首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The starch excess phenotype of Arabidopsis mutants defective in the starch phosphorylating enzyme glucan, water dikinase (EC 2.7.9.4) indicates that phosphorylation of starch is required for its degradation. However, the underlying mechanism has not yet been elucidated. In this study, two in vivo systems have been established that allow the analysis of phosphorylation of transitory starch during both biosynthesis in the light and degradation in darkness. First, a photoautotrophic culture of the unicellular green alga Chlamydomonas reinhardtii was used to monitor the incorporation of exogenously supplied (32)P orthophosphate into starch. Illuminated cells incorporated (32)P into starch with a constant rate during 2 h. By contrast, starch phosphorylation in darkened cells exceeded that in illuminated cells within the first 30 min, but subsequently phosphate incorporation declined. Pulse-chase experiments performed with (32)P/(31)P orthophosphate revealed a high turnover of the starch-bound phosphate esters in darkened cells but no detectable turnover in illuminated cells. Secondly, leaf starch granules were isolated from potato (Solanum tuberosum) plants grown under controlled conditions and glucan chains from the outer granule layer were released by isoamylase. Phosphorylated chains were purified and analyzed using high performance anion-exchange chromatography and matrix-assisted laser desorption/ionization mass spectrometry. Glucans released from the surface of starch granules that had been isolated from darkened leaves possessed a considerably higher degree of phosphorylation than those prepared from leaves harvested during the light period. Thus, in the unicellular alga as well as in potato leaves, net starch degradation is accompanied with an increased phosphorylation of starch.  相似文献   

2.
Incubation of hepatocytes with [32P]orthophosphate resulted in the incorporation of 32P into material that is precipitated by reaction with antibodies to ATP citrate lyase. The amount of radioactivity precipitated was decreased when unlabeled, purified ATP citrate lyase was added to extracts of hepatocytes that had been incubated with [32P]orthophosphate. Addition of glucagon to hepatocytes that had been preincubated with [32P]orthophosphate resulted in a 56% increase in acid-stable 32P in the trichloroacetic acid-insoluble portion of immunoprecipitates. Catalytic phosphate bound to ATP citrate lyase reaction with ATP and Mg2+ is acid-labile; thus, glucagon-dependent phosphorylation is distinguished from the catalytic phosphate. When hepatocytes were incubated in the absence of [32P]orthophosphate and extracted in a medium containing [gamma-32P]ATP, no acid-stable 32P was present in immunoprecipitates. This indicates that the incorporation into ATP citrate lyase of acid-stable phosphate occurs prior to extraction of the enzyme. Preliminary studies, using a procedure that allows for measurement of enzyme activity starting 1 min after beginning the extraction of lyase from hepatocytes, have shown no difference in lyase activity when hepatocytes are treated with or without glucagon.  相似文献   

3.
Sweetlove LJ  Tomlinson KL  Hill SA 《Planta》2002,214(5):741-750
The aim of this work was to investigate the effect of exogenous sugars on the extent to which starch synthesis in potato ( Solanum tuberosum L.) is controlled by adenosine 5'-diphosphoglucose pyrophosphorylase (EC 2.7.7.27; AGPase). Tuber discs were incubated in the presence of a range of concentrations of glucose and sucrose, and metabolic fluxes measured following the supply of [U-14C]glucose and measurement of the specific radioactivity of the hexose phosphate pool. In the presence of glucose there was a marked increase in the flux through glucose-phosphorylating hexokinase, and at high concentrations of external glucose this led to a stimulation of the rate of starch and sucrose synthesis relative to those measured in the presence of sucrose. In the presence of glucose the ratio of the rate of starch synthesis to the rate of glycolysis was higher than in the presence of sucrose. Similar effects of glucose were observed at two stages of tuber development. We conclude that the presence of glucose perturbs the carbohydrate metabolism of tuber discs so that starch synthesis is favoured. In order to determine the extent to which AGPase controls flux, we measured fluxes in wild-type plants and transgenic plants with reduced AGPase activity as a result of the expression of a cDNA encoding the B subunit in the antisense orientation. In the presence of sucrose a reduction in AGPase activity had a greater impact on the rate of starch synthesis than in the presence of glucose. The flux control coefficient of AGPase over starch synthesis was higher in the presence of sucrose (0.7-0.9) than in the presence of glucose (0.4-0.6). Conversely, the impact of reduced AGPase activity on the rate of sucrose synthesis was lower in the presence of sucrose than glucose. In the presence of 200 mM sucrose the flux control coefficient of AGPase over the rate of sucrose synthesis was not significantly different from zero. This demonstrates that the nature of the sugar supplied to potato tuber discs can have a major influence on the distribution of control within metabolism. These data were also used to investigate the relationship between demand for ATP and the rate of hexose phosphate entry into glycolysis. A very strong correlation between ATP demand and glycolytic flux was demonstrated.  相似文献   

