首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In the course of experiments directed towards the isolation of mutants of Escherichia coli K12 with altered regulation of the synthesis of carbamoylphosphate synthetase, two types of mutations were found to affect the cumulative repression of this enzyme by arginine and uracil. Alteraction of the arginine pathway regulatory gene, argR, was shown to reduce the repressibility of the enzyme by both end products while mutations affecting uridine monophosphate pyrophosphorylase (upp) besides affecting uracil uptake preclude enzyme repression by uracil or cytosine in the biosynthesis of carbamoylphosphate and the pyrimidines. The upp mutations were located on the chromosome near the gua operon. Mutations previously designated as uraP are shown to belong to this class.The relation that could exist between the loss of uridine monophosphate pyrophosphorylase and the impairment of uracil uptake is discussed.A new method for isolating argR mutants in arginine-less strains is described.  相似文献   

2.
Glutamine synthetase (GS, EC 6.3.1.2) and glutamate synthase (GOGAT, EC 1.4.1.13) were purified from Sclerotinia sclerotiorum and some of their properties studied. The GS transferase and biosynthetic activities, as well as GOGAT activity, were sensitive to feedback inhibition by amino acids and other metabolites. GS showed a marked dependence on ADP in the transferase reaction and on ATP in the Mg2+-dependent biosynthetic reaction. Regulation of GS activity by adenylylation/deadenylylation was demonstrated by snake venom phosphodiesterase treatment of the purified enzyme. GOGAT required NADPH as an electron donor; NADH was inactive. GOGAT was strongly inhibited by p-chloromercuribenzoate and the inhibition was reversed by cysteine. The enzyme was also markedly inhibited by o-phenanthroline, 2,2′-bipyridyl and azaserine. l-Methionine-dl-sulphoximine (MSX) and azaserine inhibited the incorporation of 15N-labelled ammonium sulphate into washed cells of S. sclerotiorum. MSX and azaserine respectively also inhibited purified GS and GOGAT activities. GDH activity was not detected in cell-extracts. Thus the GS/GOGAT pathway is the main route for the assimilation of ammonium compounds in this fungus.  相似文献   

3.
The localization of carbamoylphosphate synthetase (CPSase) and aspartate carbamoyltransferase (ACTase), the first two enzymes of the pyrimidine biosynthetic pathway, in chloroplasts was investigated. In dark-grown radish (Raphanus sativus) seedlings, light induced a prominent increase in CPSase activity, but had little effect on ACTase activity. Both enzymes were found in chloroplasts isolated from radish cotyledons and leaves of spinach (Spinacia oleracea), soybean (Glycine max), and corn (Zea mays). The higher activity of ACTase relative to CPSase is discussed in relation to the instability of carbamoylphosphate, the product of the CPSase, and to the control of pyrimidine synthesis. Based on these results, the function of CPSase and ACTase in chloroplasts is discussed.  相似文献   

4.
The construction and cloning of a cDNA complementary to the mRNA of rat liver carbamoylphosphate synthetase (ammonia) is described. Using this cDNA, the size of the mature, cytosolic carbamoylphosphate synthetase (ammonia) mRNA is estimated to be 6.0 Kb. The levels of carbamoylphosphate synthetase (ammonia) mRNA in liver are shown to be regulated by glucocorticosteroids and cyclic AMP. By studying mRNA levels of carbamoylphosphate synthetase, albumin and phosphoenolpyruvate carboxykinase, using specific cDNA clones, we show that carbamoylphosphate synthetase gene expression, like that of albumin is liver-specific.  相似文献   

5.
Arginine biosynthesis in eukaryotes is divided between the mitochondria and the cytosol. The anaerobic chytridiomycete Neocallimastix frontalis contains highly reduced, anaerobic modifications of mitochondria, the hydrogenosomes. Hydrogenosomes also occur in the microaerophilic flagellate Trichomonas vaginalis, which does not produce arginine but uses one of the mitochondrial enzymes, ornithine transcarbamoylase, in a cytosolic arginine dihydrolase pathway for ATP generation. EST sequencing and analysis of the hydrogenosomal proteome of N. frontalis provided evidence for two mitochondrial enzymes of arginine biosynthesis, carbamoylphosphate synthase and ornithine transcarbamoylase, while activities of the arginine dehydrolase pathway enzymes were not detectable in this fungus.  相似文献   

