首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The divalent cation ionophore, A23187, at a concentration of 0.25 microgram/ml, enhanced influx of Ca2+, activity of ornithine decarboxylase and incorporation of [3H]thymidine into DNA of guinea pig lymphocytes. Combined treatment of cells with A23187 and dibutyryladenosine 3',5'-monophosphate (Bt2cAMP) augmented these three events. A23187 at a concentration of 0.06 microgram/ml was insufficient for induction of ornithine decarboxylase stimulated neither Ca2+ influx nor [3H]thymidine incorporation, but stimulated Ca2+ efflux. A23187 (0.06 microgram/ml) in combination with Bt2cAMP caused a marked induction of ornithine decarboxylase and stimulation of [3H]thymidine incorporation into DNA. When the time of Bt2cAMP addition was delayed after A23187, the stimulation of ornithine decarboxylase activity decreased. Washout of Bt2cAMP from cell culture earlier than 4 h of incubation caused a reduction in the stimulatory effect of Bt2cAMP. These results suggest that raising concentrations of cytoplasmic Ca2+ and cellular cAMP are important to some initial events leading to induction of ornithine decarboxylase and these biochemical changes are obligatory sequential steps for stimulation of DNA synthesis.  相似文献   

2.
DNA synthesis in Epstein-Barr virus (EBV)-infected lymphocytes was inhibited by phosphonoacetic acid (PAA) as measured by [3H]thymidine incorporation. PAA, at a concentration of 200 microgram/ml, inhibited [3H]thymidine incorporation by human umbilical cord lymphocytes infected with EBV strain P94 but had little effect on DNA synthesis in mitogen-stimulated cells. Transformed cell lines did not develop from infected cord cell cultures treated with 100 microgram of PAA per ml. Cytofluorometric analysis showed marked increases in cellular nucleic acid content (RNA plus DNA) as early as 9 days after infection of cord cells in the absence of PAA and before significant enhancement of [3H]thymidine incorporation became apparent. Moreover, EBV led to increases in cellular nucleic acid even when 200 microgram of PAA per ml was added to cell cultures before infection. The apparent discrepancy between results obtained by [3H]thymidine incorporation and cytofluorometry is explained either by significant inhibition of cellular DNA polymerases by PAA or by a block at the G2 + M phase of the cell cycle. The data suggest that EBV initiates alterations in cellular nucleic acid synthesis or cell division without prior replication of viral DNA by virus-induced DNA polymerases.  相似文献   

3.
The thymidine analog 1-beta-arabinofuranosylthymine (ara-T) has previously been found to selectively inhibit herpes simplex virus replication. At a relatively nontoxic conentration (50 microgram/ml), ara-T reduced herpes simplex virus yields by 4 to 5 log10. Ara-T was also effective in inhibiting the replication of varicellazoster virus (VZV) in vitro in human embryo fibroblasts, completely preventing VZV-specific cytopathic effects. The inhibition of VZV was reversible upon drug removal at 48 h after addition but was not reversible after 5 days of treatment. ara-T also reduced cell-free virus infectivity and the plaque-forming cell yield of VZV. Compared with the untreated controls, which demonstrated a 1-log10 increase over input plaque-forming cells at 24 h after infection, 50 microgram of ara-T per ml resulted in a 1-log10 decrease. In contrast to herpes simplex virus and VZV, cytomegalovirus replication was relatively resistant to ara-T. Neither cytopathic effects nor the incorporation of [3H]thymidine into acid-insoluble material in cytomegalovirus-infected cells was markedly affected. Analysis of the newly synthesized labeled DNA by CsCl buoyant density determinations indicated that the same relative proportions of cell and virus DNA were synthesized with or without added drug. Interpretation of these results with regard to virus-induced deoxypyrimidine kinase is discussed.  相似文献   

