首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Previous studies have reported a protective role for the von Hippel-Lindau (VHL) gene products against pro-apoptotic cellular stresses, but the mechanisms remain unclear. In this study, we examined the role of VHL in renal cells subjected to chemical hypoxia, using four VHL-negative and two VHL-positive cell lines. VHL-negative renal carcinoma cells underwent apoptosis following chemical hypoxia (short-term glucose deprivation and antimycin treatment), as evidenced by morphologic changes and internucleosomal DNA cleavage. Reintroduction of VHL expression prevented this apoptosis. VHL-negative cells displayed a significant (greater than 5-fold) activation of caspase 9 and release of cytochrome c into the cytosol following chemical hypoxia. In contrast, VHL-positive cells showed minimal caspase 9 activation, and absence of cytochrome c release under the same conditions. Caspase 8 was only minimally activated in both VHL-negative and -positive cells. In addition, VHL-positive cells displayed a striking up-regulation of Bcl-2 expression (5-fold) following chemical hypoxia. Antisense oligonucleotides to Bcl-2 significantly down-regulated Bcl-2 protein expression in VHL-positive cells and rendered them sensitive to apoptosis. Overexpression of Bcl-2 in VHL-negative cells conferred resistance to apoptosis. Our results suggest that VHL protects renal cells from apoptosis via Bcl-2-dependent pathways.  相似文献   

4.
5.
Endothelial cell apoptosis induced by hypoxia is implicated in the pathogenesis of vascular diseases. However, the underlying mechanism is not clearly elucidated. In this study, we found that hypoxia increased Mxi1-0 expression, and the Mxi1-0 siRNA could inhibit caspase-8 activation and apoptosis in HUVECs induced by hypoxia. In addition, hypoxia induced FOXO3 activation, while Mxi1-0 expression and apoptosis were inhibited by transfection with FOXO3 siRNA. Using ChIP assay, we confirmed that FOXO3a binds to the Mxi1-0 promoter region. Furthermore, hypoxia treatment leads to remarkable production of reactive oxygen species (ROS), while ROS scavenger N-acetyl-L-cysteine (NAC) inhibits hypoxia-induced ROS production, apoptosis and FOXO3a-mediated Mxi1-0 up-regulation. Finally, we found that the HIF-1α siRNA inhibited hypoxia-induced HIF-1α expression and ROS production, as well as FOXO3a/Mxi1-0 activation and apoptosis in HUVECs. Taken together, this study identifies a HIF-1α/FOXO3a/Mxi1-0/caspase-8 signaling pathway in hypoxia-induced endothelial cell apoptosis. These data also indicate that HIF-1α-dependent ROS production is required for FOXO3a-mediated Mxi1-0 up-regulation and apoptosis in hypoxic endothelial cells.  相似文献   

6.
将表达野生型缺氧诱导因子-1α (hypoxia inducible factor-1 α, HIF-1α)的重组质粒pcDNA3.1-full length HIF-1α,表达抑制型HIF-1α的重组质粒pcDNA3.1-dominant negative HIF-1α和空质粒pcDNA3.1稳定转染人宫颈癌SiHa细胞,研究HIF-1α对人宫颈癌SiHa细胞生物学行为的影响.采用免疫细胞化学法和Western 印迹检测HIF-1α与VEGF蛋白的表达;CoCl2化学缺氧法处理细胞,采用原位缺口末端标记(TUNEL)法检测细胞凋亡情况.结果显示,显性失活HIF-1α能下调VEGF蛋白的表达,促进细胞缺氧条件下的凋亡,这提示HIF-1α可能在宫颈癌的发生发展中起作用,利用显性失活HIF-1α转染抑制HIF-1α可望成为宫颈癌治疗基因治疗的又一新途径.  相似文献   

7.
8.
Hypoxia results in adaptationally appropriate alterations of gene expression through the activation of hypoxia-inducible factor (HIF)-1 to overcome any shortage of oxygen. Peripheral blood mononuclear cells may be exposed to low oxygen tensions for different times as they migrate between blood and various tissues. We and others have previously shown that T-cell adaptation to hypoxia is characterized by a modulation of cytokine expression and an inhibition of T-cell activation. We have recently demonstrated that the adaptor protein p66Shc negatively regulates T-cell activation and survival. We here show that hypoxia enhances HIF-1alpha accumulation and vascular endothelial growth factor production in T cells. Hypoxic T cells expressed high levels of p21(WAF1/CIP1), of the pro-apoptotic molecules BNIP3, a classic HIF target gene, and BAX, as well as low levels of the anti-apoptotic molecule BCLxl, associated with an induction of cell death. We found out that hypoxic T cells expressed p66Shc. Furthermore, using T-cell transfectants expressing p66Shc, as well as T cells derived from mice p66Shc-/-, we defined a role of p66Shc in T-cell responses to hypoxia. Of interest, hypoxic p66Shc-positive transfectants expressed higher level of HIF-1alpha than negative controls. Thus, p66Shc may play an important role in downstream hypoxic signaling, involving HIF-1alpha protein accumulation and cell death in T lymphocytes.  相似文献   

