首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pro-apoptotic "BH3 domain-only" proteins of the Bcl-2 family (e.g. Bid and Bad) transduce multiple death signals to the mitochondrion. They interact with the anti-apoptotic Bcl-2 family members and induce apoptosis by a mechanism that requires the presence of at least one of the multidomain pro-apoptotic proteins Bax or Bak. Although the BH3 domain of Bid can promote the pro-apoptotic assembly and function of Bax/Bak by itself, other BH3 domains do not function as such. The latter point raises the question of whether, and how, these BH3 domains induce apoptosis. We show here that a peptide comprising the minimal BH3 domain from Bax induces apoptosis but is unable to stimulate the apoptotic activity of microinjected recombinant Bax. This relies on the inability of the peptide to directly induce Bax translocation to mitochondria or a change in its conformation. This peptide nevertheless interferes with Bax/Bcl-xL interactions in vitro and stimulates the apoptotic activity of Bax when combined with Bcl-xL. Similarly, a peptide derived from the BH3 domain of Bad stimulates Bax activity only in the presence of Bcl-xL. Thus, BH3 domains do not necessarily activate multidomain pro-apoptotic proteins directly but promote apoptosis by releasing active multidomain pro-apoptotic proteins from their anti-apoptotic counterparts.  相似文献   

2.
Proteins of the Bcl-2 family are critical regulators of apoptosis, but how its BH3-only members activate the essential effectors Bax and Bak remains controversial. The indirect activation model suggests that they simply must neutralize all of the prosurvival Bcl-2 family members, whereas the direct activation model proposes that Bim and Bid must activate Bax and Bak directly. As numerous in vitro studies have not resolved this issue, we have investigated Bim''s activity in vivo by a genetic approach. Because the BH3 domain determines binding specificity for Bcl-2 relatives, we generated mice having the Bim BH3 domain replaced by that of Bad, Noxa, or Puma. The mutants bound the expected subsets of prosurvival relatives but lost interaction with Bax. Analysis of the mice showed that Bim''s proapoptotic activity is not solely caused by its ability to engage its prosurvival relatives or solely to its binding to Bax. Thus, initiation of apoptosis in vivo appears to require features of both models.  相似文献   

3.
Life in the balance: how BH3-only proteins induce apoptosis   总被引:22,自引:0,他引:22  
  相似文献   

4.
The BH3 domain of Bcl-2 proteins was regarded as indispensable for apoptosis induction and for mutual regulation of family members. We recently described Bcl-x(AK), a proapoptotic splice product of the bcl-x gene, which lacks BH3 but encloses BH2, BH4 and a transmembrane domain. It remained however unclear, how Bcl-x(AK) may trigger apoptosis.For efficient overexpression, Bcl-x(AK) was subcloned in an adenoviral vector under Tet-OFF control. The construct resulted in significant apoptosis induction in melanoma and nonmelanoma cell lines with up to 50% apoptotic cells as well as decreased cell proliferation and survival. Disruption of mitochondrial membrane potential, and cytochrome c release clearly indicated activation of the mitochondrial apoptosis pathways. Both Bax and Bak were activated as shown by clustering and conformation analysis. Mitochondrial translocation of Bcl-x(AK) appeared as an essential and initial step. Bcl-x(AK) was critically dependent on either Bax or Bak, and apoptosis was abrogated in Bax/Bak double knockout conditions as well by overexpression of Bcl-2 or Bcl-x(L). A direct interaction with Bcl-2, Bax, Bad, Noxa or Puma was however not seen by immunoprecipitation. Thus besides BH3-mediated interactions, there exists an additional way for mutual regulation of Bcl-2 proteins, which is independent of the BH3. This pathway appears to play a supplementary role also for other proapoptotic family members, and its unraveling may help to overcome therapy resistance in cancer.  相似文献   

5.
D C Huang  J M Adams    S Cory 《The EMBO journal》1998,17(4):1029-1039
Bcl-2 and close homologues such as Bcl-xL promote cell survival, while other relatives such as Bax antagonize this function. Since only the pro-survival family members possess a conserved N-terminal region denoted BH4, we have explored the role of this amphipathic helix for their survival function and for interactions with several agonists of apoptosis, including Bax and CED-4, an essential regulator in the nematode Caenorhabditis elegans. BH4 of Bcl-2 could be replaced by that of Bcl-x without perturbing function but not by a somewhat similar region near the N-terminus of Bax. Bcl-2 cell survival activity was reduced by substitutions in two of ten conserved BH4 residues. Deletion of BH4 rendered Bcl-2 (and Bcl-xL) inactive but did not impair either Bcl-2 homodimerization or ability to bind to Bax or five other pro-apoptotic relatives (Bak, Bad, Bik, Bid or Bim). Hence, association with these death agonists is not sufficient to promote cell survival. Significantly, however, Bcl-xL lacking BH4 lost the ability both to bind CED-4 and antagonize its pro-apoptotic activity. These results favour the hypothesis that the BH4 domain of pro-survival Bcl-2 family members allows them to sequester CED-4 relatives and thereby prevent apoptosis.  相似文献   