4.
We have synthesized certain 6-substituted 9-methoxy-11H-indeno[1,2-c]quinolin-11-ones for antiproliferative evaluation. Results indicated that 6-alkylamine derivatives, 6-[2-(dimethylamino)ethylamino]-9-methoxy-11H-indeno[1,2-c]quinolin-11-one (5a) and its 6-[3-(dimethylamino)propylamino] derivative, 5b, were able to inhibit cells growth completely at a concentration of 100 μM while most of the 6-arylamine derivatives 6b-6h were inactive at the same concentration. Comparable mean GI(50) (drug molar concentration causing 50% cell growth inhibition) values for 5a (3.47 μM) and 5b (3.39 μM) indicated the cytotoxicity may not be affected by the length of alkyl substituents at C-6 position. Compound 5b, with a mean GI(50) value of 3.39 μM, was the most active and therefore was selected for further evaluation on its effects of H460 lung cancer cell cycle distribution. Results indicated that 5b induced cell cycle arrest in G2/M phase after 24h treatment, while the hypodiploid (sub-G0/G1 phase) cells increased. We found that H460 cell became shrinked after the treatment of 5b, indicating that apoptosis may be a mechanism by which 5b kills the cancer cells. DNA unwinding assay indicated that 5b may bind to DNA through intercalation. Our results have also demonstrated that PARP was cleaved while caspase-3 and caspase-8 activities were induced after the treatment of 5b at 10 μM for 24h. Thus, compound 5b intercalates DNA, induces cell cycle arrest at G2/M phase via cleavage of PARP, induces caspase-3 and caspase-8 activities, and consequently causes the cell death.  相似文献   

5.
Comparison of the effect of goat anti-rabbit Ig (GARIg) and its monovalent fragment (Fab-GARIg) demonstrates that surface Ig (sIg) crosslinking is not necessary to effect G0 to G1 transition in rabbit peripheral blood B cells but is required for induction of DNA synthesis. Five micrograms per milliliter or more of GARIg is sufficient to induce DNA synthesis but up to 50 micrograms/ml of Fab-GARIg is not. However, the monovalent reagent induces microscopically observable cytoplasmic and nuclear changes (blast transformation) in a dose-dependent manner. These differ qualitatively and quantitatively from the morphological changes seen with comparable doses of GARIg; Fab anti-Ig produces "small blasts" whereas complete GARIg induces large blasts. The monovalent reagent, in a wide range of concentrations, is as effective as the complete antibody in modulating sIg from rabbit B cells. Fab-GARIg treatment modulates sIg in a biphasic manner. It clears the high-density sIg within 5 min, whereas the remaining low-density receptors disappear after 4 hr. Cytosolic protein kinase C levels decline equally after treatment with either Fab-GARIg or whole anti-Ig. RNA synthesis, as measured by [3H]uridine incorporation, increases for the first 12 hr in cells activated with either reagent. It declines to basal levels in Fab-GARIg stimulated cells, but a continuous increase occurs in cells stimulated with 5 and 50 micrograms/ml of complete antibody. Simultaneous addition of 50 micrograms/ml Fab-GARIg with 5 microgram/ml of GARIg causes greater RNA synthesis for 12 hr after stimulation than is caused by GARIg alone. After 12 hr the monovalent reagent has an inhibitory effect on RNA synthesis. Fluorescence-activated cell sorter analysis of acridine orange-stained cells shows that Fab anti-Ig-stimulated cells have higher RNA content than resting cells, but lower than GARIg-activated cells. These findings suggest that rabbit B cells can be activated from the G0 stage of cell cycle to G1 by monovalent anti-Ig reagents but further cell cycle progression requires maintenance signals provided by receptor crosslinking. The implications of these results for B cell activation signalling are discussed in the context of the floating receptor model.  相似文献   