9.
10.
Stanniocalcin-2 (STC2), the paralog of STC1, has been suggested as a novel target of oxidative stress response to protect cells from apoptosis. The expression of STC2 has been reported to be highly correlated with human cancer development. In this study, we reported that STC2 is a HIF-1 target gene and is involved in the regulation of cell proliferation. STC2 was shown to be up-regulated in different breast and ovarian cancer cells, following exposure to hypoxia. Using ovarian cancer cells (SKOV3), the underlying mechanism of HIF-1 mediated STC2 gene transactivation was characterized. Hypoxia-induced STC2 expression was found to be HIF-1α dependent and required the recruitment of p300 and HDAC7. Using STC2 promoter deletion constructs and site-directed mutagenesis, two authentic consensus HIF-1 binding sites were identified. Under hypoxic condition, the silencing of STC2 reduced while the overexpression of STC2 increased the levels of phosphorylated retinoblastoma and cyclin D in both SKOV3 and MCF7 cells. The change in cell cycle proteins correlated with the data of the serial cell counts. The results indicated that cell proliferation was reduced in STC2-silenced cells but was increased in STC2-overexpressing hypoxic cells. Solid tumor progression is usually associated with hypoxia. The identification and functional analysis of STC2 up-regulation by hypoxia, a feature of the tumor microenvironment, sheds light on a possible role for STC2 in tumors.  相似文献   

11.
Accumulation of HIF-1alpha during normoxic conditions at high cell density has previously been shown to occur and can be used to stabilize HIF-1alpha protein in the absence of a specific anaerobic chamber. However, the impact and origin of this pool of HIF-1alpha, obtained under normoxia, has been underestimated. In this study, we have systematically compared the related pools of HIF-1alpha stabilized in normoxia by high cell density to those obtained at low density in hypoxia. At first glance, these two stimuli appear to have similar outcomes: HIF-1alpha stabilization and induction of HIF-1-dependent genes. However, upon careful analysis, we observed that molecular mechanisms involved are different. We clearly demonstrate that density-dependant HIF-1alpha accumulation during normoxia is due to the cells high consumption of oxygen, as demonstrated by using a respiration inhibitor (oligomycin) and respiratory-defective mutant cells (GSK3). Finally and most importantly, our data indicate that a decrease in AKT activity followed by a total decrease in p70(S6K) phosphorylation reflecting a decrease in mTOR activity occurs during high oxygen consumption, resulting from high cell density. In contrast, hypoxia, even at severe low O(2) levels, only slightly impacts upon the mTOR pathway under low cell density conditions. Thus, activation of HIF-1alpha in exponentially growing cells via hypoxic stimulation is independent of the Akt/mTOR pathway whereas HIF-1alpha activation obtained in high confluency is totally dependent on mTOR pathway as rapamycin totally impaired (i) HIF-1alpha stabilization and (ii) mRNA levels of CA9 and BNIP3, two HIF-target genes.  相似文献   

12.
Hypoxia presents pro-apoptotic and anti-apoptotic biphasic effects that appear to be dependent upon cell types and conditions around cells. The substantial reports demonstrated that commonly used hypoxia-mimetic agents cobalt chloride (CoCl2) and desferrioxamine (DFO) could also induce apoptosis in many different kinds of cells, but the mechanism was poorly understood. In this work, we compare the apoptosis-inducing effects of these two hypoxia-mimetic agents with acute myeloid leukemic cell lines NB4 and U937 as in vitro models. The results show that both of them induce these leukemic cells to undergo apoptosis with a loss of mitochondrial transmembrane potentials (ΔΨ m), the activation of caspase-3/8 and the cleavage of anti-apoptotic protein Mcl-1, together with the accumulation of hypoxia-inducible factor-1 alpha (HIF-1α) protein, a critical regulator for the cellular response to hypoxia. Metavanadate and sodium nitroprusside significantly abrogate DFO rather than CoCl2-induced mitochondrial Δ Ψ m collapse, caspase-3/8 activation, Mcl-1 cleavage and apoptosis, but they fail to influence DFO and CoCl2-induced HIF-1α protein accumulation. Moreover, inducible expression of HIF-1α gene dose not alter DFO and CoCl2-induced apoptosis in U937 cells. In conclusion, these results propose that although both DFO and CoCl2-induced leukemic cell apoptosis by mitochondrial pathway-dependent and HIF-1α-independent mechanisms, DFO and CoCl2-induced apoptosis involves different initiating signal pathways that remain to be investigated.  相似文献   

