首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
MOTIVATION: In many fields of pattern recognition, combination has proved efficient to increase the generalization performance of individual prediction methods. Numerous systems have been developed for protein secondary structure prediction, based on different principles. Finding better ensemble methods for this task may thus become crucial. Furthermore, efforts need to be made to help the biologist in the post-processing of the outputs. RESULTS: An ensemble method has been designed to post-process the outputs of discriminant models, in order to obtain an improvement in prediction accuracy while generating class posterior probability estimates. Experimental results establish that it can increase the recognition rate of protein secondary structure prediction methods that provide inhomogeneous scores, even though their individual prediction successes are largely different. This combination thus constitutes a help for the biologist, who can use it confidently on top of any set of prediction methods. Moreover, the resulting estimates can be used in various ways, for instance to determine which areas in the sequence are predicted with a given level of reliability. AVAILABILITY: The prediction is freely available over the Internet on the Network Protein Sequence Analysis (NPS@) WWW server at http://pbil.ibcp.fr/NPSA/npsa_server.ht ml. The source code of the combiner can be obtained on request for academic use.  相似文献   

2.
Although residue-residue contact maps dictate the topology of proteins, sequence-based ab initio contact predictions have been found little use in actual structure prediction due to the low accuracy. We developed a composite set of nine SVM-based contact predictors that are used in I-TASSER simulation in combination with sparse template contact restraints. When testing the strategy on 273 nonhomologous targets, remarkable improvements of I-TASSER models were observed for both easy and hard targets, with p value by Student's t test<0.00001 and 0.001, respectively. In several cases, template modeling score increases by >30%, which essentially converts "nonfoldable" targets into "foldable" ones. In CASP9, I-TASSER employed ab initio contact predictions, and generated models for 26 FM targets with a GDT-score 16% and 44% higher than the second and third best servers from other groups, respectively. These findings demonstrate a new avenue to improve the accuracy of protein structure prediction especially for free-modeling targets.  相似文献   

3.
4.
Matsuo K  Watanabe H  Gekko K 《Proteins》2008,73(1):104-112
Synchrotron-radiation vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy can significantly improve the predictive accuracy of the contents and segment numbers of protein secondary structures by extending the short-wavelength limit of the spectra. In the present study, we combined VUVCD spectra down to 160 nm with neural-network (NN) method to improve the sequence-based prediction of protein secondary structures. The secondary structures of 30 target proteins (test set) were assigned into alpha-helices, beta-strands, and others by the DSSP program based on their X-ray crystal structures. Combining the alpha-helix and beta-strand contents estimated from the VUVCD spectra of the target proteins improved the overall sequence-based predictive accuracy Q(3) for three secondary-structure components from 59.5 to 60.7%. Incorporating the position-specific scoring matrix in the NN method improved the predictive accuracy from 70.9 to 72.1% when combining the secondary-structure contents, to 72.5% when combining the numbers of segments, and finally to 74.9% when filtering the VUVCD data. Improvement in the sequence-based prediction of secondary structures was also apparent in two other indices of the overall performance: the correlation coefficient (C) and the segment overlap value (SOV). These results suggest that VUVCD data could enhance the predictive accuracy to over 80% when combined with the currently best sequence-prediction algorithms, greatly expanding the applicability of VUVCD spectroscopy to protein structural biology.  相似文献   

5.
Free energy minimization has been the most popular method for RNA secondary structure prediction for decades. It is based on a set of empirical free energy change parameters derived from experiments using a nearest-neighbor model. In this study, a program, MaxExpect, that predicts RNA secondary structure by maximizing the expected base-pair accuracy, is reported. This approach was first pioneered in the program CONTRAfold, using pair probabilities predicted with a statistical learning method. Here, a partition function calculation that utilizes the free energy change nearest-neighbor parameters is used to predict base-pair probabilities as well as probabilities of nucleotides being single-stranded. MaxExpect predicts both the optimal structure (having highest expected pair accuracy) and suboptimal structures to serve as alternative hypotheses for the structure. Tested on a large database of different types of RNA, the maximum expected accuracy structures are, on average, of higher accuracy than minimum free energy structures. Accuracy is measured by sensitivity, the percentage of known base pairs correctly predicted, and positive predictive value (PPV), the percentage of predicted pairs that are in the known structure. By favoring double-strandedness or single-strandedness, a higher sensitivity or PPV of prediction can be favored, respectively. Using MaxExpect, the average PPV of optimal structure is improved from 66% to 68% at the same sensitivity level (73%) compared with free energy minimization.  相似文献   