6.
7.
The mechanism by which some BH3-only proteins of the Bcl-2 family directly activate the "multidomain" proapoptotic member Bax is poorly characterized. We report that the first alpha helix (Halpha1) of Bax specifically interacts with the BH3 domains of Bid and PUMA but not with that of Bad. Inhibition of this interaction, by a peptide comprising Halpha1 or by a mutation in this helix, prevents ligand-induced activation of Bax by Bid, PUMA, or their BH3 peptides. Halpha1-mutated Bax, which can mediate death induced by Bad or its BH3 peptide, does not mediate that induced by Bid, PUMA, or their BH3 peptides. The response of Halpha1-mutated Bax to Bid can be restored by a compensating mutation in Bid BH3. Thus, a specific interaction between Bax Halpha1 and their BH3 domains allows Bid and PUMA to function as "death agonists" of Bax, whereas Bad recruits Bax activity through a distinct pathway.  相似文献   

8.
A pivotal step in the mitochondrial pathway of apoptosis is activation of Bak and Bax, although the molecular mechanism remains controversial. To examine whether mitochondrial apoptosis can be induced by just a lack of antiapoptotic Bcl-2-like proteins or requires direct activators of the BH3-only proteins including Bid and Bim, we studied the molecular requisites for platelet apoptosis induced by Bcl-xL deficiency. Severe thrombocytopenia induced by thrombocyte-specific Bcl-xL knock-out was fully rescued in a Bak and Bax double knock-out background but not with single knock-out of either one. In sharp contrast, deficiency of either Bid, Bim, or both did not alleviate thrombocytopenia in Bcl-xL knock-out mice. An in vitro study revealed that ABT-737, a Bad mimetic, induced platelet apoptosis in association with a conformational change of the amino terminus, translocation from the cytosol to mitochondria, and homo-oligomerization of Bax. ABT-737-induced Bax activation and apoptosis were also observed in Bid/Bim-deficient platelets. Human platelets, upon storage, underwent spontaneous apoptosis with a gradual decline of Bcl-xL expression despite a decrease in Bid and Bim expression. Apoptosis was attenuated in Bak/Bax-deficient or Bcl-xL-overexpressing platelets but not in Bid/Bim-deficient platelets upon storage. In conclusion, platelet lifespan is regulated by a fine balance between anti- and proapoptotic multidomain Bcl-2 family proteins. Despite residing in platelets, BH3-only activator proteins Bid and Bim are dispensable for Bax activation and mitochondrial apoptosis.  相似文献   

9.
Bharatham N  Chi SW  Yoon HS 《PloS one》2011,6(10):e26014
Bcl-X(L), an antiapoptotic Bcl-2 family protein, plays a central role in the regulation of the apoptotic pathway. Heterodimerization of the antiapoptotic Bcl-2 family proteins with the proapoptotic family members such as Bad, Bak, Bim and Bid is a crucial step in the apoptotic regulation. In addition to these conventional binding partners, recent evidences reveal that the Bcl-2 family proteins also interact with noncanonical binding partners such as p53. Our previous NMR studies showed that Bcl-X(L): BH3 peptide and Bcl-X(L): SN15 peptide (a peptide derived from residues S15-N29 of p53) complex structures share similar modes of bindings. To further elucidate the molecular basis of the interactions, here we have employed molecular dynamics simulations coupled with MM/PBSA approach. Bcl-X(L) and other Bcl-2 family proteins have 4 hydrophobic pockets (p1-p4), which are occupied by four systematically spaced hydrophobic residues (h1-h4) of the proapoptotic Bad and Bak BH3 peptides. We observed that three conserved hydrophobic residues (F19, W23 and L26) of p53 (SN15) peptide anchor into three hydrophobic pockets (p2-p4) of Bcl-X(L) in a similar manner as BH3 peptide. Our results provide insights into the novel molecular recognition by Bcl-X(L) with p53.  相似文献   