4.
32P-labeled glucose 6-phosphate, [32P]phosphoenolpyruvate, and [gamma-32P]ATP were injected into oocytes and fertilized eggs of Xenopus laevis, and the incorporation of the 32P label was followed into phospholipids. Several classes of phospholipids incorporated 32P label from the injected glycolytic intermediates, including lysophosphatidic acid, phosphatidic acid, phosphatidylinositol, and phosphatidylinositol phosphates, inferring de novo synthesis of these lipids from dihydroxyacetone phosphate or glycerol 3-phosphate. Injection of [gamma-32P]ATP into oocytes and fertilized eggs led to labeling of phosphatidylinositol phosphate and phosphatidylinositol bisphosphate, indicating an active phosphatidylinositol cycle in resting oocytes and fertilized eggs. Maturation and fertilization of the oocyte led to a qualitative change in phosphatidylinositol metabolism, increased labeling of phosphatidylinositol phosphate compared to phosphatidylinositol bisphosphate (either from glycerol 3-phosphate or from ATP). This change occurs late in the maturation process, and the new pattern of phosphatidylinositol metabolism is maintained during the rapid cleavage stages of early embryogenesis.  相似文献   

5.
Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-1?C]glucose 1-phosphate, [U-1?C]sucrose, [U-1?C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-1?C]sucrose plus unlabelled equimolar glucose 1-phosphate. C1?-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced 1?C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-1?C]glucose 1-phosphate or adenosine-[U-1?C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C1?C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells.  相似文献   

6.
Brain slices obtained from the forebrains of adult female rats were incubated with [32P]phosphate and [3H]glycerol for 60 min, and lipids extracted and analyzed by TLC. The 32P in brain slice lipids was primarily in polyphosphoinositides, phosphatidylinositol (PI), and phosphatidate (PA). Distribution of the 32P-labeled lipids in isolated myelin was biased toward PA, 38%, relative to 16% in whole tissue slice lipids. About 33% of the total labeled PA in brain slices was accounted for by that in myelin. On a per milligram protein basis, PA labeling in myelin is about 2.5-fold greater than that of whole brain slice. Since incorporation of [3H]glycerol (indicative of synthesis by the de novo synthetic pathway) was at very low levels, we conclude that [32P]phosphate entered into myelin PA primarily through a pathway involving phospholipase C activity. Much of the production of PA relates to hydrolysis of phosphoinositides, yielding diacylglycerol which is then phosphorylated within myelin. The distribution of label among the inositol-containing lipids suggests that only a fraction of the myelin polyphosphoinositides serve as substrate for rapid diglyceride production. In the presence of 10 mM acetylcholine (ACh) there was a 20-60% stimulation of [32P]phosphate incorporation into PA and PI of brain slice lipids and purified myelin. Stimulation by ACh was blocked by atropine. The observed increase in the 32P/3H ratio, relative to controls, indicated that for both total lipids and myelin lipids there was selective stimulation of a phospholipase C-dependent cycle relative to de novo biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Pretreatment of discs excised from developing tubers of potato (Solanum tuberosum L.) with 10 millimolar sodium fluoride induced a transient increase in 3-phosphoglycerate content. This was followed by increases in triose-phosphate, fructose 1,6-bisphosphate and hexose-phosphate (glucose 6-phosphate + fructose 6-phosphate + glucose 1-phosphate). The effect of fluoride is attributed to an inhibition of glycolysis and a stimulation of triose-phosphate recycling (the latter confirmed by the pattern of 13C-labeling [NMR] in sucrose when tissue was supplied with [2-13C]glucose). Fluoride inhibited the incorporation of [U-14C] glucose, [U-14C]sucrose, [U-14C]glucose 1-phosphate, and [U-14C] glycerol into starch. The incorporation of [U-14C]ADPglucose was unaffected. Inhibition of starch biosynthesis was accompanied by an almost proportional increase in the incorporation of 14C into sucrose. The inhibition of starch synthesis was accompanied by a 10-fold increase in tissue pyrophosphate (PPi) content. Although the subcellular localization of PPi was not determined, a hypothesis is presented that argues that the PPi accumulates in the amyloplast due to inhibition of alkaline inorganic pyrophosphatase by fluoride ions.  相似文献   