6.
R Barra  B Beres  M R Koch  M A Lea 《Cytobios》1976,17(66):123-136
The effects of exogenous proteins on the incorporation of [3H]-thymidine into DNA was studied in Novikoff hepatoma ascites cells incubated in Eagle's minimal essential medium. A liver cytosol fraction (8 mg protein/ml) caused approximately 80% inhibition of isotope incorporation. The inhibitory activity of cytosol fractions from Morris hepatomas 9618A2, 5123C, and 20 were inversely related to their growth rate. Under conditions in which there appeared to be a density dependent inhibition of growth, a mean 10-20% stimulation of isotope incorporation was observed after addition of total calf thymus histones and individual fractions in the concentration range of 100-400 microgram/ml. In experiments with lower cell concentrations, a 60% or greater increase in [3H]-thymidine incorporation could be obtained with total calf thymus histone and with F1 and arginine-rich histones from rat liver. At concentrations of 1-2 mg/ml, histones inhibited DNA synthesis. Bovine serum albumin had little effect on DNA synthesis. Polylysine caused an 80-90% inhibition at a concentration of 1 mg/ml, but stimulatory effects were detected under certain conditions at 10 microgram/ml. The results suggest critical dependence on the ratio of cell and exogenous protein concentration in the action of proteins on DNA synthesis.  相似文献   

7.
Tunicamycin, a potent inhibitor of protein glycosylation, was used to study the role of protein glycosylation in the regulation of muscarinic acetylcholine receptor (mAChR) number in cultures of N1E-115, a murine neuroblastoma cell line. At a concentration of 0.35 microgram/ml, tunicamycin inhibited macromolecular incorporation of [3H]mannose by 75-80%, whereas incorporation of [3H]leucine was reduced by only 10%. Treatment with tunicamycin caused a 30% decrease in total membrane mAChR number within 48 h as determined by a filter-binding assay using [3H]quinuclidinyl benzilate ([3H]QNB), a highly specific muscarinic antagonist. Tunicamycin also inhibited the recovery of total membrane mAChR by 70% following carbachol-induced down-regulation. The rate of mAChR degradation (control t1/2 12-14 h) was unaffected by incubation with tunicamycin. Intact cell binding studies using [3H]QNB (a membrane-permeable ligand) to measure total cellular (internal plus cell surface) mAChR and [3H]N-methylscopolamine ([3H]NMS, a membrane-impermeable ligand) to measure cell surface mAChR were conducted to determine whether tunicamycin selectively depleted cell surface mAChR. With 12 h of treatment with tunicamycin, cell surface mAChR number declined by 35%, whereas total cellular mAChR fell by only 10%. The ratio of cell surface receptor to total receptor decreased by 45% after 24 h. These results indicate that protein glycosylation is required for the maintenance of cell surface mAChR number. Incubation with tunicamycin causes a selective depletion of cell surface mAChR, implying that protein glycosylation plays a critical role in transport and/or incorporation of mAChR into the plasma membrane.  相似文献   