6.
To study the importance of arginine provision and phosphate limitation for synthesis and accumulation of cyanophycin (CGP) in Acinetobacter sp. strain ADP1, genes encoding the putative arginine regulatory protein (argR) and the arginine succinyltransferase (astA) were inactivated, and the effects of these mutations on CGP synthesis were analyzed. The inactivation of these genes resulted in a 3.5- or 7-fold increase in CGP content, respectively, when the cells were grown on glutamate. Knockout mutations in both genes led to a better understanding of the effect of the addition of other substrates to arginine on CGP synthesis during growth of the cells of Acinetobacter sp. strain ADP1. Overexpression of ArgF (ornithine carbamoyltransferase), CarA-CarB (small and large subunits of carbamoylphosphate synthetase), and PepC (phosphoenolpyruvate carboxylase) triggered synthesis of CGP if amino acids were used as a carbon source whereas it was not triggered by gluconate or other sugars. Cells of Acinetobacter sp. strain ADP1, which is largely lacking genes for carbohydrate metabolism, showed a significant increase in CGP contents when grown on mineral medium supplemented with glutamate, aspartate, or arginine. The Acinetobacter sp. ΔastA(pYargF) strain is unable to utilize arginine but synthesizes more arginine, resulting in CGP contents as high as 30% and 25% of cell dry matter when grown on protamylasse or Luria-Bertani medium, respectively. This recombinant strain overcame the bottleneck of the costly arginine provision where it produces about 75% of the CGP obtained from the parent cells grown on mineral medium containing pure arginine as the sole source of carbon. Phosphate starvation is the only known trigger for CGP synthesis in this bacterium, which possesses the PhoB/PhoR phosphate regulon system. Overexpression of phoB caused an 8.6-fold increase in CGP content in comparison to the parent strain at a nonlimiting phosphate concentration.  相似文献   

7.

Background

Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa.

Results

We identified 67 carotenoid biosynthetic genes in B. rapa, which were orthologs of the 47 carotenoid genes in A. thaliana. A high level of synteny was observed for carotenoid biosynthetic genes between A. thaliana and B. rapa. Out of 47 carotenoid biosynthetic genes in A. thaliana, 46 were successfully mapped to the 10 B. rapa chromosomes, and most of the genes retained more than one copy in B. rapa. The gene expansion was caused by the whole-genome triplication (WGT) event experienced by Brassica species. An expression analysis of the carotenoid biosynthetic genes suggested that their expression levels differed in root, stem, leaf, flower, callus, and silique tissues. Additionally, the paralogs of each carotenoid biosynthetic gene, which were generated from the WGT in B. rapa, showed significantly different expression levels among tissues, suggesting differentiated functions for these multi-copy genes in the carotenoid pathway.

Conclusions

This first systematic study of carotenoid biosynthetic genes in B. rapa provides insights into the carotenoid metabolic mechanisms of Brassica crops. In addition, a better understanding of carotenoid biosynthetic genes in B. rapa will contribute to the development of conventional and transgenic B. rapa cultivars with enriched carotenoid levels in the future.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1655-5) contains supplementary material, which is available to authorized users.  相似文献   

8.
In the pyrimidine biosynthetic pathway, CTP synthetase catalyses the conversion of uridine 5-triphosphate (UTP) to cytidine 5-triphosphate (CTP). In the yeast Saccharomyces cerevisiae, the URA7 gene encoding this enzyme was previously shown to be nonessential for cell viability. The present paper describes the selection of synthetic lethal mutants in the CTP biosynthetic pathway that led us to clone a second gene, named URA8, which also encodes a CTP synthetase. Comparison of the predicted amino acid sequences of the products of URA7 and URA8 shows 78% identity. Deletion of the URA8 gene is viable in a haploid strain but simultaneous presence of null alleles both URA7 and URA8 is lethal. Based on the codon bias values for the two genes and the intracellular concentrations of CTP in strains deleted for one of the two genes, relative to the wild-type level, URA7 appears to be the major gene for CTP biosynthesis. Nevertheless, URA8 alone also allows yeast growth, at least under standard laboratory conditions.  相似文献   

