首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The elemental composition of the morula cell of Halocynthia papillosa blood was studied by X-ray microanalysis with respect to the possible iron accumulation in this cell type. We found various amounts of Na, Mg, P, S, Cl, K, Ca, Fe and Br in the cytoplasm, nucleus and vacuoles. With the exception of a few cells, Ca, Fe and Br were not detected. Thus, the morula cells of the studied species are not iron-rich cells.  相似文献   

2.
3.
为探明持续淹水对河竹器官养分元素分布格局的影响,揭示竹子耐受水淹胁迫的养分适应机制,以2年生河竹(Phylllostachys rivalis)盆栽苗为试材,设置不同深度的淹水处理(水位高出栽培基质5 cm(Ⅰ)、10 cm(Ⅱ)和正常供水(CK)),测定了持续淹水90、180 d和360 d河竹叶、枝、秆、鞭和根中养分元素C、N、P、K、Ca、Fe和Mg的含量,分析了淹水条件下河竹器官营养元素分布格局的变化。结果表明:1)淹水深度和时间显著影响河竹器官C含量,与对照比较,淹水90 d时,叶、枝和根C均显著增加(P0.05),随着淹水时间的延长(180 d),C含量维持稳定状态,至淹水360 d,植株C含量降低,尤其淹水Ⅱ显著降低。2)淹水显著影响河竹器官的N、P、K、Ca、Fe和Mg含量(P0.05),且处理时间、处理水平和器官间存在显著交互作用(P0.001),处理90 d时,河竹叶片N、P、Ca、Fe和Mg含量均显著升高,而根的N、P含量则显著降低,淹水180 d和360 d时,除根部的K、Fe和Mg含量升高外,其它器官中各元素均显著降低。3)水位深度对元素之间的关系产生明显影响,在淹水Ⅰ叶片的CK、N-K、P-K、Fe-Ca和Fe-Mg的相关系数升高,元素间协同性增强,而在淹水Ⅱ中这些相关系数则降低,说明元素间的协同性减弱。4)淹水Ⅱ河竹叶片C/N、C/P较对照显著增加(P0.05),而N/P变化不显著(P0.05),说明河竹在淹水条件下具有较高内稳定性。综上,淹水影响河竹根系矿质元素吸收能力,促进其向顶运输,以维持碳同化能力和元素内稳性,这可能是河竹适应持续水淹胁迫的重要机制。  相似文献   

4.
采用扫描电镜及X射线能谱仪技术,研究霍山石斛组培苗移栽后各器官组织的微观结构和所含元素的变化,以了解霍山石斛组培苗生长发育以及药效成分的状况。结果表明:(1)霍山石斛组培苗移栽2个月后,根增粗近1倍,具有根被,且根被细胞壁的网络状增厚更加明显,表皮、皮层、中柱发育分化更加完善,Mg、Si、Cl、S、K、Ca元素含量提高,其中Ca增长了2.76倍。(2)茎表面纵向凹陷增多,内部结构致密,维管束发育较为完善,细胞内充满物质,Mg、Si、Cl、S、K、Ca、Fe、Cu、Zn元素含量增多,尤其是K和Fe分别增长了3.25倍和4.61倍。(3)叶增厚,具有了角质层,气孔形状更加饱满,叶肉细胞内含物丰富,Mg、Si、Cl、S、K、Ca、Fe、Mn、Zn的含量显著上升,其中K升高了17倍。(4)与根、叶相比,茎中所富集的元素种类最多。研究认为,霍山石斛试管苗移栽后,生长发育趋向完善,各项功能增强,细胞内含物质增多,元素成分丰富并且含量提高,体现出对移栽环境的良好适应性。  相似文献   

