turbulence of length scales on the order of magnitude of the microcarrier diameter and lower has been developed to account for cell death due to both bead-to-bead and bead-to-eddy interactions. The model constitutes a significant departure from previous efforts first because both types of interactions are accounted for simultaneously and second because the properties of a spectrum of eddies instead of the Kolmogorov-scale eddy size alone are used in the model. The model explains the functional dependence of the specific death rates on the medium viscosity at varying agitation intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号