6.
Cuff JA  Barton GJ 《Proteins》2000,40(3):502-511
The effect of training a neural network secondary structure prediction algorithm with different types of multiple sequence alignment profiles derived from the same sequences, is shown to provide a range of accuracy from 70.5% to 76.4%. The best accuracy of 76.4% (standard deviation 8.4%), is 3.1% (Q(3)) and 4.4% (SOV2) better than the PHD algorithm run on the same set of 406 sequence non-redundant proteins that were not used to train either method. Residues predicted by the new method with a confidence value of 5 or greater, have an average Q(3) accuracy of 84%, and cover 68% of the residues. Relative solvent accessibility based on a two state model, for 25, 5, and 0% accessibility are predicted at 76.2, 79.8, and 86. 6% accuracy respectively. The source of the improvements obtained from training with different representations of the same alignment data are described in detail. The new Jnet prediction method resulting from this study is available in the Jpred secondary structure prediction server, and as a stand-alone computer program from: http://barton.ebi.ac.uk/. Proteins 2000;40:502-511.  相似文献   

7.
Cascaded multiple classifiers for secondary structure prediction   总被引:11,自引:0,他引:11       下载免费PDF全文
We describe a new classifier for protein secondary structure prediction that is formed by cascading together different types of classifiers using neural networks and linear discrimination. The new classifier achieves an accuracy of 76.7% (assessed by a rigorous full Jack-knife procedure) on a new nonredundant dataset of 496 nonhomologous sequences (obtained from G.J. Barton and J.A. Cuff). This database was especially designed to train and test protein secondary structure prediction methods, and it uses a more stringent definition of homologous sequence than in previous studies. We show that it is possible to design classifiers that can highly discriminate the three classes (H, E, C) with an accuracy of up to 78% for beta-strands, using only a local window and resampling techniques. This indicates that the importance of long-range interactions for the prediction of beta-strands has been probably previously overestimated.  相似文献   

8.
Cuff JA  Barton GJ 《Proteins》1999,34(4):508-519
A new dataset of 396 protein domains is developed and used to evaluate the performance of the protein secondary structure prediction algorithms DSC, PHD, NNSSP, and PREDATOR. The maximum theoretical Q3 accuracy for combination of these methods is shown to be 78%. A simple consensus prediction on the 396 domains, with automatically generated multiple sequence alignments gives an average Q3 prediction accuracy of 72.9%. This is a 1% improvement over PHD, which was the best single method evaluated. Segment Overlap Accuracy (SOV) is 75.4% for the consensus method on the 396-protein set. The secondary structure definition method DSSP defines 8 states, but these are reduced by most authors to 3 for prediction. Application of the different published 8- to 3-state reduction methods shows variation of over 3% on apparent prediction accuracy. This suggests that care should be taken to compare methods by the same reduction method. Two new sequence datasets (CB513 and CB251) are derived which are suitable for cross-validation of secondary structure prediction methods without artifacts due to internal homology. A fully automatic World Wide Web service that predicts protein secondary structure by a combination of methods is available via http://barton.ebi.ac.uk/.  相似文献   