8.
Porcine granulosa cells synthesize and respond to catecholestrogens, but the stimulatory potency of catecholestrogens on progesterone production is much less than that of estradiol (E2). Therefore, to determine if metabolism of catecholestrogens by granulosa cells could account for the reduced potency of 2-hydroxyestradiol (2-OH-E2) observed in vitro, porcine granulosa cells were cultured with [3H]2-OH-E2 and medium collected at 0, 0.5, 1, 2, 4, 6, or 12 h in the presence or absence of 1 microgram/ml 2-OH-E2, 0.5 mM L-ascorbate or 10 microM U-0521 (a specific catechol-O-methyltransferase inhibitor). Metabolism of [3H]2-OH-E2 was very rapid with only 16% of the original [3H]2-OH-E2 remaining after 4 h exposure to cells. The main metabolite comigrated with 2-methoxyestradiol (2-MeO-E2) on thin-layer chromatography. Although appreciable degradation of [3H]2-OH-E2 occurred with time in the absence of cells, formation of the O-methyl derivative was minimal. Rather, formation of polar metabolites occurred in the absence of cells. Ascorbate dramatically reduced this noncellular degradation. Ascorbate added to cell cultures had no effect on the rate of formation of O-methyl products but slowed the formation of polar compounds as well as the overall rate of degradation of [3H]2-OH-E2 by nearly 2-fold. U-0521 completely blocked the formation of O-methyl products, slowed the overall rate of degradation of [3H]2-OH-E2 by half and resulted in an increase in polar metabolites. The effects of U-0521 and ascorbate on 2-OH-E2-stimulated progesterone production in vitro was also examined. Ascorbate (0.5 mM) enhanced the effect of 2-OH-E2 (but not E2) on progesterone production by 2-fold (p less than 0.05). The addition of 10 microM U-0521 in the presence of 0.5 mM ascorbate had no effect on 1 microgram/ml 2-OH-E2-stimulated progesterone production, but it increased (p less than 0.05) the response to 4 micrograms/ml 2-OH-E2. The effects of 2-MeO-E2, 2-OH-E2, and E2 on progesterone production by cultured granulosa cells were then compared. The ED50 of E2 was 6- to 8-fold lower than that of 2-OH-E2 and 2-MeO-E2, whereas the ED50 of 2-OH-E2 was 15% lower than that of 2-MeO-E2. In the presence of ascorbate (0.5 mM), the maximal effect of E2 and 2-OH-E2 was approximately equal, whereas 2-OH-E2 was nearly 2-fold more efficacious than 2-MeO-E2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Within 4 h after injection of [3H]ecdysone, almost all tritiated material has disappeared from the haemolymph, indicating that the uptake by the tissues is very fast. After only 15 min, 19% of the label was found in the ecdysterone fraction and 4% in the highly polar products (HPP) fraction. The uptake of [3H]ecdysone by the ovary (mid-vitellogenic) is almost complete within 1 h after injection. The pattern of [3H]ecdysteroids in the ovaries follows a well ordered sequence: firstly, [3H]ecdysone is the major component of the [3 H]ecdysteroids but it disappears within 2 h, next a peak value of [3H]ecdysterone was found at 1 h, whereafter this also disappeared, and from 2 h on, there was a considerable increase in HPP. The HPP consisted of 3 fractions (A, B and C). Glusulase treatment revealed that apparently only fraction B consisted of glucuronide and/or sulphate-conjugates of ecdysteroids. Autoradiographic experiments confirmed that the uptake of [3H]ecdysone was a very rapid process. In ovaries fixed 1 h after injection, the silver grains were abundant in the ooplasm but were also found in the follicle cell cytoplasm and in trophocytes. In follicles examined 16 h after injection, only a few silver grains were observed in the trophocytes and follicle cells. However, the cytoplasm of the oocyte was labelled. The border cells also accumulated label.

The major results indicate that all cell types of the follicle seem to be able to absorb ecdysone from the haemolymph and that there seems to be a rather selective uptake of ecdysone. In the ooplasm, ecdysone is converted to highly polar conjugates.  相似文献   

10.
The radioprotection by several eicosanoids was investigated in cultures of bovine aortic endothelial cells. One hour before irradiation (0-500 cGy, 137Cs gamma rays) 10 micrograms/ml of PGD2, PGE1, PGI2, misoprostol (PGE1-analog), 16,16-dimethyl PGE2, PGA2, or 1 microgram/ml LTC4 was added. Radiation decreased incorporation of [3H]thymidine at 4 h, cell number/culture at 24 h, and cell survival as measured by colony formation. Under these conditions the eicosanoids were not radioprotective. Two eicosanoids, PGD2 and PGA2, appeared to be toxic. Because receptors might mediate eicosanoid-induced radioprotection, radioligand binding of PGE2 and LTC4 and levels of adenosine 3',5'-cyclic monophosphate (cAMP) were measured. Evidence for a receptor was equivocal; there was nonspecific binding and metabolism of LTC4. The level of cAMP was elevated by 16-16-dimethyl-PGE2 in the presence of isobutyl methylxanthine; however, this combination of the prostaglandin and the methylxanthine was not radioprotective. These investigations suggest that an elevated cAMP level alone does not lead to eicosanoid-induced radioprotection of bovine aortic endothelial cell monolayers in vitro.  相似文献   