5.
刘合霞  李博  胡兴华  邓涛  黄仕训  邹玲俐 《广西植物》2017,37(10):1261-1269
为探讨苦苣苔科植物对其岩溶生境的适应性,该研究选取黄花牛耳朵(Primulina lutea)、紫花报春苣苔(Pri.purpurea)和桂林蛛毛苣苔(Paraboea guilinensis)三种苦苣苔科植物,将其栽种在石灰土及红壤两种不同类型的土壤中,观测记录其生长性状并对其叶片元素含量进行测定和比较。植株采集过程中,同时采集自然生境中三种苦苣苔科植物叶片及取样植物基部土壤,并对叶片及土壤元素的含量进行测定,作为今后苗圃试验的参照。结果表明:三种苦苣苔科植物在两种土壤上的生长状况及适应性具有差异,其在石灰土上生长良好,在红壤上生长较差;在两种不同土壤中,除N外,桂林蛛毛苣苔的叶片其他元素(P、K、Mn、Mg、Ca、Zn、Cu)差异极显著(P0.01);除P外,紫花报春苣苔的叶片其他元素(N、K、Mn、Mg、Ca、Zn、Cu)差异极显著(P0.01);除N、Cu、Ca外,黄花牛耳朵的叶片元素(P、K、Mn、Mg、Zn)差异极显著(P0.01);三种植物的叶片元素比值,除少数值没有差异外,大部分指标差异都极显著;对叶片元素与栽培土壤元素的相关性分析,发现植物叶片Mn元素与土壤中N、Ca、Mg、Zn、Mn、有机质含量等呈正相关,土壤P元素与叶片中N、P元素呈正相关,而与叶片中Zn元素呈负相关关系。在其他栽培条件一致的条件下,土壤因素及物种差别是造成黄花牛耳朵、紫花报春苣苔和桂林蛛毛苣苔适应性产生差异的主要原因。  相似文献   

6.
Magnesium contents of soybean (Glycine max) roots increase and the K and Ca contents decrease with increased MgCl2 concentrations in ambient solutions. The Mg uptake is inhibited when both Ca and K are present in the solution, but not by K or Ca alone. Chloride uptake, which is very low from the MgCl2 solution, is greatly enhanced by the presence of K. The selectivity against Mg imparted by K + Ca appears to be at an external barrier for cation uptake as shown by its dependence on the presence of Ca in the external solution. The Ca content of roots is influenced only slightly by changes in external Ca concentrations from 10−4 to 10−2m, but that of shoots is greatly enhanced as the Ca concentration is increased or the K concentration is decreased. These effects on Ca contents are explained as arising from transport to the shoot without involvement of vacuoles of root cells.  相似文献   

7.
Summary The Ca, Mg, S, Mn and Cu contents in leaves ofCoffea canephora trees selected in 64 plots under a 4×4×2 NPK trial were determined after seven years of fertilizer application. It was observed that NPK applications increased Mn uptake, P application increased the uptake of Cu, Ca and S while application of N and K did not enhance the uptake of Cu, Mg, Ca and S. It was shown that as a result of NPK applications, Ca and Mg had become deficient in coffee leaves, which corroborates earlier findings based on soil analysis.  相似文献   

8.
Luwe  Michael W. F. 《Plant and Soil》1995,168(1):195-202
In a beech (Fagus sylvatica L.) stand in north-west Germany vegetation of two transects (25m:1m and 20m:1m) was mapped and contents of macronutrients (Ca, Mg and K), micronutrients (Fe, Mn, Zn and Cu), and potentially phytotoxic metals (Pb, Cd, Ni and Al) were measured in different soil compartments and in roots, rhizomes, stems and leaves of two forest floor plant species (Mercurialis perennis L. and Polygonatum multiflorum L.). NH4Cl extractable cation contents, pH and other soil variables were also determined.The highest macronutrient contents could be found in the leaves of M. perennis and P. multiflorum. Heavy metals and Al accumulated in the roots. Correlation analysis suggests a considerable translocation of Zn and Cd between below- and above-ground organs of both investigated forest floor plants. No significant correlation was found between the contents of the other elements in the below- and above-ground parts.Available data indicate a considerable uptake by the plants not only of nutrients, but also of heavy metals from the upper mineral soil. Amounts of heavy metals and Al solubilized in the presence of NH4Cl increased with decreasing pH, whereas levels of soluble Ca and Mg were maximal at high pH-values of the extracts. It can be concluded that element uptake in the investigated plants is indirectly controlled by the pH of the upper mineral soil.  相似文献   

