首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
应用一个由115个系组成的W7984/Opata85的重组自交系(RIL)群体,建立了一个由394个(292个RFLP、94个SSR和8个特殊的基因杂交探针)DNA分子标记组成的遗传连锁图,对小麦千粒重进行了单个标记的回归分析和复合区间作图的QTL定位,在单个标记的回归分析中检测到11个千粒重的QTLs(P〈0.01);复合区间作图分析结果表明,其中4个标记bcd348a、GW3-1、IND109和Rz2的遗传效应较大,其贡献率分别为9.1%、19.0%、8.07%和8.14%,分别位于小麦的2BS、4AL、5BL和7DS上,特别是在水稻第3条染色体上控制籽粒大小的GW3-1和IND109分别位于小麦4A和5B染色体的长臂端.研究结果对小麦应用分子标记辅助选择或分子克隆基因有重要的参考价值.  相似文献   

2.
以六倍体裸燕麦578(大粒品种)和三分三(小粒品种)为亲本进行杂交,构建包含202个家系的F2遗传作图群体。由172个SSR标记构建出包含21个连锁群的遗传连锁图谱。采用复合区间作图对子粒性状进行QTL定位,共检测到17个控制子粒长度、宽度、千粒重的QTL位点。其中,6个与子粒长度相关的QTL位点表型的贡献率为0.70%~12.83%,5个与子粒宽度相关的QTL位点表型的贡献率为0.77%~12.92%,6个与子粒千粒重相关的QTL位点表型的贡献率为0.58%~10.64%。在这些QTLs中有4个的贡献率达到了10%以上,分别是与子粒长有关的qGL-2(12.83%)、与子粒宽有关的qGW-5(12.92%)以及与千粒重有关的qTGW-3(10.64%)和qTGW-4(10.05%),被认为是主效基因所在位点。而且qGL-2和qTGW-4位于连锁群的相同位置上。还发现第3号连锁群上AM1089~AM1512区段分别与子粒长度、宽度和千粒重相关,同时3号连锁群AM86-2~AM1044区间分别与子粒长度和千粒重相关,而位于第21号连锁群AM3217~AM965区段分别与子粒宽度和千粒重相关。这一研究为燕麦子粒性状的深入研究和相关标记开发以及分子辅助选择研究奠定了基础。  相似文献   

3.
以小麦品种‘小偃81’和‘西农1376’构建的含236个家系的自交重组系(RIL)群体(F2:7、F2:8代)为研究材料,采用完全随机区组设计,连续2年在陕西杨陵、河南驻马店和山东济南于灌浆期(花后20d)随机取每个株系10株测量旗叶长、宽,并利用172个SSR标记构建了遗传连锁图谱,通过基于完备区间作图法的QTL IciMapping V3.2软件,对控制小麦旗叶长、宽和面积的数量性状位点(QTL)进行了加性效应分析。结果发现:(1)9个旗叶长QTLs位于1A、4A、3B、5D和7D染色体上,单个QTL可解释5.10%~16.44%的表型变异;10个旗叶宽QTLs位于1A、3A、5A、7A、3B和5D染色体上,单个QTL可解释4.63%~14.24%的表型变异;12个旗叶面积QTLs位于1A、4A、3B、2D和5D染色体上,单个QTL可解释4.25%~22.67%的表型变异。(2)控制小麦旗叶长、宽和面积的QTLs存在差异,同一QTL在不同性状中的遗传贡献率也不同。(3)同一性状在同一年份,不同地点和在不同年份,相同地点下检测到的QTLs有的相同,但有的差异明显。(4)有些控制不同性状的QTLs在染色体的同一标记区间,表现一因多效。研究表明:位于1A和5D染色体上的2个加性QTLs都同时控制旗叶长、宽和面积,且前者为主效基因,后者遗传贡献率也较大,可用于标记辅助育种和分子聚合育种。  相似文献   