13.
Hypoxia-induced apoptosis of cementoblasts (OCCM-30) may be harmful to orthodontic treatment. Hypoxia-inducible factor 1-alpha (HIF-1α) mediates the biological effects during hypoxia. Little is known about the survival mechanism capable to counteract cementoblast apoptosis. We aimed to investigate the potential roles of HIF-1α, as well as the protein-protein interactions with ERK1/2, using an in-vitro model of chemical-mimicked hypoxia and adipokines. Here, OCCM-30 were co-stimulated with resistin, visfatin or ghrelin under CoCl2-mimicked hypoxia. In-vitro investigations revealed that CoCl2-induced hypoxia triggered activation of caspases, resulting in apoptosis dysfunction in cementoblasts. Resistin, visfatin and ghrelin promoted the phosphorylated ERK1/2 expression in OCCM-30 cells. Furthermore, these adipokines inhibited hypoxia-induced apoptosis at different degrees. These effects were reversed by pre-treatment with ERK inhibitor (FR180204). In cells treated with FR180204, HIF-1α expression was inhibited despite the presence of three adipokines. Using dominant-negative mutants of HIF-1α, we found that siHIF-1α negatively regulated the caspase-8, caspase-9 and caspase-3 gene expression. We concluded that HIF-1α acts as a bridge factor in lengthy hypoxia-induced apoptosis in an ERK1/2-dependent pathway. Gene expressions of the caspases-3, caspase-8 and caspase-9 were shown to be differentially regulated by adipokines (resistin, visfatin and ghrelin). Our study, therefore, provides evidence for the role of ERK1/2 and HIF-1α in the apoptotic response of OCCM-30 cells exposed to CoCl2-mimicked hypoxia, providing potential new possibilities for molecular intervention in obese patients undergoing orthodontic treatment.  相似文献   

14.
15.
Hypoxia-induced nucleophosmin protects cell death through inhibition of p53   总被引:13,自引:0,他引:13  
Nucleophosmin (NPM) is a multifunctional protein that is overexpressed in actively proliferating cells and cancer cells. Here we report that this proliferation-promoting protein is strongly induced in response to hypoxia in human normal and cancer cells. Up-regulation of NPM is hypoxia-inducible factor-1 (HIF-1)-dependent. The NPM promoter encodes a functional HIF-1-responsive element that can be activated by hypoxia or forced expression of HIF-1alpha. Suppression of NPM expression by small interfering RNA targeting NPM increases hypoxia-induced apoptosis, whereas overexpression of NPM protects against hypoxic cell death of wild-type but not p53-null cells. Moreover, NPM inhibits hypoxia-induced p53 phosphorylation at Ser-15 and interacts with p53 in hypoxic cells. Thus, this study not only demonstrates hypoxia regulation of a proliferation-promoting protein but also suggests that hypoxia-driven cancer progression may require increased expression of NPM to suppress p53 activation and maintain cell survival.  相似文献   

16.
17.
Endothelial injury is a major manifestation of septic shock induced by LPS. Recently, LPS was shown to induce apoptosis in different types of endothelial cells. In this study, we observed that pretreatment with vascular endothelial growth factor (VEGF), a known cell survival factor, blocked LPS-induced apoptosis in endothelial cells. We then further defined this LPS-induced apoptotic pathway and its inhibition by VEGF. We found that LPS treatment increased caspase-3 and caspase-1 activities and induced the cleavage of focal adhesion kinase. LPS also augmented expression of the pro-apoptotic protein Bax and the tumor suppressor gene p53. The pro-apoptotic Bax was found to translocate to the mitochondria from the cytosol following stimulation with LPS. Pretreatment of endothelial cells with VEGF inhibited the induction of both Bax and p53 as well as the activation of caspase-3. These data suggest that VEGF inhibits LPS-induced endothelial apoptosis by blocking pathways that lead to caspase activation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号