8.
It is well known that platelets readily incorporate radioactive glycerol, but not radioactive phosphate into phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in vitro, thus not in accordance with de novo synthesis according to the Kennedy pathway. In attempts to understand the reason for the discrepancy, gel-filtered platelets were incubated simultaneously with [32P]Pi and [3H]glycerol, and the specific and relative radioactivities of products and intermediates were determined. Both precursors were incorporated into phosphatidylinositol (PI) with a 32P/3H ratio similar to that in glycerol 3-phosphate (in accordance with the Kennedy pathway). However, PC and PE obtained a much lower ratio. The specific 32P radioactivity in phosphorylcholine was similar to that of the gamma-phosphoryl of ATP and 650-times higher than that of PC. The specific 32P radioactivity of phosphorylethanolamine was 20-times less than that of phosphorylcholine. Both mass and 32P labelling of CDP-choline were below the detection limits. It is concluded that the incorporation of [32P]Pi into PC via phosphorylcholine is insignificant while the preferential incorporation of [3H]glycerol could be explained by exchange of diacyl[3H]glycerol in the reversible choline phosphotransferase (CDP-choline: 1,2-diacylglycerol cholinephosphotransferase) reaction. The same mechanism would explain the preferential incorporation of 3H over 32P into PE, although dilution of 32P at the phosphorylethanolamine stage would account for part of the feeble 32P incorporation. Although other mechanisms are also possible, our results clearly show that the appearance of [3H]glycerol in PC and PE is not a reliable method of monitoring de novo synthesis of these phospholipids.  相似文献   

9.
The incorporation of [32P]orthophosphate into phosphatidylinositol (PI) of pig lymphocytes was markedly increased by stimulation with concanavalin A. The labeling of PI with [3H]glycerol was also enhanced significantly, indicating that both de novo synthesis and recircular system (PI response) of PI were accelerated. This rapid labeling of PI might be related to the rapid breakdown of phosphatidylinositol 4,5-bisphosphate which was observed in various stimulated tissues. Concanavalin A also accelerated the labeling of phosphatidic acid with 32P and [3H]glycerol. To determine the dependence of this phenomenon on the fatty acid composition of both phospholipids, we separated PI and phosphatidic acid into individual molecular species. The predominant molecular species in PI was tetraene (81.6%) and those in phosphatidic acid were monoene (53.0%), diene (15.8%) and tetraene (19.2%), respectively. Interestingly, the incorporation of 32P into arachidonic acid-containing species (tetraene) was most rapidly elevated. On the other hand, the increment of 32P into saturated + monoene, diene and triene was relatively smaller and resembled that of [3H]glycerol. Similarly, the incorporation of 32P into tetraene of phosphatidic acid was preferentially accelerated. This is the first report concerning the metabolism of molecular species of phosphatidic acid in stimulated cells. These results indicate that the PI recirculating system is virtually dependent on tetraenoic species and that the participation of other molecular species is small. The increased de novo synthesis mainly depends upon molecular species other than tetraene. Arachidonic acid-containing species which turn over rapidly via the PI cycle may have an important role in the mitogenic triggering.  相似文献   