9.
The concentrations of nitrogen (N), phosphorus (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg) and chlorine (Cl) were followed monthly in pre-senescence leaves and post-abscission leaves of Kandelia candel (L.) Druce at the Jiulongjiang estuary, and Fujian, China. The element retranslocation efficiency (RE) was studied during leaf senescence. The element RE's evaluated using different methods were compared and a new method was put forward to evaluate element RE during leaf senescence in evergreen trees without concentrated leaf fall. The results showed that during leaf senescence, 77.22% N, 57.53% P, and 44.51% K were translocated out of senescing leaves. Translocation of nutrients out of senescing leaves back into shoots was an important nutnent-conservation mechanism for N and P, was less important for K, and did not occur for Ca, Mg, Na, or Cl. One of the reasons for the high primary productivity of mangroves in nutrient poor sites (especially with low N) is the high nutrient use efficiency.  相似文献   

10.
张毅  石玉  胡晓辉  邹志荣  曹凯  张浩 《生态学杂志》2013,24(5):1401-1408
采用水培方法,研究了盐碱与Spd处理对两品种番茄(中杂9号和金棚朝冠)幼苗氮代谢及主要矿质元素含量的影响.结果表明: 盐碱胁迫下,番茄幼苗干生物量显著减少,植株生长受到抑制;叶片和根系硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT)活性及硝态氮(NO3--N)、全N、全K、Ca2+、Mg2+含量显著降低,铵态氮(NH4+-N)、Na+含量显著增加;两品种叶片及中杂9号根系谷氨酸脱氢酶(GDH)活性显著升高,金棚朝冠根系GDH活性变化不显著;叶片全P含量显著降低,根系全P含量显著升高(金棚朝冠)或无显著变化(中杂9号).Spd处理通过增强NR、GS、GOGAT活性提高了植株对NH4+的同化利用率,有效缓解了盐碱胁迫导致的氮代谢紊乱,进而促进不同器官对P、K、Ca、Mg、Na的吸收、释放或转运,在一定程度上维持了各元素之间的相对平衡,从而增强植株对逆境的适应能力.此外,盐碱对中杂9号的抑制作用及外源Spd对其氮代谢紊乱和营养失衡的缓解作用高于金棚朝冠.  相似文献   

11.
The properties of Mg2+-ATPase in the vacuole of Saccharomyces cerevisiae were studied, using purified intact vacuoles and right-side-out vacuolar membrane vesicles prepared by the method of Y. Ohsumi and Y. Anraku ((1981) J. Biol. Chem. 256, 2079). The enzyme requires Mg2+ ion but not Ca2+ in. Cu2+ and Zn2+ ions inhibit the activity. The optimal pH is at pH 7.0. The enzyme hydrolyzes ATP, GTP, UTP, and CTP in this order and the Km value for ATP was determined as 0.2 mM. It does not hydrolyze ADP, adenosyl-5'-yl imidodiphosphate, or p-nitrophenyl phosphate. ADP does not inhibit hydrolysis of ATP by the enzyme. The activities of intact vacuoles and of vacuolar membrane vesicles were stimulated 3- and 1.5-fold, respectively, by the protonophore uncoupler 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile and the K+/H+ antiporter ionophore nigericin. Sodium azide at a concentration exerting an uncoupler effect also stimulated the activity. The activity was sensitive to the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, but not to sodium vanadate. The ATP-dependent formation of an electrochemical potential difference of protons, measured by the flow-dialysis method, was determined as 180 mV, with contribution of 1.7 pH units, interior acid, and of a membrane potential of 75 mV. It is concluded that the Mg2+-ATPase of vacuoles is a new marker enzyme for these organelles and is a N,N'-dicyclohexylcarbodiimide-sensitive, H+-translocating ATPase whose catalytic site is exposed to the cytoplasm.  相似文献   