11.
The effect of aflatoxin B1 on the binding capacity of rat liver cytoplasmic glucocorticoid receptors and the nuclear binding of the activated receptor complex was investigated. No alterations in the kinetics of [3H]desamethasone-cytosol receptor complex formation were noted 2 h after treatment with 1 mg/kg aflatoxin B1. However, a 33% decrease in the concentration of nuclear acceptor sites and a 24% decrease in the glucocorticoid receptor-nuclear binding equilibrium constant of dissociation was observed. This response was near maximal at 2 h and persisted for at least 26 h. Inhibition of nuclear binding capacity was directly related to aflatoxin B1 dose, with a correlation coefficient of 0.99. Actinomycin D treatment (0.1 mg/kg) resulted in a slight reduction (16%) in the concentration of nuclear acceptor sites but had no effect on the nuclear binding dissociation constant. Administration of [3H]dexamethasone to alfatoxin B1 -treated rats produced a similar pattern of glucocorticoid binding distribution in vivo to that observed in vitro. No differences in [3H]dexamethasone-cytoplasmic receptor binding between control and alfatoxin B1 -treated rats were found, whereas nuclear [3H]dexanthasone binding was reduced 34% by alfatoxin B1 -treatment.  相似文献   

12.
The time and dose dependence of the relationship between uptake of labelled precursors into protein and RNA and production of testosterone by rabbit follicles was examined. Although testosterone production was stimulated by luteinizing hormone at concentrations between 0.1 and 10 microgram/ml, the uptake of [3H]leucine into protein was significant only when the concentration of luteinizing hormone was greater than 2.5 microgram/ml. Increased production of testosterone was observed within 15 min of stimulation with luteinizing hormone whereas uptake of [3H]leucine was only significant at 90 min. Puromycin (40 microgram/ml) and cycloheximide (10 microgram/ml) in the presence of luteinizing hormone inhibited the synthesis of both testosterone and protein. However, lower concentrations of puromycin (0.1, 1 and 10 microgram/ml) and cycloheximide (1 microgram/ml) had no effect on luteinizing hormone-induced testosterone production but significantly inhibited protein synthesis by 58, 37, 31 and 71%, respectively. Actinomycin D (20, 80 and 160 microgram/ml) alone and in combination with 5 microgram luteinizing hormone/ml severely inhibited uptake of [3H]uridine into RNA without affecting testosterone production. However, with 1 microgram actinomycin/ml, testosterone production was significantly (P less than 0.01) greater than in the presence of luteinizing hormone alone. These results cast doubt on the obligatory role of RNA and protein synthesis in rabbit ovarian follicular steroidogenesis.  相似文献   

13.
The mechanisms of carbachol-induced muscarinic acetylcholine receptor (mAChR) down-regulation, and recovery following carbachol withdrawal, were studied in the neuroblastoma x glioma hybrid NG108-15 cell line by specific ligand binding assays. N-[3H]Methylscopolamine ([3H]NMS) and [3H]quinuclidinyl benzilate ([3H]QNB) were used as the ligands for the cell surface and total cellular mAChRs, respectively. Exposure of cells to 1 mM carbachol for 16 h decreased the specific binding of [3H]NMS and [3H]QNB by approximately 80%. Bacitracin (1-4 mg/ml) and methylamine (1-15 mM), inhibitors of transglutaminase and of endocytosis, prevented agonist-induced loss of surface mAChRs. Pretreatment of cells with the antimicrotubular agents nocodazole (0.1-10 microM) and colchicine (1-10 microM) prevented carbachol-induced loss of [3H]QNB binding, but not that of [3H]NMS binding. These results indicate that agonist-induced mAChR down-regulation occurs by endocytosis, followed by microtubular transport of receptors to their intracellular degradation sites. When carbachol was withdrawn from the culture medium following treatment of cells for 16 h, receptors recovered and were incorporated to the surface membrane. This recovery process was antagonized by monovalent ionophores monensin (0.1 microM) and nigericin (40 nM), which interfere with Golgi complex function. Receptor recovery was also prevented by the antimicrotubular agent nocodazole. Thus, recovery of receptors appears to be mediated via Golgi complex and microtubular transport to the surface membrane.  相似文献   