4.
利用6044×01-35构建的重组自交系(RIL)群体为试验材料,对小麦粒重性状进行发育动态QTL分析。结果表明,在小麦花后子粒灌浆的7个不同时期,两个试验点共检测到16个与粒重性状相关的QTL。其中开花后20d检测到的单穗粒重QTL位于2A染色体上,解释率达12%,遗传效应超过10;两环境下控制千粒重QTL在7个时期均被检测到。花后的各个时期均能在Xgwm448-Xgpw7399标记区间定位到千粒重QTL。其中花后10d检测到1个千粒重QTL,位于2A染色体的Xgwm448-Xgpw7399标记区间,解释较大的表型变异,达到18%。Qtl8、Qtl13和Qtl14均定位在Xgwm448-Xgpw7399标记区间的同一位置,共同解释11%的表型变异。花后20d和花后25d均检测到1个QTL,位于2A染色体的Xgwm372-Xgwm95标记区间的不同位点,均能解释4%的表型变异。花后40d检测到1个QTL,位于1D染色体的Xwmc93-Xgpw2224标记区间,解释1%的表型变异。从连锁群的位置上看,控制千粒重的QTL主要集中在2A染色体的Xgwm448-Xgpw7399标记区间,这是一个控制千粒重QTL的富集区域,以期进行精细定位和图位克隆。  相似文献   

5.
以波兰小麦品系‘XN555’与普通小麦品系‘中13’杂交产生的99个F10重组自交系(RILs)为材料,构建了包含241个SSR分子标记的A、B染色体组14个连锁群的遗传图谱,并采用Logistic方程拟合籽粒灌浆过程,对粒重增长的缓慢增长期、快速增长期和平稳期进行千粒重条件QTL和非条件QTL定位分析。结果显示:(1)在小麦A、B染色体组上共检测到5个非条件QTL和5个条件QTL。(2)在小麦粒重缓慢增长期和快速增长期各有2个非条件QTL,平稳期有1个非条件QTL,它们分别位于2B、3A、3B和7A染色体上,单个QTL可解释表型变异的9.66%~15.18%。(3)在小麦粒重快速增长期检测到1个条件QTL,平稳期检测到4个条件QTL,涉及1A、2B、5B和7B染色体,单个QTL可解释表型变异的13.01%~29.27%。(4)于2B染色体Xbarc361~Xwmc422标记区间距Xbarc361标记0.05cM处,在粒重快速增长期同时检测到一个条件QTL和非条件QTL,且在平稳期检测到一个非条件QTL。研究表明,小麦不同灌浆时期粒重增长相关QTL的数量和遗传效应各不同,同一QTL在不同灌浆时期的遗传效应也不同,即QTL的表达具有时序选择性。  相似文献   

6.
拔节期与抽穗期玉米抗纹枯病相关QTL的初步定位   总被引:4,自引:0,他引:4  
以玉米自交系R15(抗)×478(感)的F_2分离群体为作图群体,构建了包含146个SSR标记位点的遗传连锁图谱,覆盖玉米基因组1666 cM,平均图距11.4 cM。通过麦粒嵌入法对229个F_(2:4)家系进行人工接种纹枯病菌,于玉米拔节期和抽穗期进行纹枯病的抗性鉴定。应用复合区间作图法分析两个时期的抗病QTL及遗传效应。结果共检测到17个抗性QTL,其中以拔节期病情指数为指标共检测到9个QTL,分别位于第1、2、3、4、5、6、和10染色体上,可解释的表型变异为3.72%-9.26%;以抽穗期的病情指数为指标共在7条染色体上检测到10个抗玉米纹枯病的QTL,分布于第2、3、4、5、6、8和9染色体上。单个QTL可解释的表型变异为4.27%-9.27%。两个时期共检测出2个共同QTL,它们分别位于第2染色体的bnlgl662-bnlg1940区间和第6染色体的umc1006-umc1723区间。定位结果表明两个时期检测出的抗性QTL的差异表达与玉米不同发育时期基因的时空表达有密切关系,从而反映在纹枯病的抗性位点差异性上.这为玉米抗病选育提供新的信息。  相似文献   