9.
The following observations with isolated mitochondria prepared from rat liver demonstrate that Carbamoylphosphate can readily traverse the mitochondrial membrane: (a) Citrulline synthesis occurs within isolated intact mitochondria at the expense of exogenously added ornithine and [14C]carbamoylphosphate, providing evidence that the initochondrial membrane does not exclude extramitochondrial car bamoylphosphate from penetrating the intramitochondrial matrix, (b) The [14C]carbamoylphosphate synthesized within isolated intact mitochondria from NaH14CO3 by the action of the N-acetyl-l-glutamate-activated carbamoylphosphate synthetase (CPS-I) is equally available for consumption in intramitochondrial and extramitochondrial reactions, as judged by the coupled activity of CPS-I with either intramitochondrial ornithine carbamoyltransferase or extramitochondrial aspartate carbamoyltransferase. The possibility that the coupled action of CPS-I with intramitochondrial ornithine carbamoyltransferase might prevent the export of carbamoylphosphate into the extramitochondrial medium was also examined. The addition of ornithine to the reaction mixture, at concentrations which are optimal for citrulline production, did not reduce carbamoylphosphate export below13 of the total amount of carbamoylphosphate synthesized. These results indicate that the carbamoylphosphate generated intramitochondrially is not compartment ally excluded from participating in cytoplasmic reactions, and raise the possibility that the intramitochondrial carbamoylphosphate synthetase, CPS-I, may be a significant source of the carbamoylphosphate incorporated into hepatic pyrimidines by the cytoplasmic enzymes of the orotate pathway.  相似文献   

10.
Prochlorococcus is one of the most important primary producers on Earth; its unusual features and ecological importance have made it a model organism, but nutrient assimilation has received little attention. Glutamine synthetase (GS) plays a key role in nitrogen metabolism and its central position justifies the fine regulation of this enzyme. The aim of this work is to demonstrate the involvement of metal-catalyzed oxidation (MCO) in the control of the biological activity and turnover of GS from Prochlorococcus. In order to study the physiological role of MCO, we have first characterized the in vitro biosynthetic inactivation and degradation of GS in the axenic PCC 9511 strain, testing then the effect of several stress conditions, such as the presence of electron transport inhibitors, darkness and aging, on the inactivation and degradation of GS. It is noteworthy that the physiological substrates of GS could protect the enzyme from the oxidative inactivation and ATP partially reverted this inactivation once the enzyme had been oxidized, being this effect higher in the presence of glutamate. We have also found that the GS from aged cultures is degraded to the same smaller size fragments obtained in the in vitro degradation of GS by an oxidative model system (Fe3+/NADH/NADH oxidase/O2). These results suggest the implication of MCO in the age- and oxidative state-dependent degradation of GS from Prochlorococcus.  相似文献   

11.
The steady state concentrations of arginine and related intermediary metabolites of the arginine biosynthetic pathway in the eukaryote Neurospora crassa were varied and the concurrent de-repression of the enzymes ornithine transcarbamylase, argininosuccinate synthetase and argininosuccinase was measured. Pool variation was achieved endogenously by the introduction and combination of mutant enzymes with reduced specific activities. Measurements of activities of the mutationally unaltered enzymes showed various degrees of de-repression. The highest activity level for each of the three enzymes was about five times that found in the fully repressed wild-type strain. The variations observed in the pools were as follows: ornithine, 7-fold; citrulline, 700-fold; argininosuccinic acid, 400-fold; arginine, 300-fold.By this means a quantitative analysis of the process of repression is made possible. A strong correlation was found between the degree of de-repression of the three enzymes and the concentration of arginine. The de-repression follows a sigmoid curve with respect to arginine concentration. This is consistent with the interpretation that the pathway enzymes are subject to a repression system with arginine, or a simple derivative of it, acting as a co-repressor.  相似文献   