14.
4 isomeric cyclopenta-derivatives of benz[e]anthracene (benz[a]aceanthrylene, benz[j]aceanthrylene, benz[l]aceanthrylene, and benz[k]acephenanthrylene) were examined for their ability to morphologically transform C3H10T1/2CL8 mouse-embryo fibroblasts. All of these polycyclic aromatic hydrocarbons studied except benz[k]acephenanthrylene transformed C3H10T1/2CL8 cells to both type II and type III foci in a concentration-dependent fashion. Benz[j]aceanthrylene was the most active, equivalent in activity to benzo[a]pyrene on a molar basis, in producing dishes of cells with transformed foci (94% at 1.0 microgram/ml). Benz[e]aceanthrylene, and benz[l]aceanthrylene produced 58% and 85% of the dishes with foci respectively at 10 micrograms/ml. Metabolism studies with [3H]benz[j]aceanthrylene in C3H10T1/2CL8 cells in which unconjugated, glucuronic acid conjugated, and sulfate conjugated metabolites were measured indicated that the dihydrodiol precursor to the bay-region diol-epoxide, 9,10-dihydroxy-9,10-dihydrobenz[j]aceanthrylene, was the major dihydrodiol formed (55%). Smaller quantities of the cyclopenta-ring dihydrodiol, 1,2-dihydroxy-1,2-dihydrobenz[j]aceanthrylene (14%), and the k-region dihydrodiol, 11,12-dihydroxy-11,12-dihydrobenz[j]aceanthrylene (5%) were also formed. Similar studies with [14C]benz[l]aceanthrylene indicated that the k-region dihydrodiol, 7,8-dihydroxy-7,8-dihydrobenz[l]aceanthrylene was the major metabolite formed (45%). The cyclopenta-ring dihydrodiol, 1,2-dihydroxy-1,2-dihydrobenz[l]aceanthrylene and 4,5-dihydroxy-4,5-dihydrobenz[l]aceanthrylene were formed in minor amounts (less than 6%). Therefore, metabolism at the cyclopenta-ring of B(j)A and B(l)A is a minor pathway in C3H10T1/2CL8 cells in contrast to previously reported studies with cyclopenta[cd]pyrene in which the cyclopenta-ring dihydrodiol was the major metabolite. These results suggest that routes of metabolic activation other than oxidation at the cyclopenta-ring such as bay region or k-region activation may play an important role with these unique polycyclic aromatic hydrocarbons in C3H10T1/2CL8 cells.  相似文献   

15.
Rhizobium trifolii B1, a symbiotic nitrogen fixer, is sensitive to streptomycin (10 microgram/ml) and spontaneously produces spheroplast-like forms during cultivation. Streptomycin-resistant mutants selected with high doses of antibiotic (1,000 microgram/ml) showed pleiotropic changes, including loss of spheroplast formation and infectivity to plants, whereas mutants selected with low doses of streptomycin (10 to 100 microgram/ml) retained properties of parent strain B1 (I. Zelazna-Kowalska, Acta Microbiol. Pol., in press). The present studies revealed that strain B1 and its mutant with a high level of streptomycin resistance, B1 strH, accumulated the antibiotic at similar rates. Mutant B1 strL, with a low level of streptomycin resistance (up to 100 microgram/ml), accumulated the antibiotic at a lower rate. Ribosomes isolated from strains B1 and B2 strL bound [3H]dihydrostreptomycin, whereas those from strain B1 strH did not. These observations indicate that, in R. trifolii B1, mutation to a high level of streptomycin resistance affects ribosomal structure, whereas low-level resistance involves a change in membrane permeability.  相似文献   