10.
Bcl-2 family proteins regulate a critical step in apoptosis referred to as mitochondrial outer membrane permeabilization (MOMP). Members of a subgroup of the Bcl-2 family, known as the BH3-only proteins, activate pro-apoptotic effectors (Bax and Bak) to initiate MOMP. They do so by neutralizing pro-survival Bcl-2 proteins and/or directly activating Bax/Bak. Bim and Bid are reported to be direct activators; however, here we show that BH3 peptides other than Bim and Bid exhibited various degrees of direct activation of the effector Bax or Bak, including Bmf and Noxa BH3s. In the absence of potent direct activators, such as Bim and Bid, we unmasked novel direct activator BH3 ligands capable of inducing effector-mediated cytochrome c release and liposome permeabilization, even when both Bcl-xL- and Mcl-1-type anti-apoptotic proteins were inhibited. The ability of these weaker direct activator BH3 peptides to cause MOMP correlated with that of the corresponding full-length proteins to induce apoptosis in the absence of Bim and Bid. We propose that, in certain contexts, direct activation by BH3-only proteins other than Bim and Bid may significantly contribute to MOMP and apoptosis.  相似文献   

11.
Antiapoptotic protein Bcl-x(L) has been demonstrated to play a very important role in a variety of diseases such as cancer. Its biological function can be inhibited by proapoptotic proteins such Bak, Bad, and Bax by forming complexes mediated primarily by the Bcl-2 homology 3 (BH3) domain. To facilitate drug discovery for Bcl-x(L) inhibitors, we have developed and optimized a fluorescence polarization assay based on the interaction between Bcl-x(L) and BH3 domain peptides. We observed that the fluorescein-labeled Bad BH3 peptide [NLWAAQRYGRELRRMSDK(fluorescein)FVD or fluorescent Bad peptide] generates best overall results. Fluorescent Bad peptide interacts strongly with Bcl-x(L) with a K(d) of 21.48nM. The assay is stable over a 24-h period and can tolerate the presence of dimethyl sulfoxide up to 8%. By using a competition assay, several peptides derived from the BH3 region of Bak, Bad, Bax, and Bcl-2 were investigated. Bad and Bak BH3 peptides compete efficiently with IC(50) values of 0.048 and 1.14 microM, respectively, while the peptides from the BH3 region of Bcl-2 and Bax compete weakly. A mutated Bak peptide, which has been shown to be inactive for binding to Bcl-x(L), did not compete. The relative binding order of the peptides (Bad>Bak>Bcl-2>Bax>mutated Bak) correlates well with previously published results. When tested in high-throughput formats, the assay has a signal-to-noise ratio of 15.37 and a Z(') factor of at least 0.73. The plate-to-plate variability for free peptide control and bound peptide control is minimal. This validates the assay not only for investigating the nature of Bcl-x(L)-peptide interaction, but also for high-throughput screening of Bcl-x(L) inhibitors.  相似文献   

12.
The Bcl-2 family of proteins are well-characterized regulators of the intrinsic apoptotic pathway. Proteins within this family can be classified as either prosurvival or prodeath members and the balance between them present at the mitochondrial membrane is what determines if the cell lives or dies. Specific interactions among Bcl-2 family proteins play a crucial role in regulating programmed cell death. Structural studies have established a conserved interaction pattern among Bcl-2 family members. This interaction is mediated by the binding of the hydrophobic face of the amphipathic α-helical BH3 domain into a conserved hydrophobic groove on the prosurvival partners. It has been reported that an increase in the helical content of BH3 mimetic peptides considerably improves the binding affinity. In this context, this work states for designing peptides derived from the BH3 domain of the proapoptotic protein Bak by substitution of some non-interacting residues by the helical inducing residue Aib. Different synthetic peptides preserving BakBH3 relevant interactions were proposed and simulated presenting a better predicted binding energy and higher helical content than the wild type Bak peptide.  相似文献   

13.
A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.  相似文献   

14.
A direct interaction between tubulin and several pro-apoptotic and anti-apoptotic members of the Bcl-2 family has been demonstrated by effects on the assembly of microtubules from pure rat brain tubulin. Bcl-2, Bid, and Bad inhibit assembly sub-stoichiometrically, whereas peptides from Bak and Bax promote tubulin polymerization at near stoichiometric concentrations. These opposite effects on microtubule assembly are mutually antagonistic. The BH3 homology domains, common to all members of the family, are involved in the interaction with tubulin but do not themselves affect polymerization. Pelleting experiments with paclitaxel-stabilized microtubules show that Bak is associated with the microtubule pellet, whereas Bid remains primarily with the unpolymerized fraction. These interactions require the presence of the anionic C-termini of alpha- and beta-tubulin as they do not occur with tubulin S in which the C-termini have been removed. While in no way ruling out other pathways, such direct associations are the simplest potential regulatory mechanism for apoptosis resulting from disturbances in microtubule or tubulin function.  相似文献   