12.
The phenylalanyl-tRNA synthetase operon is composed of two adjacent, cotranscribed genes, pheS and pheT, corresponding respectively to the small and large subunit of phenylalanyl-tRNA synthetase. A fusion between the regulatory regions of phenylalanyl-tRNA synthetase operon and the lac structural genes has been constructed to study the regulation of the operon. The pheS,T operon was shown, using the fusion, to be derepressed when phenylalanine concentrations were limiting in a leaky auxotroph mutated in the phenylalanine biosynthetic pathway. Furthermore, a mutational alteration in the phenylalanyl-tRNA synthetase gene, bradytrophic for phenylalanine, was also found to be derepressed under phenylalanine starvation. These results indicate that the pheS,T operon is derepressed when the level of tRNAPhe aminoacylation is lowered. By analogy with other well-studied amino acid biosynthetic operons known to be controlled by attenuation, these in vivo results indicate that phenylalanyl-tRNA synthetase levels are controlled by an attenuation-like mechanism.  相似文献   

13.
自然界异黄酮合成途径主要存在于豆科植物中。以微生物为宿主研究异黄酮代谢,则需要将整个相关代谢途径的多酶体系组装到工程菌种,从而进行表达及代谢研究,这就需要用到多基因的转化和共表达技术。综合应用了多基因单载体和多基因多载体方法,将大豆异黄酮代谢途径中的五个关键酶基因导入到大肠杆菌中,对异黄酮代谢途径在大肠杆菌中的构建和表达进行了研究和探索,获得了含有五个外源基因的重组大肠杆菌;重组菌经IPTG诱导,以L-酪氨酸为底物进行发酵,发酵产物经过HPLC测定,结果表明和空白对照相比有新的代谢产物生成,初步断定为异黄酮类化合物。  相似文献   

14.
Glutamine synthetase (GS) activity is enhanced in cultured whole retinas when a 72 h incubation at 37°C is preceded by storage at 4°C for 2–24 h. This enhancement occurs even in the absence of glucocorticoids and is maximal in retinas from 11 to 14 d embryos. In comparison, cortisol-induced increases in retinal GS activity at 37°C are optimal in retinas from 8 to 12 d embryos. This study, using cycloheximide (an inhibitor of protein synthesis) and cordycepin (an inhibitor of RNA synthesis), indicates that both protein and RNA synthesis are required for the 4°C storage enhancement of GS activity. The necessary RNA synthesis occurs within the first 48 h following transfer to 37°C and does not require concomitant protein synthesis. Uridine uptake, but not incorporation into trichloroacetic acid-precipitable material, is increased by initial 4°C storage when compared with whole retina controls incubated at 37°C for the total time. In contrast, both uptake and incorporation of amino acids are increased in 4°C-stored retinas for as long as 72 h subsequent to transfer from 4 to 37°C. This suggests that enhancement of GS activity may arise from a combination of elevated general protein synthesis and specific messenger-RNA synthesis following 4°C storage.  相似文献   

15.
GlnK proteins belong to the PII superfamily of signal transduction proteins and are involved in the regulation of nitrogen metabolism. These proteins are normally encoded in an operon together with the structural gene for the ammonium transporter AmtB. Haloferax mediterranei possesses two genes encoding for GlnK, specifically, glnK1 and glnK2. The present study marks the first investigation of PII proteins in haloarchaea, and provides evidence for the direct interaction between glutamine synthetase and both GlnK1 and GlnK2. Complex formation between glutamine synthetase and the two GlnK proteins is demonstrated with pure recombinant protein samples using in vitro activity assays, gel filtration chromatography and western blotting. This protein–protein interaction increases glutamine synthetase activity in the presence of 2-oxoglutarate. Separate experiments that were carried out with GlnK1 and GlnK2 produced equivalent results.  相似文献   

16.
Aminoacyl-tRNA synthetases are housekeeping enzymes that catalyze the specific attachment of amino acids onto cognate tRNAs, providing building blocks for ribosomal protein synthesis. Owing to the absolutely essential nature of these enzymes, the possibility that mutations in their sequence could be the underlying cause of diseases had not been foreseen. However, we are learning of patients bearing familial mutations in aminoacyl-tRNA synthetases at an exponential rate. In a recent issue of JBC, Jin et al. analyzed the impact of two such mutations in the very special bifunctional human glutamyl-prolyl-tRNA synthetase and convincingly decode how these mutations elicit the integrated stress response.  相似文献   