16.
S W Dean  M Fox 《Mutation research》1984,132(1-2):63-72
Two cloned human lymphoblastoid cell lines, Raji and TK6, differ in their sensitivity to the cytotoxic effects of nitrogen mustard (HN2). Raji cells exhibit a biphasic response with an initial D value of 0.06 microgram/ml and a final slope of 0.25 microgram/ml. TK6 cells were considerably more sensitive, D0 value 0.02 microgram/ml. Dose-response relationships for delay in cell cycle progression were measured using flow cytometry. Delay in S-phase traverse was concentration-dependent in both cell lines, and at a given concentration was 2-fold greater in TK6 than in Raji. Numbers of crosslinks (determined by alkaline elution) increased linearly with increasing HN2 concentration and were approximately 2-fold higher in TK6 than in Raji. At equal levels of DNA crosslinks, rates of removal were similar in both cell lines. Inhibition of [3H]TdR uptake was concentration-dependent and the extent of inhibition was similar in both cell lines. Recovery from HN2-induced inhibition of cell cycle progression markedly preceded recovery from inhibition of [3H]TdR incorporation suggesting that nucleotide pools are markedly perturbed in HN2-treated cells. The difference in sensitivity of these two cell lines cannot be adequately explained by differences in amounts of initial DNA damage, rates of repair, differential S-phase delay or rate of loss of DNA crosslinks.  相似文献   

17.
Rat ovarian granulosa cells were isolated from immature female rats after stimulation with pregnant mare's serum gonadotropin and then maintained in culture. Proteoglycans were labeled using [35S]sulfate, D-[3h]glucosamine, or L-[3H]serine as precursors. 35S-labeled proteoglycans in the medium increased linearly up to 72 h after a 6- to 8-h lag period, and those in a 4 M guanidine HCl extract of the cell layer increased for about 16 h and then reached a plateau and stayed fairly constant up to 72 h. Two distinct sizes of proteoglycans were observed in the medium. The smaller (Kav = 0.60 on Sepharose CL-2B) had lower buoyant densities in dissociative gradients (rho less than 1.4 g/ml). The larger (Kav = 0.26 on Sepharose CL-2B) had high buoyant densities (recovered mainly in the bottom (D1) fraction of the dissociative gradient). More than 90% of the D1 proteoglycans contained dermatan sulfate chains (average Mr = 38,000) which yielded 84% 4-sulfated and 15% disulfated disaccharides after digestion with chondroitinase ABC. About 8% of the 35S-label in D1 was present as a heparan sulfate proteoglycan. When [3H]-glucosamine was used as a precursor, 28% of the 3H activity in the D1 proteoglycans was located in three major oligosaccharide components, two of which were similar or identical with those observed previously in D1 proteoglycans isolated from porcine follicular fluid. These results plus similar susceptibility of the labeled proteoglycans to proteolytic enzymes, especially plasmin, suggest that the granulosa cells synthesize the predominant follicular fluid proteoglycans.  相似文献   

18.
Treatment of cells with carcinogen Benzo[a]pyrene (B[a]P) allows cells to evade G1 arrest and induces cells abnormal proliferation. However, the mechanisms of its action at cellular level are not well understood. To address this question, normal human embryo lung diploid fibroblasts (HELF) were selected in the present study. We found that exposure of cells with 2.5 μM of B[a]P for 24 h resulted in a decrease of G1 population by 11.9% (P < 0.05) and a increase of S population by 17.2% (P < 0.05). Treatment of cells with B[a]P also caused dose-related activation of MAPK and induction of cyclin D1 protein expression, whereas the CDK4 protein levels were not significantly affected by B[a]P. Overexpression of cyclin D1 protein stimulated by B[a]P was significantly inhibited by 50 μM AG126 (an inhibitor of ERK1/2), but not by 25 μM SP600125 (an inhibitor of JNK1/2) or 5 μM SB203580 (an inhibitor of p38 mapk), suggesting that B[a]P-induced cyclin D1 expression was only regulated by ERK1/2 pathway. However, AG126, SP600125 or SB203580 led to cell cycle significantly arrested in G1 phase, indicating that ERK1/2, JNK1/2 and p38 mapk pathways are all required for B[a]P-induced G1/S transition. In addition, HELF cells transfecting with antisense cyclin D1 cDNA or antisense CDK4 cDNA showed significantly G1 arrest after B[a]P stimulation. These results suggested that B[a]P exposure accelerated the G1→S transition by activation of MAPK signaling pathways. Cyclin D1 and CDK4 are rate-limiting regulators of the G1→S transition and expression of cyclin D1 is predominantly regulated by ERK1/2 pathway in HELF cells.  相似文献   