15.
Mitochondrial apoptosis is controlled by proteins of the B-cell lymphoma 2 (Bcl-2) family. Pro-apoptotic members of this family, known as BH3-only proteins, initiate activation of the effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), which is counteracted by anti-apoptotic family members. How the interactions of Bcl-2 proteins regulate cell death is still not entirely clear. Here, we show that in the absence of extrinsic apoptotic stimuli Bak activates without detectable contribution from BH3-only proteins, and cell survival depends on anti-apoptotic Bcl-2 molecules. All anti-apoptotic Bcl-2 proteins were targeted via RNA interference alone or in combinations of two in primary human fibroblasts. Simultaneous targeting of B-cell lymphoma-extra large and myeloid cell leukemia sequence 1 led to apoptosis in several cell types. Apoptosis depended on Bak whereas Bax was dispensable. Activator BH3-only proteins were not required for apoptosis induction as apoptosis was unaltered in the absence of all BH3-only proteins known to activate Bax or Bak directly, Bcl-2-interacting mediator of cell death, BH3-interacting domain death agonist and p53-upregulated modulator of apoptosis. These findings argue for auto-activation of Bak in the absence of anti-apoptotic Bcl-2 proteins and provide evidence of profound differences in the activation of Bax and Bak.The regulated elimination of cells by apoptosis is a key mechanism of development, tissue homeostasis and defense. In vertebrates, apoptosis is regulated through two pathways, the death receptor-mediated (extrinsic) and the mitochondrial (intrinsic) pathway, which is activated by numerous apoptotic stimuli. Mitochondrial apoptosis is characterized by loss of mitochondrial outer membrane integrity and the release of mitochondrial intermembrane space proteins, most notably cytochrome c, which leads to the activation of the caspase-9 and effector caspases.1Release of cytochrome c is governed by proteins of the B-cell lymphoma 2 (Bcl-2) family.2 The Bcl-2 family consists of three groups, whose expression and interaction decide cell survival. The anti-apoptotic Bcl-2 proteins include Bcl-2, Bcl-XL (B-cell lymphoma-extra large), Bcl-w (Bcl-2-like protein 2), Mcl-1 (myeloid cell leukemia sequence 1) and A1 (Bcl-2-related protein A1). The pro-apoptotic group of BH3-only proteins (containing a BH3-domain: Bim (Bcl-2-interacting mediator of cell death), Bid (BH3-interacting domain death agonist), Puma (p53-upregulated modulator of apoptosis), Noxa (Phorbol-12-myristate-13-acetate-induced protein 1), Bad (Bcl-2-associated death promoter), Bik (Bcl-2-interacting killer) and Hrk (activator of apoptosis hara-kiri)) activate the pro-apoptotic effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak). Bax and Bak can replace each other in most situations, but the presence of one of them is required for mitochondrial apoptosis. Upon activation Bax and Bak form oligomers in the outer mitochondrial membrane and cause the release of cytochrome c. How Bax and Bak are activated is still under debate. Different activation models have been proposed and investigated.According to the direct activation model BH3-only proteins can directly, by physical interaction activate Bax and Bak.3 The model was derived in studies investigating synthetic BH3-domain peptides in in vitro systems, that is, isolated mitochondria or liposomes, where peptides encompassing the BH3-domains of Bim or Bid (‘activator'' BH3-only proteins) were able to activate Bax. Peptides derived from the BH3-only proteins Bad, Bik, Hrk, Noxa or Puma did not activate Bax directly. However, these peptides can bind to anti-apoptotic Bcl-2 proteins with varying preferences.4 As this may neutralize a combination of anti-apoptotic proteins it may facilitate Bax/Bak activation by activator BH3-only proteins. Consequently, this group of BH3-only proteins has been named ‘sensitizer'' or ‘derepressor'' BH3-only proteins.3, 5, 6, 7 The direct activation model has received recent support by structural studies of activator BH3-domains bound to Bax.8 That study also found that the BH3-only peptides used previously lacked a residue that is important in the activation of Bax, and the previous results may have to be reconsidered. Indeed, a