17.
Glutamine synthetase from the unicellular cynabacterium Anacystis nidulans was found associated with the membrane fraction of cell-free extracts. The enzyme could be solubilized by treatment of the cell membranes with the detergent alkyltrimethylammoniun and was purified to electrophoretical homogeneity by using affinity chromatography on 2′,5′-ADP-Sepharose. The molecular weight of the native enzyme was approx. 575000 but only a single protein band of 47 kDa was detected after sodium dodecyl sulphate gel electrophoresis, which implies a native enzyme complex with twelve identically sized subunits. Values for apparent Michaelis constant of the purified enzyme for ammonium, glutamate and ATP were 20, 5000 and 700 μM, respectively. Alanine behaved as an inhibitor of both activities (transferase and biosynthetic) of glutamine synthetase, whereas aspartate, leucine and lysine inhibited the biosynthetic activity of the enzyme, and glycine and serine only inhibited the transferase activity. Glutamate analogs, such as hydroxylysine, methionine sulfone, methionine sulfoximine and phosphinothricin, which inhibited ammonium uptake in vivo, behaved as potent inhibitors of glutamine synthetase in vitro. A. nidulans glutamine synthetase was inhibited by p-hydroxymercuribenzoate, the effect being reversed by treatment with dithioerythritol, dithiothreitol or mercaptoethanol.  相似文献   

18.
It has been previously demonstrated that ammonia exposure of neurons and astrocytes in co-culture leads to net synthesis not only of glutamine but also of alanine. The latter process involves the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT). In the present study it was investigated if the glutamine synthetase (GS) inhibitor methionine sulfoximine (MSO) would enhance alanine synthesis by blocking the GS-dependent ammonia scavenging process. Hence, co-cultures of neurons and astrocytes were incubated for 2.5 h with [U-13C]glucose to monitor de novo synthesis of alanine and glutamine in the absence and presence of 5.0 mM NH4Cl and 10 mM MSO. Ammonia exposure led to increased incorporation of label but not to a significant increase in the amount of these amino acids. However, in the presence of MSO, glutamine synthesis was blocked and synthesis of alanine increased leading to an elevated content intra- as well as extracellularly of this amino acid. Treatment with MSO led to a dramatic decrease in glutamine content and increased the intracellular contents of glutamate and aspartate. The large increase in alanine during exposure to MSO underlines the importance of the GDH and ALAT biosynthetic pathway for ammonia fixation, and it points to the use of a GS inhibitor to ameliorate the brain toxicity and edema induced by hyperammonemia, events likely related to glutamine synthesis.  相似文献   

19.
The biosynthetic pathway of (–)-ent-kaurenoic acid (1) was investigated by incorporation of 1-d-13C-glucose in Smallanthus sonchifolius (Asteraceae) plantlets. The 13C-enrichment pattern indicated that methylerythritol-4-phosphate (MEP) pathway is the biosynthetic pathway involved in diterpenoid biosynthesis. Our studies in S. sonchifolius reinforce that the biosynthesis of different classes of terpenes should not be compartmentalized into cytosol and plastids. Additionally, (–)-ent-kaurenoic acid showed antimicrobial activity against Staphylococcus aureus biofilm.  相似文献   

20.
Summary Six loci coding for arginine biosynthetic enzymes in Pseudomonas aeruginosa strain PAO were identified by enzyme assay: argA (N-acetylglutamate synthase), argB (N-acetylglutamate 5-phosphotransferase), argC (N-acetylglutamate 5-semialdehyde dehydrogenase), argF (anabolic ornithine carbamoyltransferase), argG (argininosuccinate synthetase), and argH (argininosuccinase). One-step mutants which had a requirement for arginine and uracil were defective in carbamoylphosphate synthase, specified by a locus designated car. To map these mutations we used the sex factor FP2 in an improved interrupted mating technique as well as the generalized transducing phages F116L and G101. We confirmed earlier studies, and found no clustering of arg and car loci. However, argA, argH, and argB were mapped on a short chromosome segment (approx. 3 min long), and argF and argG were cotransducible, but not contiguous. N-Acetylglutamate synthase, the enzyme which replenishes the cycle of acetylated intermediates in ornithine synthesis of Pseudomonas, appears to be essential for arginine synthesis since argA mutants showed no growth on unsupplemented minimal medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号