9.
Although most proteins conform to the classical one‐structure/one‐function paradigm, an increasing number of proteins with dual structures and functions have been discovered. In response to cellular stimuli, such proteins undergo structural changes sufficiently dramatic to remodel even their secondary structures and domain organization. This “fold‐switching” capability fosters protein multi‐functionality, enabling cells to establish tight control over various biochemical processes. Accurate predictions of fold‐switching proteins could both suggest underlying mechanisms for uncharacterized biological processes and reveal potential drug targets. Recently, we developed a prediction method for fold‐switching proteins using structure‐based thermodynamic calculations and discrepancies between predicted and experimentally determined protein secondary structure (Porter and Looger, Proc Natl Acad Sci U S A 2018; 115:5968–5973). Here we seek to leverage the negative information found in these secondary structure prediction discrepancies. To do this, we quantified secondary structure prediction accuracies of 192 known fold‐switching regions (FSRs) within solved protein structures found in the Protein Data Bank (PDB). We find that the secondary structure prediction accuracies for these FSRs vary widely. Inaccurate secondary structure predictions are strongly associated with fold‐switching proteins compared to equally long segments of non‐fold‐switching proteins selected at random. These inaccurate predictions are enriched in helix‐to‐strand and strand‐to‐coil discrepancies. Finally, we find that most proteins with inaccurate secondary structure predictions are underrepresented in the PDB compared with their alternatively folded cognates, suggesting that unequal representation of fold‐switching conformers within the PDB could be an important cause of inaccurate secondary structure predictions. These results demonstrate that inconsistent secondary structure predictions can serve as a useful preliminary marker of fold switching.  相似文献   

10.
In this study we present an accurate secondary structure prediction procedure by using a query and related sequences. The most novel aspect of our approach is its reliance on local pairwise alignment of the sequence to be predicted with each related sequence rather than utilization of a multiple alignment. The residue-by-residue accuracy of the method is 75% in three structural states after jack-knife tests. The gain in prediction accuracy compared with the existing techniques, which are at best 72%, is achieved by secondary structure propensities based on both local and long-range effects, utilization of similar sequence information in the form of carefully selected pairwise alignment fragments, and reliance on a large collection of known protein primary structures. The method is especially appropriate for large-scale sequence analysis efforts such as genome characterization, where precise and significant multiple sequence alignments are not available or achievable. Proteins 27:329–335, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Computational neural networks have recently been used to predict the mapping between protein sequence and secondary structure. They have proven adequate for determining the first-order dependence between these two sets, but have, until now, been unable to garner higher-order information that helps determine secondary structure. By adding neural network units that detect periodicities in the input sequence, we have modestly increased the secondary structure prediction accuracy. The use of tertiary structural class causes a marked increase in accuracy. The best case prediction was 79% for the class of all-alpha proteins. A scheme for employing neural networks to validate and refine structural hypotheses is proposed. The operational difficulties of applying a learning algorithm to a dataset where sequence heterogeneity is under-represented and where local and global effects are inadequately partitioned are discussed.  相似文献   

12.
目前蛋白质二级结构的预测准确率徘徊在75%左右,难以作进一步提高。本文通过统计学的方法,对蛋白质的冗余数据库进行了分析。并由此证明,目前影响预测准确率继续的真正原因是蛋白质数据库本身的系统误差,系统误差大约为25%。而该误差是由于实验条件的客观原因带来的。  相似文献   

13.

Background  

Protein sequence alignment is one of the basic tools in bioinformatics. Correct alignments are required for a range of tasks including the derivation of phylogenetic trees and protein structure prediction. Numerous studies have shown that the incorporation of predicted secondary structure information into alignment algorithms improves their performance. Secondary structure predictors have to be trained on a set of somewhat arbitrarily defined states (e.g. helix, strand, coil), and it has been shown that the choice of these states has some effect on alignment quality. However, it is not unlikely that prediction of other structural features also could provide an improvement. In this study we use an unsupervised clustering method, the self-organizing map, to assign sequence profile windows to "structural states" and assess their use in sequence alignment.  相似文献   

14.
MOTIVATION: Two major bottlenecks in advancing comparative protein structure modeling are the efficient combination of multiple template structures and the generation of a correct input target-template alignment. RESULTS: A novel method, Multiple Mapping Method with Multiple Templates (M4T) is introduced that implements an algorithm to automatically select and combine Multiple Template structures (MT) and an alignment optimization protocol (Multiple Mapping Method, MMM). The MT module of M4T selects and combines multiple template structures through an iterative clustering approach that takes into account the 'unique' contribution of each template, their sequence similarity among themselves and to the target sequence, and their experimental resolution. MMM is a sequence-to-structure alignment method that optimally combines alternatively aligned regions according to their fit in the structural environment of the template structure. The resulting M4T alignment is used as input to a comparative modeling module. The performance of M4T has been benchmarked on CASP6 comparative modeling target sequences and on a larger independent test set, and showed favorable performance to current state of the art methods.  相似文献   