7.
Wang XL  Gao XW  Li G  Wang HL  Geng SD  Kang F  Nie XX 《遗传》2011,33(12):1398-1408
以遗传性状差异较大的甜瓜材料日本安农二号与新疆哈密瓜K413杂交产生的143个F2单株为作图群体,以AFLP与SSR分子标记为主构建了包含12个连锁群、142个遗传标记位点的甜瓜遗传图谱,其中包括121个AFLP标记、16个SSR标记、3个STS标记、2个性状标记,连锁群总长度为1 014.2 cM。应用复合区间作图法对甜瓜果实的大小、长宽比、糖度、硬度以及甜瓜种子的长、宽、形状、重量等性状进行遗传定位与分析。基因定位结果显示控制果肉颜色的基因位于C9连锁群AFLP分子标记NDAA与NCFA之间。其他性状表现为数量性状控制,共检测到25个数量性状基因座,不同性状基因座位有重叠分布的特点。其中C5连锁群标记NCA-N73C区间检测到QTLs Sl5.1、Sw5.1和Swt5.1分别控制种子长、宽和千粒重,分别可解释表型变异的17%、19%和23%。该区域包含的来自母本安农二号的基因位点对甜瓜种子的长、宽、千粒重均有明显的抑制作用;位于C8连锁群标记N73A与NFDA间的QTL通过影响种子的宽度从而影响种子的形状与重量;同样位于C8连锁群的果实长宽比QTL Fs8.1在F2和F3中均检测到,分别解释表型变异的25%和19%,表现为部分显性,来自安农二号的等位基因抑制甜瓜果实伸长,生成圆形甜瓜;还发现控制甜瓜果实心糖、边糖、果实硬度的QTL各一个。  相似文献   

8.
利用小麦中国春(母本)和兰考大粒(父本)F2群体构建了169个标记的分子遗传图谱,将F2∶3家系分别种植于3个环境中,利用基于完备区间混合模型的单环境作图模型和多环境作图模型对小麦籽粒容重、硬度、蛋白含量和结合水含量性状进行了QTL分析。结果显示:(1)两种作图模型下,检测到容重的6个共同QTL(QTW-6B-6、QTW-7B-6、QTW-7B-9、QTW-5D-2、QTW-6D-1、QTW-6D-4),单环境模型下遗传贡献率为1.99%~6.57%,多环境模型下遗传贡献率为3.66%~20.07%,其中QM TW-7B-9、QM TW-6D-1和QM TW-6D-4在多环境模型中表现为主效QTL。(2)检测到硬度的3个共同QTL(QHD-4A-5、QHD-7A-1和QHD-7B-9),单环境模型下的遗传贡献率为6.00%~6.95%,多环境模型中遗传贡献率为5.43%~9.64%。(3)检测到蛋白含量1个共同QTL(QPR-6D-1),单环境模型下的遗传贡献率为5.39%,多环境模型中遗传贡献率为10.06%,表现为主效QTL。(4)检测到籽粒结合水含量1个共同QTL(QMO-1B-4),单环境模型下的遗传贡献率为39.20%,多环境模型下的遗传贡献率为75.01%,均表现为主效QTL。(5)1B染色体上存在同时控制籽粒容重、硬度、蛋白和结合水含量的QTL,说明1B染色体对小麦品质的影响可能很大。研究表明,小麦容重、硬度、蛋白含量、结合水含量的遗传主要受加性效应控制。该研究初步定位的一些重要QTL可为进一步精细定位、基因挖掘和育种早代品质性状分子标记辅助选择提供依据。  相似文献   

9.
以小麦光温敏核雄性不育系BS20×Fu3双单倍体(DH)群体的289个系为材料,从1112对SSR和EST-SSR引物中筛选出多态性引物243对,利用其中128个SSR和6个EST-SSR标记构建遗传连锁图谱,该图谱覆盖长度为2749.2 c M,分布在小麦的19个连锁群(除4D、6A),不同连锁群标记数为2~15个,长度在15.3~244.4 c M之间,平均长度为144.7 c M,标记之间平均遗传距离为17.4 c M。同时构建3个DNA池(包括恢复池、北京不育池和阜阳不育池),用分离群体分组分析法(BSA)对育性进行分析,筛选出的多态性引物为Wmc264、Wmc73、Xgwm350,分布在3A、5B、2A/7D染色体上。同时用混合线性复合区间作图法(MCIM)对育性进行QTL分析,当F7.5时,检测到6个主效QTL,用复合区间作图法(CIM)对育性进行QTL分析,当LOD值2.5时,共检测到13个主效QTL,两种方法检测到一致的QTL有3个,分别为1BL的Wmc365-cfa2129、2BS的Wmc602-Xgwm148和3AL的Wmc264a-cfa2262区间的QTL。综合BSA和QTL的结果,位于1BL、2BS和3AL上的小麦光温敏不育基因是真实的。  相似文献   