10.
We investigated the effects of genistein, an inhibitor of tyrosine protein phosphorylation, on mouse 1-cell embryos, since in response to mitogenic stimuli tyrosine protein phosphorylation in somatic cells is implicated in initiation of DNA synthesis. Genistein inhibits cleavage of 1-cell embryos in a concentration-dependent and reversible manner; biochanin A, which is a less potent inhibitor of tyrosine protein phosphorylation, is a less potent inhibitor of cell cleavage. Genistein does not inhibit [35S]methionine incorporation, but does inhibit [3H]thymidine incorporation. Consistent with genistein's ability to inhibit cleavage by inhibiting DNA synthesis is that the loss of genistein's ability to inhibit cleavage corresponds with exit of the 1-cell embryos from S phase. Genistein is likely to inhibit tyrosine protein phosphorylation in situ, since it reduces by 80% the relative amount of [32P]phosphotyrosine present in 1-cell embryos; genistein does not inhibit either [32P]orthophosphate uptake or incorporation. As anticipated, genistein has little effect on inhibiting changes in the pattern of phosphoprotein synthesis during the first cell cycle, since tyrosine protein phosphorylation constitutes a small percentage of total protein phosphorylation. Alkalai treatment of [32P]radiolabeled phosphoproteins transferred to Immobilon reveals a base-resistant set of phosphoproteins of Mr = 32,000 that displays cell-cycle changes in phosphorylation. Although these properties suggest that these phosphoproteins may be related to the p34cdc2 protein kinase, phosphoamino acid analysis of [32P]radiolabeled phosphoproteins reveals that they are not enriched for phosphotyrosine; the inactive for p34cdc2 protein kinase contains a high level of phosphotyrosine. Results of these experiments suggest that tyrosine protein phosphorylation in response to the fertilizing sperm may be involved in initiating DNA synthesis in the 1-cell embryo, as well as converting a meiotic cell cycle to a mitotic one.  相似文献   

11.
Using affinity chromatography with immobilized gelatin and native type I collagen, we have identified the major collagen-binding proteins in Nonidet P-40 extracts of chick embryo fibroblasts labeled with [35S] methionine. After washing the gelatin- or collagen-Sepharose beads with high ionic strength buffer, a 47,000-dalton protein was the only major protein besides fibronectin found to bind to these affinity beads. The isoelectric point of this protein was approximately 9.0, with a closely spaced minor spot. The total amount and the synthesis of this collagen-binding protein were both decreased in Rous sarcoma virus-transformed cells. This collagen-binding protein was found to be phosphorylated by incubating intact cells with [32P]orthophosphate. Phosphoamino acid analysis revealed that serine and threonine residues were phosphorylated, but tyrosine was not. Although quantities of the 47,000-dalton protein labeled with [35S]methionine were decreased by a factor 2.5 after transformation, the incorporation of [32P]orthophosphate/unit of protein was 5-7-fold higher in transformed cells. In temperature-sensitive mutant virus-infected cells, the amount of the 47,000-dalton protein was also decreased at the temperature permissive for transformation, and the incorporation of [32P]orthophosphate/protein was also increased. These studies establish that a major membrane-associated collagen-binding protein of fibroblasts is phosphorylated and that it is altered in both total quantity and degree of phosphorylation after malignant transformation.  相似文献   

12.
The predominant membrane lipid in Bacillus megaterium ATCC 14581, phosphatidylglycerol (PG), is present in two distinct pools, as shown by [32P]phosphate incorporation and chase experiments. One pool (PGt) undergoes rapid turnover of the phosphate moiety, whereas the second pool (PGs) exhibits metabolic stability in this group. The phosphate moiety of the other major phospholipid, phosphatidylethanolamine, is stable to turnover. [32P]phosphate- and [2-3H]glycerol-equilibrated cultures yielded the following glycerolipid composition: 56 mol% PG (34 mol% PGt and 22 mol% PGs), 21 mol% phosphatidylethanolamine, 1 to 2 mol% phosphatidylserine, 20 mol% diglycerides, less than 0.5 mol% cardiolipin, and 0.2 to 0.4 mol% lysophosphatidylglycerol. Accumulation of PG was halted immediately after the addition of cerulenin, an inhibitor of de novo fatty acid synthesis, whereas phosphatidylethanolamine accumulation continued at the expense of the diglyceride and PG pools. Strikingly, initial rates of [32P]phosphate incorporation into PG were unaffected by cerulenin. In control cultures at 35 degrees C, incorporation of [32P]phosphate into PG exhibited a biphasic time course, whereas incorporation into phosphatidylethanolamine was concave upward and lagged behind that of PG during the initial rapid phase of PG incorporation. Finally, levels of lysophosphatidylglycerol expanded rapidly after cerulenin addition at 20 degrees C, but not at 35 degrees C. Moreover, incorporation of [32P]phosphate into lysophosphatidylglycerol lagged behind incorporation into PG in both the presence and absence of cerulenin at 20 and 35 degrees C.  相似文献   