12.
Vacuoles of different leaf cell-types vary in their capacity to store specific mineral elements. In Arabidopsis thaliana potassium (K) accumulates preferentially in epidermal and bundle sheath cells whereas calcium (Ca) and magnesium (Mg) are stored at high concentrations only in mesophyll cells. Accumulation of these elements in a particular vacuole can be reciprocal, i.e. as [K]vac increases [Ca]vac decreases. Mesophyll-specific Ca-storage involves CAX1 (a Ca2+/H+ antiporter) and Mg-storage involves MRS2-1/MGT2 and MRS2-5/MGT3 (both Mg2+-transporters), all of which are preferentially expressed in the mesophyll and encode tonoplast-localised proteins. However, what controls leaf-cell [K]vac is less well understood. TPC1 encodes the two-pore Ca2+ channel protein responsible for the tonoplast-localised SV cation conductance, and is highly expressed in cell-types that not preferentially accumulate Ca. Here, we evaluate evidence that TPC1 has a role in maintaining differential K and Ca storage across the leaf, and propose a function for TPC1 in releasing Ca2+ from epidermal and bundle sheath cell vacuoles to maintain low [Ca]vac. Mesophyll-specific Ca storage is essential to maintain apoplastic free Ca concentration at a level that does not perturb a range of physiological parameters including leaf gas exchange, cell wall extensibility and growth. When plants are grown under serpentine conditions (high Mg/Ca ratio), MGT2/MRS2-1 and MGT3/MRS2-5 are required to sequester additional Mg2+ in vacuoles to replace Ca2+ as an osmoticum to maintain growth. An updated model of Ca2+ and Mg2+ transport in leaves is presented as a reference for future interrogation of nutritional flows and elemental storage in plant leaves.  相似文献   

13.
四种金花茶组植物叶片金属元素含量及富集特性研究   总被引:1,自引:0,他引:1  
以四种金花茶组植物为研究对象,采用原子吸收光谱法和原子荧光法,测定其嫩叶、老叶及对应土壤中Mg、Ca、Mn、Fe、Zn、Ni、Se、Pb、Cd、Hg、As共11种元素的含量,并分别计算嫩叶和老叶对土壤金属元素的富集系数.结果表明:(1)4种金花茶组植物叶片富含Mg、Ga、Mn、Fe、Zn、Ni等营养元素,各元素在叶片中含量为Ca>Mg>Mn>Fe>Zn>Ni>Se;Pb、Cd、As、Hg等重金属元素含量较低,均达到无公害茶叶标准.(2)老叶和嫩叶中各金属元素含量差异较大,老叶中的Ca、Mn、Fe、Zn、Pb、Cd、Hg、As、Se元素含量均大于嫩叶,尤以Ca、Mn、Fe差异显著;嫩叶中的Mg和Ni含量大于老叶.(3)金花茶组植物对不同金属元素的富集能力不同,对各元素富集能力强弱为Ca、Mn、Mg>Zn、Ni、Hg>Pb、Se>Fe、As,老叶和嫩叶的富集规律存在差异.(4)不同金花茶组植物对金属元素的富集能力有较大差异,龙州金花茶(Camellia longzhouensis)和黄花抱茎茶(C.murauchii)对Mg、Ca、Mn、Zn、Ni、Se、Pb的富集能力均大于金花茶(C.nitidissima)和毛籽金花茶(C.ptilosperma).其中,龙州金花茶对Mg、Mn、Se的富集能力最强,黄花抱茎茶对Ca、Pb、Hg富集能力最强,金花茶对Hg的富集能力较强,对其它元素的富集能力均较弱;毛籽金花茶对Ca、Mn、Ni、Zn的富集能力均最弱.该研究结果为金花茶组植物的进一步开发和利用提供了理论依据.  相似文献   