10.
该研究以‘山农0431×鲁麦21’RIL群体及其父母本为材料,用20%PEG-6000溶液和100 mmol·L-1 NaCl溶液分别模拟干旱和盐环境,对12个小麦萌发期抗旱耐盐相关性状进行测定,结合已构建的分子标记遗传图谱对小麦萌发期抗旱、耐盐的相关性状进行QTL分析,为小麦抗旱、耐盐基因的克隆和分子标记辅助选择提供参考。结果表明:(1)正常、干旱和盐胁迫3种处理下共检测到143个QTL。检测到相对高频QTL(RHF-QTL)29个,平均贡献率范围为4.39%~13.28%,贡献率在10%以上的主效RHF-QTL有10个。(2)检测到胁迫下特异表达的RHF-QTL共17个,正常处理下特异表达的RHF-QTL为8个,稳定表达的RHF-QTL为4个。(3)QTL分析结果表明,7个RHF-QTL形成了3个QTL簇,且分布在2D、4D和5B等3条染色体上,其中:QC1位于2D染色体的wPt-6847~D-1172783区间,包括3个QTL(QRl-2D.2、QSdw-2D.3、QTdw-2D);QC2位于4D染色体短臂的D-2245724~D-1108531区间,包括2个QTL(QSl-4D、QShl-4D);QC3位于5B染色体的D-982263~S-1083095区间,包括2个QTL(QSl-5B.2、QTdw-5B.1)。  相似文献   

11.

Background

Herbicide tolerance is an important trait that allows effective weed management in wheat crops. Genetic knowledge of metribuzin tolerance in wheat is needed to develop new cultivars for the industry. Here, we evaluated metribuzin tolerance in a recombinant inbred line (RIL) mapping population derived from Synthetic W7984 and Opata 85 over two consecutive years to identify quantitative trait loci (QTL) contributing to the trait. Herbicide tolerance was measured by two chlorophyll traits, SPAD chlorophyll content index (CCI) and visual senescence score (SNS). The markers associated with major QTL from Synthetic W7984, positively contributing to reduced phytotoxic effects under herbicide treatment were validated in two F3/4 recombinant inbred populations developed from crosses of Synthetic W7984?×?Westonia and Synthetic W7984?×?Lang.

Results

Composite interval mapping (CIM) identified four QTL, two on chromosome 4A and one each on chromosomes 2D and 1A. The chromosomal position of the two QTL mapped on 4A within 10 cM intervals was refined and validated by multiple interval mapping (MIM). The major QTL affecting both measures of tolerance jointly explained 42 and 45% of the phenotypic variation by percentage CCI reduction and SNS, respectively. The identified QTL have a pure additive effect. The metribuzin tolerant allele of markers, Xgwm33 and Xbarc343, conferred lower phytotoxicity and explained the maximum phenotypic variation of 28.8 and 24.5%, respectively. The approximate physical localization of the QTL revealed the presence of five candidate genes (ribulose-bisphosphate carboxylase, oxidoreductase (rbcS), glycosyltransferase, serine/threonine-specific protein kinase and phosphotransferase) with a direct role in photosynthesis and/or metabolic detoxification pathways.