13.
The short-term changes in metabolism that occurred after adding glucose or sucrose to freshly cut discs from growing potato (Solanum tuberosum L.) tubers were investigated. (i) When glucose was supplied, there was a marked increase in glycolytic metabolites, and respiration was stimulated. When sucrose was supplied, amounts of glycolytic metabolites including hexose phosphates and 3-phosphoglycerate (3PGA) were similar to or lower than in control discs incubated without sugars, and respiration did not rise initially above that in control discs. This different response to sucrose and glucose was found across the concentration range 5–200 mM. A larger proportion of the metabolised 14C was converted to starch when [14C] sucrose was supplied than when [14C] glucose was supplied. The different effect on metabolite levels, respiration and starch synthesis was largest after 20–30 min, and decreased in longer incubations. (ii) When 5 or 25 mM sucrose was added in the presence of [14C] glucose, it led to a decrease in hexose phosphates and 3PGA, and a small increase in the rate of starch synthesis compared to discs incubated with glucose in the absence of sucrose. These differences were seen in a 30-min pulse and a 2-h pulse. Whereas ADP-glucose levels after adding sucrose resembled those in control discs, glucose led to a decrease in ADP-glucose. This decrease did not occur when 5 or 25 mM sucrose was added with the glucose. (iii) To check the relevance of these experiments for intact tubers, water or 100 mM mannitol, sucrose or glucose were supplied through the stolon to intact tubers for 24 h. A 0.2 mM solution of [14C] glucose was then introduced into the tubers, and its metabolism investigated during the next 30 min. Labelling of starch was increased after preincubation with sucrose, and significantly inhibited after preincubation with glucose. (iv) It is concluded that glucose and sucrose have different effects on tuber metabolism. Whereas glucose leads to a preferential stimulation of respiration, sucrose preferentially stimulates starch synthesis via a novel mechanism that allows stimulation of ADP-glucose pyrophosphorylase even though the levels of hexose phosphates and the allosteric activator 3PGA decrease. Received: 9 October 1997 / Accepted: 3 February 1998  相似文献   

14.
An ectoprotein kinase activity has been identified on intact rabbit peritoneal polymorphonuclear leucocytes and the time course of phosphate incorporation into proteins has been followed at different ATP levels. Saturation is reached at around 3 mM ATP and the activity is inhibited by p-chloromercuribenzoate. The possibility that the observed protein phosphorylation arises through the action of a membrane ATPase liberating phosphate for transfer into the cell, incorporation into ATP and its utilisation by endogenous kinases, has been excluded by studying both enzymes concomitantly and measuring the rate of [32P]orthophosphate uptake. Lactate dehydrogenase measurements in the extracellular media also exclude the possibility of kinase liberation from lysed cells. Moreover, the pattern of 32P-labelling of polypeptides when intact cells are exposed to [32P]ATP is quite different from that when homogenates are incubated with [32P]ATP or intact cells with [32P]-orthophosphate. We have been unable to demonstrate any cAMP dependency for this ectokinase activity.  相似文献   