14.
为揭示河竹的耐水湿机制,为河竹在水湿地和江河湖库消落带植被恢复中应用提供理论依据,以河竹盆栽苗为试材,测定了淹水和人工喷灌供水处理3、6、12个月的河竹一年生竹鞭的根系生物量和主要养分元素含量,分析了河竹鞭根养分含量、化学计量比和养分积累量在淹水环境下的动态变化规律。结果表明:淹水3个月使河竹鞭根N、P、K含量显著降低,但对C、Ca、Fe、Mg等养分含量和C/P、N/P、N/K影响不明显,随着淹水时间的进一步延长,河竹鞭根养分含量、化学计量比和积累量发生明显变化,C、N、P、Ca含量和C/K、N/K、P/K降低,K、Fe、Mg含量和C/N、C/P、N/P升高;淹水6个月前对河竹鞭根养分积累总体上有明显抑制作用,但淹水12个月会使鞭根养分积累量显著升高,这主要源于根系生物量显著提高的贡献。研究表明,淹水3个月时,维持较高的养分内稳性是河竹应对胁迫环境的响应策略,随后通过土中根和水中根的大量生长来维持较高的养分吸收和积累能力,并进行养分化学计量比的适应性调节来适应胁迫环境。分析认为,河竹在长期淹水环境中能够维持生存,可以用于水湿地和江河湖库消落带植被恢复,也是净化富营养水体研究与应用的竹子材料。  相似文献   

15.
Thlaspi caerulescens is a metallophyte that is able to hyperaccumulate Zn. In the present study the subcellular compartmentation of Zn was investigated in roots and leaves of this species by means of X-ray microanalysis. Leaves accumulated higher average Zn concentrations than roots. In roots of plants exposed to 10 μM Zn, Zn concentrations in the apoplast were similar to those in vacuoles, while in plants treated with 100 μM Zn considerably higher Zn concentrations were detected in vacuoles than in the apoplast. In epidermal and sub-epidermal cells of leaves of plants from both treatments, Zn mainly accumulated in vacuoles and, to a lesser extent, in the apoplast. In vacuoles from plants exposed to 100 μM Zn, high Zn concentrations were associated with variable amounts of P, Ca and K. In leaves, the highest Zn concentrations (13,600 μg g?1 d.m.) were found in globular crystals present in many vacuoles of epidermal and subepidermal cells. Smaller deposits with a variable Zn concentration between 1,000 and 18,300 μg g?1 d.m. were observed in the epidermal and subepidermal cells of roots. Both the high Zn/P element ratios found in the crystals and the absence of Mg indicate that, in contrast to other plant species, myo-inositol hexaphosphate (phytate) is not the main storage form for Zn in Thlaspi caerulescens.  相似文献   

16.
Jacoby  B. 《Plant and Soil》1961,15(1):74-80
Summary A pot experiment was carried out in the greenhouse, on sweet-lime (Citrus aurantifolia) seedlings grown in soils with three Mg/Ca ratios: 0.33, 0.11, and 0.05. Leaf analyses showed positive correlations between Mg/Ca ratios in the medium and magnesium contents, and Mg/Ca ratios in the leaves. Using a split-root technique it has been shown that impaired magnesium uptake at the Mg/Ca ratio of 0.05 in the medium, is not due to its low magnesium contents, but rather to an excess of calcium.  相似文献   

17.
The contents of some elements in green and whitish yellow parts of the leaves of Hedera helix and Acer negundo were examined. The contents of N, P and K were considerably higher in whitish yellow parts of the leaves compared with the green ones, and contrary to Ca in both plant species. Mg behaved like N, P and K in Hedera but like Ca in Acer. The same results were obtained in the leaves which were completely green or whitish yellow. The metabolic activities in different parts of the leaves were evaluated on the basis of the content of the individual elements. Differently coloured parts of the leaves of variegata type show differences not only in morphology and structure but also in their metabolic activity.  相似文献   