15.
Multiple templates can often be used to build more accurate homology models than models built from a single template. Here we introduce PconsM, an automated protocol that uses multiple templates to build protein models. PconsM has been among the top-performing methods in the recent CASP experiments and consistently perform better than the single template models used in Pcons.net. In particular for the easier targets with many alternative templates with a high degree of sequence identity, quality is readily improved with a few percentages over the highest ranked model built on a single template. PconsM is available as an additional pipeline within the Pcons.net protein structure prediction server. AVAILABILITY AND IMPLEMENTATION: PconsM is freely available from http://pcons.net/.  相似文献   

16.
Hybrid system for protein secondary structure prediction.   总被引:13,自引:0,他引:13  
We have developed a hybrid system to predict the secondary structures (alpha-helix, beta-sheet and coil) of proteins and achieved 66.4% accuracy, with correlation coefficients of C(coil) = 0.429, C alpha = 0.470 and C beta = 0.387. This system contains three subsystems ("experts"): a neural network module, a statistical module and a memory-based reasoning module. First, the three experts independently learn the mapping between amino acid sequences and secondary structures from the known protein structures, then a Combiner learns to combine automatically the outputs of the experts to make final predictions. The hybrid system was tested with 107 protein structures through k-way cross-validation. Its performance was better than each expert and all previously reported methods with greater than 0.99 statistical significance. It was observed that for 20% of the residues, all three experts produced the same but wrong predictions. This may suggest an upper bound on the accuracy of secondary structure predictions based on local information from the currently available protein structures, and indicate places where non-local interactions may play a dominant role in conformation. For 64% of the residues, at least two experts were the same and correct, which shows that the Combiner performed better than majority vote. For 77% of the residues, at least one expert was correct, thus there may still be room for improvement in this hybrid approach. Rigorous evaluation procedures were used in testing the hybrid system, and statistical significance measures were developed in analyzing the differences among different methods. When measured in terms of the number of secondary structures (rather than the number of residues) that were predicted correctly, the prediction produced by the hybrid system was also better than those of individual experts.  相似文献   

17.
Pan XM 《Proteins》2001,43(3):256-259
In the present work, a novel method was proposed for prediction of secondary structure. Over a database of 396 proteins (CB396) with a three-state-defining secondary structure, this method with jackknife procedure achieved an accuracy of 68.8% and SOV score of 71.4% using single sequence and an accuracy of 73.7% and SOV score of 77.3% using multiple sequence alignments. Combination of this method with DSC, PHD, PREDATOR, and NNSSP gives Q3 = 76.2% and SOV = 79.8%.  相似文献   

18.
A pentapeptide-based method for protein secondary structure prediction   总被引:7,自引:0,他引:7  
We present a new method for protein secondary structure prediction, based on the recognition of well-defined pentapeptides, in a large databank. Using a databank of 635 protein chains, we obtained a success rate of 68.6%. We show that progress is achieved when the databank is enlarged, when the 20 amino acids are adequately grouped in 10 sets and when more pentapeptides are attributed one of the defined conformations, alpha-helices or beta-strands. The analysis of the model indicates that the essential variable is the number of pentapeptides of well-defined structure in the database. Our model is simple, does not rely on arbitrary parameters and allows the analysis in detail of the results of each chosen hypothesis.  相似文献   

19.
GOR V server for protein secondary structure prediction   总被引:3,自引:0,他引:3  
SUMMARY: We have created the GOR V web server for protein secondary structure prediction. The GOR V algorithm combines information theory, Bayesian statistics and evolutionary information. In its fifth version, the GOR method reached (with the full jack-knife procedure) an accuracy of prediction Q3 of 73.5%. Although GOR V has been among the most successful methods, its online unavailability has been a deterrent to its popularity. Here, we remedy this situation by creating the GOR V server.  相似文献   

20.
This paper proposes an efficient ensemble system to tackle the protein secondary structure prediction problem with neural networks as base classifiers. The experimental results show that the multi-layer system can lead to better results. When deploying more accurate classifiers, the higher accuracy of the ensemble system can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号