Conclusion

Metribuzin causes photo-inhibition by interrupting electron flow in PSII. Consequently, chlorophyll traits enabled the measure of high proportion of genetic variability in the mapping population. The validated molecular markers associated with metribuzin tolerance mediating QTL may be used in marker-assisted breeding to select metribuzin tolerant lines. Alternatively, validated favourable alleles could be introgressed into elite wheat cultivars to enhance metribuzin tolerance and improve grain yield in dryland farming for sustainable wheat production.
  相似文献   

12.
小麦基因组研究进展   总被引:13,自引:0,他引:13  
张正斌  徐萍 《遗传》2002,24(3):389-394
本文从小麦遗传图谱、物理图谱、比较基因组、基因组测序和EST 5个方面,介绍国内外小麦基因组的研究进展。我们利用W7984×Opata重组近交系的RFLP作图群体,对33个与小麦水分利用效率有关的性状进行了QTL遗传图谱比较分析,结果显明:在第一部分同源群染色体(1A,1B)上的着丝粒周围,分布有控制光合作用和根系特性的基因簇。在第二部分同源染色体上,有控制单株水分利用效率、根冠形态和生长发育的基因簇存在。在第六部分同源染色体上,6A和6B上都分别有由控制根系多个QTL组成的基因簇,6D染色体着丝粒周围有一个大的基因簇,由7个控制叶片和单株水分利用效率的QTL组成,说明第六部分同源染色体在小麦水分利用效率遗传方面起重要作用。 Abstract:Research development of genetic mapping,physics mapping,genome sequencing and expressed sequence tags in wheat have been reviewed in this paper.RFLP genetic linkage map of wheat recombinant inbred lines derived from W7984×Opata,was used to study QTL of 33 traits associated with water use efficiency.Compared with QTL map of 7 group homeologues chromosomes,the results were showed as follows:nearby the centromeric region of 1A and 1B chromosome,the gene cluster of controlling photosynthetic and root traits were located.The gene clusters of controlling water use efficiency per plant,root and plant height and growth rate were located on the 2 group chromosomes.The gene clusters of controlling root traits were located on the 6A an 6B chromosome,there was a big gene cluster mad up by 7 QTLs controlling water use efficiency of wheat leaf and per plant nearby the centromeric region of 6D chromosome.It showed that 6th homeologous chromosomes play an important role in controlling water use efficiency in wheat.  相似文献   

13.
Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat   总被引:39,自引:12,他引:27  
In hexaploid bread wheat ( Triticum aestivum L. em. Thell), ten members of the IWMMN ( International Wheat Microsatellites Mapping Network) collaborated in extending the microsatellite (SSR = simple sequence repeat) genetic map. Among a much larger number of microsatellite primer pairs developed as a part of the WMC ( Wheat Microsatellite Consortium), 58 out of 176 primer pairs tested were found to be polymorphic between the parents of the ITMI ( International Triticeae Mapping Initiative) mapping population W7984 x Opata 85 (ITMI pop). This population was used earlier for the construction of RFLP ( Restriction Fragment Length Polymorphism) maps in bread wheat (ITMI map). Using the ITMI pop and a framework map (having 266 anchor markers) prepared for this purpose, a total of 66 microsatellite loci were mapped, which were distributed on 20 of the 21 chromosomes (no marker on chromosome 6D). These 66 mapped microsatellite (SSR) loci add to the existing 384 microsatellite loci earlier mapped in bread wheat.  相似文献   

14.
Stem rust caused by Puccinia graminis f. sp. tritici was historically one of the most destructive diseases of wheat worldwide. The evolution and rapid migration of race TTKSK (Ug99) and derivatives, first detected in Uganda in 1999, are of international concern due to the virulence of these races to widely used stem rust resistance genes. In attempts to identify quantitative trait loci (QTL) linked with resistance to stem rust race Ug99, 95 recombinant inbred lines that were developed from a cross between two durum wheat varieties, Kristal and Sebatel, were evaluated for reaction to stem rust. Seven field trials at two locations were carried out in main and off seasons. In addition to the natural infection, the nursery was also artificially inoculated with urediniospores of stem rust race Ug99 and a mixture of locally collected stem rust urediniospores. A genetic map was constructed based on 207 simple sequence repeat (SSR) and two sequence tagged site loci. Using composite interval mapping, nine QTL for resistance to stem rust were identified on chromosomes 1AL, 2AS, 3BS, 4BL, 5BL, 6AL 7A, 7AL and 7BL. These results suggest that durum wheat resistance to stem rust is oligogenic and that there is potential to identify previously uncharacterized resistance genes with minor effects. The SSR markers that are closely linked to the QTL can be used for marker-assisted selection for stem rust resistance in durum wheat.  相似文献   