15.
The aim of this work was to evaluate the extent to which plastidial phosphoglucomutase (PGM) activity controls starch synthesis within potato (Solanum tuberosum L. cv. Desirée) tubers. The reduction in the activity of plastidial PGM led to both a correlative reduction in starch accumulation and an increased sucrose accumulation. The control coefficient of plastidial PGM on the accumulation of starch was estimated to approximate 0.24. The fluxes of carbohydrate metabolism were measured by investigating the metabolism of [U-14C]glucose in tuber discs from wild-type and transgenic plants. In tuber discs the control coefficient of plastidial PGM over starch synthesis was estimated as 0.36, indicating that this enzyme exerts considerable control over starch synthesis within the potato tuber.  相似文献   

16.
To investigate histone phosphate levels during myogenesis, proliferation (d 1), pre-fusion postmitotic (d 2) and myotube (d 3) stage cultured chicken myoblasts were phosphorylated in vivo with [32P]orthophosphate or in vitro by incubating isolated nuclei with 32P-gamma-ATP. Incorporation of radioactive phosphate into histone was assessed by SDS and acid/urea/Triton-X-100 (AUT) gel electrophoresis and radioautography. During proliferation, in vivo labeling with [32P]orthophosphate revealed that all histones except H2b were phosphorylated in the following order of decreasing modification: H1 a greater than H2a greater than H1 b greater than H3 greater than H4. In pre-fusion post-mitotic cells phosphorylation of histones H1 a, H3 and H4 declined, whereas all histones exhibited significantly decreased modification at the myotube stage. It is unlikely that these changes resulted from decreased specific radioactivity of intracellular inorganic phosphate pools, since uptake of [32P]orthophosphate by myotubes increased six-fold, compared with proliferating cells. Isolated nuclei incubated with 32P-gamma-ATP displayed similar decreases during myogenesis; however, 1 a, H1 b and H3 were the only histones modified by in vitro phosphorylation.  相似文献   

17.
The in vivo and in vitro synthesis and turnover of dolichol and dolichyl phosphate have been studied over the course of early development in sea urchin embryos. Synthesis of dolichol and dolichyl phosphate was studied in vivo and in vitro using [3H]acetate and [14C] isopentenylpyrophosphate, respectively, as precursors. Both the in vivo and in vitro results indicate that the principal labeled end product of de novo synthesis is the free alcohol, and that this alcohol is subsequently phosphorylated to produce dolichyl phosphate. The presence of 30 microM compactin inhibits the de novo synthesis of dolichol from [3H]acetate by greater than 90%, but has no effect on the incorporation of 32Pi into dolichyl phosphate for more than 6 h, thus suggesting that during this time interval the major source of dolichyl phosphate is preformed dolichol. The rate of turnover of the [3H]acetate-labeled polyisoprenoid backbone of dolichyl phosphate is very slow (t1/2 = 40-70 h). In contrast, the rate of loss of the [32P]phosphate headgroup is more rapid (t1/2 = 5.7-7.7 h) and increases over the course of development. Finally, dolichyl phosphate phosphatase activity has been measured in vitro. The activity of this enzyme, which can be distinguished from phosphatidic acid phosphatase, was found to increase as a function of development, in qualitative agreement with the increased turnover of 32P from dolichyl phosphate observed in vivo. These results suggest that the phosphate moiety of dolichyl phosphate is in a dynamic state, and that dolichol kinase and dolichyl phosphate phosphatase play key roles in regulating the cellular level of dolichyl phosphate.  相似文献   