recent study illustrates that placing the BH3-domain from the various BH3-only proteins into intact Bid protein enhances Bax/Bak-activating capacity of the BH3-domains of Bid, Bim, Puma, Bmf (Bcl-2-modifying factor), Bik and Hrk.9The displacement (or indirect activation) model on the other hand posits that Bax and Bak are held in check by anti-apoptotic Bcl-2 proteins and auto-activate when this interaction is broken by BH3-only proteins (displacement). BH3-only proteins can bind to anti-apoptotic Bcl-2 proteins and upon apoptotic stimulation may cause the displacement of these proteins from Bax and Bak, which may lead to the activation of effectors. BH3-peptides derived from Bim and Puma can bind to all anti-apoptotic Bcl-2 proteins and its corresponding proteins exert killing upon overexpression, whereas Bad, Bmf, Bid, Bik, Hrk and Noxa display binding patterns restricted to certain anti-apoptotic Bcl-2 proteins.4 It was therefore suggested that Bax/Bak activation requires the neutralization/displacement of several anti-apoptotic proteins, which may be achieved by one BH3-only protein with broadly binding characteristics (such as Bim) or by the combination of BH3-only proteins with restricted binding capabilities (for instance Bad plus Noxa).10, 11The models have been further refined; the ‘embedded together'' model additionally considers the dynamic interaction of the proteins with the mitochondrial membrane,12 and it has been proposed that the models can be unified by taking two ‘modes'' of inhibition into account: anti-apoptotic Bcl-2 proteins have a dual function in inactivating both, BH3-only proteins and effectors. Pro-apoptotic signals cause the release of activator BH3-only proteins from sequestration with anti-apoptotic Bcl-2 proteins. Free BH3-only proteins directly activate effectors, however, cell death may still not be initiated because the effectors are then held in check by anti-apoptotic Bcl-2 proteins. Free activator BH3-only proteins are required to activate effectors.13This model unifies the two above models in the sense that it incorporates aspects of both, inhibition and displacement as well as direct activation. However, the core difference between the (direct) activation and the displacement model appears to be irreconcilable: in the activation model Bax and Bak are inactive unless receiving a stimulus from BH3-only proteins whereas in the displacement model they are active unless bound to anti-apoptotic proteins. Thus, in the absence of all other proteins one model predicts that Bax/Bak are active, the other that they are inactive. Obviously they cannot be both.The direct activation model has initially been established with Bax and the displacement model with Bak. The data are very strong that Bax is activated by direct interaction with BH3-only proteins. Recombinant Bak can also be directly activated by recombinant tBid,14 and Bid/BH3-chimaeras can activate recombinant Bak missing its C terminus.9 However, since Bak is normally inserted into the outer mitochondrial membrane where it may be bound to numerous other Bcl-2-family members, it has been difficult directly to test activation of Bak in the physiological situation.One possibility to ‘unify'' the original models may be in a model where Bax is physiologically activated by direct activation (Bax is inactive until receiving a signal through BH3-only proteins) whereas Bak is activated indirectly (auto-activates when the inhibition by Bcl-2-like proteins is relieved). Here we test this possibility of indirect Bak activation. We targeted anti-apoptotic Bcl-2 family proteins using RNAi. In this setting, protein concentrations and conditions are physiological, which avoids some of the problems associated with overexpression or cell-free experiments. Non-malignant cells may respond differently to the loss of anti-apoptotic Bcl-2 proteins compared with tumor cells.15 In this study, using non-malignant cells, we targeted all anti-apoptotic Bcl-2 molecules in combinations of two. In the absence of apoptotic stimuli we observed that the combined loss of Bcl-XL and Mcl-1 was sufficient to induce apoptosis. The direct activator proteins Bid, Bim and Puma were not needed. These observations provide evidence for indirect activation of Bak.  相似文献   