15.
Quantitative trait loci (QTLs) for Cu-tolerance were determined in wheat grown in control and Cu-treated soil in greenhouse. In addition, loci having an influence on the shoot Cu-, Fe-, Mn-and Zn-contents under non-stressed and Cu-stressed environments were mapped. One major QTL for Cu-tolerance was found on chromosome 5DL, while slighter effects were determined on the chromosomes 1AL, 2DS, 4AL, 5BL and 7DS. QTLs affecting the shoot Mn-and Zn-contents were found on the chromosomes 3BL and 3AL, respectively. The centromeric region on the chromosome 3B plays a role in the regulation of the shoot Fe-contents in the stressed plants. Under Cu-stress QTL affecting shoot Cu-content was found on chromosome 1BL, while on the chromosome 5AL a QTL influencing the Cu-accumulation ability of wheat from Cu-polluted soil was determined.  相似文献   

16.
Thousand-kernel weight (TKW) is one of the major components of grain yield in wheat (Triticum aestivum). Identifying major quantitative trait loci (QTLs) for TKW and developing effective markers are prerequisite for success in marker-assisted selection (MAS) to improve wheat yield through breeding. This study mapped a major QTL, designated as TaTKW-7AL, for increasing TKW on the long arm of chromosome 7A of ‘Clark’ to a 1.3-cM interval between single nucleotide polymorphism (SNP) markers IWB13913 and IWA5913. This QTL explained 19.7 % of the phenotypic variation for TKW. A QTL for increasing kernel length (KL), one of the major components of TKW, was mapped in the same interval as TaTKW-7AL, suggesting that increased TKW by the QTL in ‘Clark’ is most likely due to the increased KL. Association analysis on a diversity panel of 200 US winter wheat accessions also identified a haplotype of three SNP markers (IWB13913, IWB6693 and IWA5913) that were tightly associated with the both KL and TKW. The analysis of allele frequencies of the haplotype in the diversity panel suggested that the favorable allele of TaTKW-7AL has not been strongly selected for in practice and has potential to be used to improve grain yield in US hard winter wheat breeding. Two user-friendly flanking KASPar markers, IWB13913 and IWA5913, were developed for MAS of TaTKW-7AL.  相似文献   

17.
Quality, specifically protein content and gluten strength are among the main objectives of a durum wheat breeding program. The aim of this work was to validate quantitative trait loci (QTLs) associated with grain protein content (GPC) and gluten strength measured by SDS sedimentation volume (SV) and to find additional QTLs expressed in Argentinean environments. Also, epistatic QTL and QTL x environmental interactions were analyzed. A mapping population of 93 RILs derived from the cross UC1113 x Kofa showing extreme values in gluten quality was used. Phenotypic data were collected along six environments (three locations, two years). Main effect QTLs associated with GPC were found in equivalent positions in two environments on chromosomes 3BS (R2 = 21.0-21.6%) and 7BL (R2 = 12.1-13%), and in one environment on chromosomes 1BS, 2AL, 2BS, 3BL, 4AL, 5AS, 5BL and 7AS. The most important and stable QTL affecting SV was located on chromosome 1BL (Glu-B1) consistently detected over the six environments (R2 = 20.9- 54.2%). Additional QTLs were found in three environments on chromosomes 6AL (R2 = 6.4-12.5%), and in two environments on chromosomes 6BL (R2 = 11.5-12.1%), 7AS (R2 = 8.2-10.2%) and 4BS (R2 = 11–16.4%). In addition, pleiotropic effects were found affecting grain yield, test weight, thousand-kernel- weight and days to heading in some of these QTLs. Epistatic QTLs and QTL x environment interactions were found for both quality traits, mostly for GPC. The flanking markers of the QTLs detected in this work could be efficient tools to select superior genotypes for the mentioned traits.  相似文献   