18.
To investigate the effect of water stress on carbon metabolism in growing potato tubers (Solanum tuberosum L.), freshly cut and washed discs were incubated in a range of mannitol concentrations corresponding to external water potential between 0 and −1.2 MPa. (i) Incorporation of [14C]glucose into starch was inhibited in water-stressed discs, and labeling of sucrose was increased. High glucose overrode the changes at low water stress (up to −0.5 MPa) but not at high water stress. (ii) Although [14C]sucrose uptake increased in water-stressed discs, less of the absorbed [14C]sucrose was metabolised. (iii) Analysis of the sucrose content of the discs confirmed that increasing water deficit leads to a switch, from net sucrose degradation to net sucrose synthesis. (iv) In parallel incubations containing identical concentrations of sugars but differing in which sugar was labeled, degradation of [14C]sucrose and labeling of sucrose from [14C]glucose and fructose was found at each mannitol concentration. This shows that there is a cycle of sucrose degradation and resynthesis in these tuber discs. Increasing the extent of water stress changed the relation between sucrose breakdown and sucrose synthesis, in favour of synthesis. (v) Analysis of metabolites showed a biphasic response to increasing water deficit. Moderate water stress (0–200 mM mannitol) led to a decrease of the phosphorylated intermediates, especially 3-phosphoglycerate (3PGA). The decrease of metabolites at moderate water stress was not seen when high concentrations of glucose were supplied to the discs. More extreme water stress (300–500 mM mannitol) was accompanied by an accumulation of metabolites at low and high glucose. (vi) Moderate water stress led to an activation of sucrose phosphate synthase (SPS) in discs, and in intact tubers. The stimulation involved a change in the kinetic properties of SPS, and was blocked␣by protein phosphatase inhibitors. (vii) The amount of ADP-glucose (ADPGlc) decreased when discs were incubated on 100 or 200 mM mannitol. There was a strong correlation between the in vivo levels of ADPGlc and 3PGA when discs were subjected to moderate water stress, and when the sugar supply was varied. (viii) The level of ADPGlc increased and starch synthesis was further inhibited when discs were incubated in 300–500 mM mannitol. (ix) It is proposed that moderate water stress leads to an activation of SPS and stimulates sucrose synthesis. The resulting decline of 3PGA leads to a partial inhibition of ADP-glucose pyrophosphorylase and starch synthesis. More-extreme water stress leads to a further alteration of partitioning, because it inhibits the activities of one or more of the enzymes involved in the terminal reactions of starch synthesis. Received: 26 August 1996 / Accepted: 5 November 1996  相似文献   

19.
The elongation of amylose and amylopectin chains in isolated starch granules   总被引:14,自引:1,他引:13  
The aim of this work was to investigate the conditions required for amylose synthesis in starch granules. Although the major granule-bound isoform of starch synthase - GBSSI - catalyses the synthesis of amylose in vivo, 14C from ADP[14C]glucose was incorporated primarily into a specific subset of amylopectin chains when supplied to starch granules isolated from pea (Pisum sativum L.) embryos and potato (Solanum tuberosum L.) tubers. Incubation of granules with soluble extracts of these organs revealed that the extracts contained compounds that increased the incorporation of 14C into amylose. These compounds were rendered inactive by treatment of the extracts with α-glucosidase, suggesting that they were malto-oligosaccharides. Consistent with this idea, provision of pure malto-oligosaccharides to isolated granules resulted in a dramatic shift in the pattern of incorporation of 14C, from amylopectin chains to amylose molecules. Comparison of the pattern of incorporation in granules from wild-type peas and lam mutant peas which lack GBSSI showed that this effect of malto-oligosaccharides was specifically on GBSSI. The significance of these results for understanding of the synthesis of amylose and amylopectin in storage organs is discussed.  相似文献   

20.
Isolated rat pancreatic islets were perifused and analyzed for phosphate content immediately following the transient increase in the efflux of orthophosphate which occurs when insulin secretion is stimulated by glucose. In some instances, islets were perifused directly following isolation to minimize preparative delay; in others, islets were prelabeled during incubation with [32P]orthophosphate for 90 min prior to perifusion. In both experimental situations, total islet phosphate content declined 40--50% following exposure to stimulating concentrations of glucose and initiation of enhanced insulin release. In the experiments with prelabeled islets, tissue content of [32P]orthophosphate fell to a similar extent so that the specific radioactivity of islet orthophosphate was unaffected. Inhibited of heightened insulin release with Ni2+ did not modify the decrements in total or radioactive tissue orthophosphate, thus indicating that these responses to islet stimulation reflect events which are proximal to activated exocytosis. Simultaneous analyses for tissue ATP and ADP demonstrated that the efflux in orthophosphate and reduction in tissue orthophosphate content were not mediated via net changes in islet adenine nucleotides. The observations represent the first documentation that a net reduction of tissue inorganic phosphate is one of the early components of stimulus-secretion coupling in isolated pancreatic islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号