19.
Regulation of fibroblast cyclooxygenase synthesis by interleukin-1   总被引:37,自引:0,他引:37  
We have prepared polyclonal antiserum against sheep seminal vesicle prostaglandin H synthase (also termed cyclooxygenase) which cross-reacted with human cyclooxygenase, thereby enabling us to directly determine the synthetic rate of cyclooxygenase protein and its modulation by the monokine interleukin-1 (IL-1). Cultured human dermal fibroblast cells were labeled with [35S]methionine, and the membrane-bound cyclooxygenase was solubilized and immunoprecipitated 35S-labeled fibroblast cyclooxygenase migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular size of approximately 73,000 daltons, similar to that of native sheep cyclooxygenase and of cyclooxygenase covalently labeled by [3H]aspirin, i.e. [3H]acetylcyclooxygenase. Additional validation of the immunoprecipitated 35S-labeled cyclooxygenase band indicated that it was specifically displaced by unlabeled sheep cyclooxygenase. N-terminal amino acid radiosequence analysis of [3H]proline-labeled cyclooxygenase revealed [3H]proline residues in positions 3, 6, and 8, consistent with the previously reported N-terminal sequence of sheep cyclooxygenase. Endoglycosidase H treatment of 35S-labeled fibroblast cyclooxygenase caused a decline in apparent molecular size (due to removal of mannose residues) which was similar to that seen with the native sheep cyclooxygenase. [35S]Methionine pulse-chase experiments indicated a half-life of 1 h for fibroblast cyclooxygenase. The monokine interleukin-1 stimulated fibroblast cyclooxygenase synthesis in a time- and dose-dependent fashion; as little as 0.03 unit/ml of IL-1 produced significant stimulation of 35S-labeled cyclooxygenase synthesis. Maximum stimulation was 3-10-fold after preincubation of the cells with 0.3 unit/ml of IL-1 for 12-16 h. IL-1 treatment of cells yielded parallel dose-response curves for stimulation of prostaglandin E2 formation, increased cellular cyclooxygenase activity, and increased synthetic rate of newly formed cyclooxygenase, suggesting that the IL-1 effect is mediated mainly, if not solely, via induction of cyclooxygenase synthesis.  相似文献   

20.
Metabolism of high density lipoprotein (HDL) cholesteryl ester (CE) by cultured rat adrenal cells was studied. Addition of [3H]CE-HDL to cells pretreated with adrenocorticotrophin in lipoprotein poor media resulted in a time- and concentration-dependent accumulation of [3H]cholesteryl ester and production of [3H]cholesterol and [3H]corticosterone. HDL-CE metabolism could be described as the sum of a high affinity ([ HDL-cholesterol]1/2 max = 16 micrograms/ml) and low affinity ([ HDL-cholesterol]1/2 max greater than 70 micrograms/ml) process. [3H]Cholesterol was found both intracellularly and in the media. Accumulation of [3H]cholesteryl ester could not be attributed to uptake and re-esterification of unesterified cholesterol since addition of Sandoz 58-035, an inhibitor of acyl coenzyme A:cholesterol acyltransferase, did not prevent ester accumulation. Moreover, addition of chloroquine did not inhibit cholesteryl ester hydrolysis indicating that hydrolysis was not lysosomally mediated. Aminoglutethimide prevented conversion of [3H]CE-HDL to steroid hormones but did not inhibit [3H]cholesteryl ester uptake. Cellular accumulation of [3H] cholesteryl ester exceeded accumulation of 125I-apoproteins 5-fold at 1 h and 35-fold at 24 h indicating selective uptake of cholesteryl ester moiety. We conclude that rat adrenal cells possess a mechanism for selective uptake of HDL cholesteryl esters which provides substrate for steroidogenesis. These results constitute the first direct demonstration that cholesteryl esters in HDL can be used as steroidogenic substrate by the rat adrenal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号