18.
Abstract

Being a new cultivar, the physiology of transgenic cotton, especially dual-toxin transgenic (Bt+CpTI) cotton, is not yet completely understood. Twelve elements in three organs of dual-toxin transgenic cotton seedlings were analyzed by ICP-MS. The distributions of the 12 elements were substantially different from those of non-transgenic cotton. In particular, the contents of B, Mg, P, K and Ca were the highest in leaves, while those of Si, Fe, Rb and Cu were the highest in roots; other elements had similar contents in the two organs, which were higher than those in the stem. Compared with non-transgenic cotton, the 12 elements could be classified into four groups according to their contents and distributions in the three organs: (a) P, K and Cu: their contents in transgenic cotton were remarkably lower, especially contents of P and K in leaves that were one times lower than those in leaves of non-transgenic cotton; (b) B, Mg and Mo: their contents in leaves and roots of transgenic cotton were higher, but lower in stems, compared with non-transgenic cotton; (c) Si, Mn, Fe, Rb and Zn: compared with non-transgenic cotton, these were lower in leaves and stems, but higher in roots of transgenic cotton; and (d) Ca: compared with non-transgenic cotton, its content was higher in all three organs of the transgenic counterpart. The decrease in soluble proteins and the expression of Bt and CpTI genes could be responsible for these changes. Further studies are needed to verify this hypothesis.  相似文献   

19.
1. The levels of potassium, sodium, magnesium and calcium in leaves, midgut contents, midgut tissue, and blood were analysed in seven developmental stages between feeding, fourth-instar larvae and new pupae of the Cecropia silkworm. 2. Three dramatic changes in cation levels were found: the K level in the contents drops from 284 /+- 51 mEquiv./1 tissue water in the fifth-instar larva to 51 +/- 6 mEquiv./1 in the new pupa; the Mg level in the midgut tissue increases from 28 +/- 3 mEquiv./1 at the time of gut evacuation to 1093 +/- 104 mEquiv./1 in the new pupa; and the Ca level in the contents drops temporarily from 56 +/- 12 mEquiv./1 in the feeding fourth instar larva to 17 +/- 5 mEquiv./1 in the new fifth instar larva. The Na level was nerve higher than 2.8 +/- 0.5 mEquiv./1. 3. The relative levels of the four cations were different for each tissue studied, but each tissue maintained the same relative levels during the developmental stages studied. The sequences are: leaf, Ca greater than K GREATEr than Mg greater than Na; midgut contents, K greater than Ca greater than Mg greater than Na; midgut tissue, K GREATEr than Mg greater than Ca greater than Na; and blood, Mg greater than K greater than Ca greater than Na. 4. There were three large concentration gradients across the midgut; the K level in the midgut contents is approximately 10 times the level in blood; the Mg level in contents is one-half to one-sixth the level in blood; and the Ca level in contents is 3-4 times the level in blood. The K gradient and the Ca gradient are opposed and the Mg gradient is favoured by the electrical gradient across the larval midgut, the contents being 100 mV positive with respect to the blood. The K gradient and the electrical gradient are not present across the pupal midgut while the Mg gradient and the Ca gradient persist. 5. The K gradient is presumably maintained by the midgut K pump, the Mg gradient is aided by the midgut Mg pump, and the Ca gradient suggests that the midgut may possess a Ca pump.  相似文献   

20.
Summary Seasonal changes in the foliar concentration of macronutrients (N, P, K, Ca and Mg) in sapling trees ofEucalyptus saligna Sm. andE. wandoo Blakely growing in rehabilitated bauxite mined areas in the Darling Range of Western Australia are described. Foliar N concentration decreased with age of the fully expanded leaf tissue. Leaf N concentrations were also high when rates of litter decomposition were expected to be high during the period of early spring. The greatest foliar N difference between trees growing in good soil conditions and those from poorer soil conditions also occurred during this period. Levels of P in leaves were highest in young developing leaves but once the leaves reached full size, no seasonal trend in P concentration was observed. Foliar K was lower during the winter and probably related to the period of maximum leaching by precipitation. High foliar K during summer, however, could be related to the role of K in lowering cellular water potential. Leaf Ca was highest during early sping. Low mobility of cellular Ca during the cool portion of the year was indicated. Foliar Mg showed a weak pattern of decreasing concentration with leaf age. The best season for sampling for these broadleafed evergreen species to provide information on plant nutrient status appears to be in spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号