16.
c-Myc functionally cooperates with Bax to induce apoptosis   总被引:10,自引:0,他引:10       下载免费PDF全文
c-Myc promotes apoptosis by destabilizing mitochondrial integrity, leading to the release of proapoptotic effectors including holocytochrome c. Candidate mediators of c-Myc in this process are the proapoptotic members of the Bcl-2 family. We show here that fibroblasts lacking Bak remain susceptible to c-Myc-induced apoptosis whereas bax-deficient fibroblasts are resistant. However, despite this requirement for Bax, c-Myc activation exerts no detectable effects on Bax expression, localization, or conformation. Moreover, susceptibility to c-Myc-induced apoptosis can be restored in bax-deficient cells by ectopic expression of Bax or by microinjection of a peptide comprising a minimal BH3 domain. Microinjection of BH3 peptide also restores sensitivity to c-Myc-induced apoptosis in p53-deficient primary fibroblasts that are otherwise resistant. By contrast, there is no synergy between BH3 peptide and c-Myc in fibroblasts deficient in both Bax and Bak. We conclude that c-Myc triggers a proapoptotic mitochondrial destabilizing activity that cooperates with proapoptotic members of the Bcl-2 family.  相似文献   

17.
How the Bcl-2 family of proteins interact to regulate apoptosis   总被引:24,自引:0,他引:24  
Commitment of cells to apoptosis is governed largely by protein-protein interactions between members of the Bcl-2 protein family. Its three sub-families have distinct roles: the BH3-only proteins trigger apoptosis by binding via their BH3 domain to pro-survival relatives, while the pro-apoptotic Bax and Bak have an essential downstream role involving disruption of organellar membranes and induction of caspase activation. The BH3-only proteins act as damage sensors, held inert until their activation by stress signals. Once activated, they were thought to bind promiscuously to pro-survival protein targets but unexpected selectivity has recently emerged from analysis of their interactions. Some BH3-only proteins also bind to Bax and Bak. Whether Bax and Bak are activated directly by these BH3-only proteins, or indirectly as a consequence of BH3-only proteins neutralizing their pro-survival targets is the subject of intense debate. Regardless of this, a detailed understanding of the interactions between family members, which are often selective, has notable implications for designing anti-cancer drugs to target the Bcl-2 family.  相似文献   

18.
细胞凋亡,即细胞程序性死亡,在多细胞生物的发育和稳态调控过程中发挥关键作用.Bcl-2家族蛋白是凋亡过程中的主要调控因子,关于Bcl-2家族蛋白在凋亡过程中的功能及其作用机制一直是研究的热点.已有研究显示Bcl-2家族蛋白不仅作用于线粒体引发凋亡,并且参与了包括对细胞内质网Ca2+的调控、DNA损伤的修复及与自噬的相互...  相似文献   

19.
Overexpression of anti-apoptotic Bcl-2 family proteins may play an important role in the aggressive behavior of prostate cancer cells and their resistance to therapy. The Bcl-2 homology 3 domain (BH3) is a uniquely important functional element within the pro-apoptotic class of the Bcl-2-related proteins, mediating their ability to dimerize with other Bcl-2-related proteins and promote apoptosis. The BH3 inhibitors (BH3Is) function by disrupting the interactions mediated by the BH3 domain between pro- and anti-apoptotic members of the Bcl-2 family and liberating more Bax/Bak to induce mitochondrial membrane permeabilization. LNCaP-derived C4-2 human prostate cancer cells are quite resistant to non-tagged, human recombinant soluble Apo2 ligand [Apo2L, also Tumor necrosis factor (TNF)-related apoptosis-inducing ligand, TRAIL], a tumor specific drug that is now in clinical trials. However, when Apo2L/TRAIL was combined with the Bcl-xL inhibitor, BH3I-2′, it induced apoptosis synergistically through activation of Caspase-8 and the proapoptotic Bcl-2 family member Bid, resulting in the activation of effector Caspase-3 and proteolytic cleavage of Poly(ADP-ribose) polymerase, events that were blocked by the pan-caspase inhibitor zVAD-fmk. Our data indicate that, in combination with the BH3 mimetic, BH3I-2′, Apo2L/TRAIL synergistically induces apoptosis in C4-2 human prostate cancer cells through both the extrinsic and intrinsic apoptotic pathways.  相似文献   

20.
Bax is a member of the Bcl-2 family of proteins known to regulate mitochondria-dependent programmed cell death. Early in apoptosis, Bax translocates from the cytosol to the mitochondrial membrane. We have identified by confocal and electron microscopy a novel step in the Bax proapoptotic mechanism immediately subsequent to mitochondrial translocation. Bax leaves the mitochondrial membranes and coalesces into large clusters containing thousands of Bax molecules that remain adjacent to mitochondria. Bak, a close homologue of Bax, colocalizes in these apoptotic clusters in contrast to other family members, Bid and Bad, which circumscribe the outer mitochondrial membrane throughout cell death progression. We found the formation of Bax and Bak apoptotic clusters to be caspase independent and inhibited completely and specifically by Bcl-X(L), correlating cluster formation with cytotoxic activity. Our results reveal the importance of a novel structure formed by certain Bcl-2 family members during the process of cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号