18.
Shi JR  Xu DH  Yang HY  Lu QX  Ban T 《Genetica》2008,133(1):77-84
A pyramided FHB resistance line of wheat (WSY) was previously developed from three FHB resistant cultivars (Sumai 3, Wangshuibai, and Nobeokabouzu) in the Jiangsu Academy of Agricultural Sciences, China. In the present study, we analyzed the genetic relationship between WSY and the three parental cultivars using DNA markers in order to clarify how many and which resistance genes had accumulated in WSY. We analyzed 282 DNA markers from the 21 wheat chromosomes. WSY was found to include different chromosome regions that harbored putative FHB QTLs of the three parental germplasm. Haplotypes of DNA markers on these QTL regions revealed that the 1BL, 2BL, 5AS, and 7AL QTL regions were from Sumai 3, the 2AS, 2DS, 3AS, and 6BS QTL regions were from Wangshuibai, and the 3BS QTL region was from Nobeokabouzu. This study showed that different resistance genes from the different resistant germplasm had indeed accumulated in WSY. WSY is a potential resistant resource for FHB resistance in wheat breeding programs.  相似文献   

19.
H32 is a newly identified gene that confers resistance to the highly pervasive Biotype L of the Hessian fly [ Mayetiola destructor (Say)]. The gene was identified in a synthetic amphihexaploid wheat, W-7984, that was constructed from the durum ‘Altar 84’ and Aegilops tauschii. This synthetic wheat is one of the parents of the marker-rich ITMI population, which consists of 150 recombinant inbred lines (RILs) derived by single-seed descent from a cross with ‘Opata 85’. Linkage analysis of the H32 locus in the ITMI population placed the gene between flanking microsatellite (SSR) markers, Xgwm3 and Xcfd223, at distances of 3.7 and 1.7 cM, respectively, on the long arm of chromosome 3D. The Xgwm3 primers amplified codominant SSR alleles, a 72 bp fragment linked in coupling to the resistance allele and an 84 bp fragment linked in repulsion. Primers for the SSR Xcfd223 amplified a 153 bp fragment from the resistant Synthetic parent and a 183 bp fragment from the susceptible Opata line. Deletion mapping of the flanking Xgwm3 and Xcfd223 markers located them within the 3DL-3 deletion on the distal 19% of the long arm of chromosome 3D. This location is at least 20 cM proximal to the reported 3DL location of H24, a gene that confers resistance to Biotype D of the Hessian fly. Tight linkage of the markers will provide a means of detecting H32 presence in marker-assisted selection and gene pyramiding as an effective strategy for extending durability of deployed resistance.  相似文献   

20.

Key message

Genome-wide association mapping in conjunction with population sequencing map and Ensembl plants was used to identify markers/candidate genes linked to leaf rust, stripe rust and tan spot resistance in wheat.

Abstract

Leaf rust (LR), stripe rust (YR) and tan spot (TS) are some of the important foliar diseases in wheat (Triticum aestivum L.). To identify candidate resistance genes for these diseases in CIMMYT’s (International Maize and Wheat Improvement Center) International bread wheat screening nurseries, we used genome-wide association studies (GWAS) in conjunction with information from the population sequencing map and Ensembl plants. Wheat entries were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. Using a mixed linear model, we observed that seedling resistance to LR was associated with 12 markers on chromosomes 1DS, 2AS, 2BL, 3B, 4AL, 6AS and 6AL, and seedling resistance to TS was associated with 14 markers on chromosomes 1AS, 2AL, 2BL, 3AS, 3AL, 3B, 6AS and 6AL. Seedling and adult plant resistance (APR) to YR were associated with several markers at the distal end of chromosome 2AS. In addition, YR APR was also associated with markers on chromosomes 2DL, 3B and 7DS. The potential candidate genes for these diseases included several resistance genes, receptor-like serine/threonine-protein kinases and defense-related enzymes. However, extensive LD in wheat that decays at about 5?×?107 bps, poses a huge challenge for delineating candidate gene intervals and candidates should be further mapped, functionally characterized and validated. We also explored a segment on chromosome 2AS associated with multiple disease resistance and identified seventeen disease resistance linked genes. We conclude that identifying candidate genes linked to significant markers in GWAS is feasible in wheat, thus creating opportunities for accelerating molecular breeding.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号