首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang S  Jonklaas J  Danielsen M 《Steroids》2007,72(6-7):600-608
Mifepristone is an antagonist of the glucocorticoid receptor (GR) that also has significant agonist activity in some cell types. We examined the partial agonist activity of mifepristone in COS-7 cells transfected with increasing amounts of a glucocorticoid receptor expression vector pmGR. As pmGR levels increased, the response of the reporter, pMTVCAT to dexamethasone increased, consistent with increasing levels of receptor expression; the response to mifepristone also increased but at a higher rate, resulting in increasing mifepristone agonist and decreasing antagonist activity. In contrast, increasing pMTVCAT levels increased CAT activity induced by both dexamethasone and mifepristone, but did not change the relative agonist activity of mifepristone. We also examined the relationship between agonist activity and receptor level in a series of clones of the E8.2.A3 cell line expressing various levels of GR. Again, the relative agonist activity of mifepristone increased as GR increased. This increase was not due to changes in the dose response curves to these two ligands since their EC50 values were independent of receptor levels. These results indicate that the degree of glucocorticoid agonist activity exhibited by mifepristone is dependent on the concentration of GR in the cell. Similar results were obtained with another partial agonist of the GR, progesterone, whereas the complete antagonist ZK98.299 had no agonist activity under any condition. Taken together, these results suggest that the phenomenon of receptor concentration-dependence is a property of partial GR agonists in general.  相似文献   

2.
The relationship between hormone receptor number and hormone-stimulated cAMP accumulation was probed in CHO cells that were transfected with the cDNA encoding the beta-adrenergic receptor under the control of the SV40 early promoter (expression vector pSV2BAR). CHO cells were cotransfected with pSV2BAR and expression vector pHOMER that directs the expression of a neomycin-resistance gene, and stable transfectants were selected. Clones expressing receptor at levels from 30 (wild-type) to 6000 fmol/mg membrane protein were isolated and further characterized for receptor mRNA content (measured by solution hybridization with a single-stranded cDNA probe), steady-state expression of receptor (measured by immunoblotting and indirect immunofluorescence), and their ability to accumulate intracellular cAMP in response to a beta-adrenergic agonist. Receptor mRNA content and the steady-state level of receptor protein and its expression at the cell surface were found to increase with receptor density as measured by radioligand binding. Over a 200-fold range of receptor expression, CHO transfectants displayed increasing efficacy of agonist-stimulated cAMP accumulation and increasing maximal cAMP accumulation in response to agonist. These data provide for the first time an analysis of the relationship between the density of a G-protein-linked receptor and a receptor-mediated response under conditions where the levels of G-proteins and adenylate cyclase are unaltered.  相似文献   

3.
Agonist-promoted down-regulation of beta-adrenergic receptor mRNA was investigated in S49 mouse lymphoma variants with mutations in elements of hormone-sensitive adenylate cyclase. In wild-type cells steady-state levels of beta-adrenergic receptor mRNA were established by DNA-excess solution hybridization to be 1.72 +/- 0.08 (n = 8) amol/microgram total cellular RNA. Receptor mRNA levels declined 35-45% in response to stimulation by the beta-adrenergic agonist (-)isoproterenol or forskolin as described previously in DDT1 MF-2 cells (Hadcock, J. R., and Malbon, C. C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5021-5025). Agonist-promoted cAMP accumulation and down-regulation of receptor mRNA were analyzed in three variants with mutations in Gs alpha (H21a, unc, cyc-) and a single variant lacking cAMP-dependent protein kinase activity (kin-). H21a (Gs alpha coupled to receptor, but not to adenylate cyclase), unc (Gs alpha uncoupled from receptor), and cyc- (lacking Gs alpha) variants accumulated cAMP and down-regulated beta AR mRNA in response to forskolin. In unc and cyc- cells isoproterenol failed to stimulate cAMP; accumulation and down-regulation of receptor mRNA was not observed. H21a cells, in contrast, displayed agonist-promoted regulation of beta-adrenergic receptor mRNA but only basal levels of cAMP accumulation in response to isoproterenol. The kin- cells displayed cAMP accumulation in response to forskolin as well as to isoproterenol but no down-regulation of receptor mRNA or receptor expression. Taken together these data demonstrate several features of agonist-promoted down-regulation of mRNA: (i) cAMP-dependent protein kinase activity is required for down-regulation of mRNA (kin-), although elevated cAMP accumulation is not (H21a); (ii) functional receptor-Gs coupling is required (H21a), and clones lacking Gs alpha (cyc-) or receptor Gs coupling (unc) lack the capacity to down-regulate mRNA in response to agonist; and (iii) in the presence of basal levels of cAMP and cAMP-dependent protein kinase activity, functional receptor-Gs coupling (H21a) to some other effector other than adenylate cyclase may be propagating the signal.  相似文献   

4.
5.
6.
Beta-adrenergic agonists, adenosine and prostaglandin E1 increased the level of adenosine 3':5'-monophosphate (cAMP) in glial cultures prepared from rat cerebral cortical tissue. In addition to these physiological effectors, cholera toxin also increased cAMP levels in these cultures. The accumulation of cAMP in response to each of these agen-s, including cholera toxin, was partially blocked (50--80%) by simultaneous alpha-adrenergic receptor stimulation. Basal levels of cAMP were not affected by alpha-adrenergic agonists. These results indicate that in glia, alpha-adrenergic receptors may serve to modulate the level of cAMP which normally accumulates in response to a number of neurohumoral substances. The modulatory effect of alpha-adrenergic agents does not appear to reduce cAMP accumulation by activating phosphodiesterase since the effect was not blocked by a potent inhibitor of this enzymemthe results suggest that the modulatory effect of alpha-adrenergic receptor activation results from an interaction which takes place at some point in between adenylate cyclase-associated-membrane receptors and the enzymatic degradation of cAMP.  相似文献   

7.
We have examined clones of human malignant lymphoid cells for markers that correlate with glucocorticoid-mediated cell lysis. In glucocorticoid-sensitive clones of CEM, a human T-cell lymphoblastic leukemia line, two genes correlate with glucocorticoid-induced cell lysis. The glucocorticoid receptor (GR) itself is induced by standard glucocortoids in sensitive clones and not in insensitive clones. The phenylpyrazolo-glucocortocoid cortivazol (CVZ) is capable of lysing several clones resistant to high concentrations of standard potent glucocorticoids. When these clones were tested for cortivazol responses, they were not only lysed by cortivazol but also showed induction of GR mRNA. Thus receptor induction appears to correlate with the lysis function of receptor in these cells. To determine what parts of the GR are required for lysis, we have mapped this function by transfecting and expressing GR and GR fragment genes in a GR-deficient CEM clone. Our results indicate that none of the known trans-activation regions of the GR are required. Removal of the steroid binding domain gives a fragment that is fully constitutive. Only one and one-half “Zn fingers” of the DNA binding region are required. We also find in CEM cells rapid suppression of the c-myc protooncogene, proceding growth arrest and cell lysis by glucocorticoids. This occurs only in clones possessing both intact receptors and lysis function. Thus the simple presence of GR alone is not sufficient to guarantee c-myc down-regulation. Introduction into the cells of c-myc driven by a promoter that does not permit suppression by glucocorticoids confers resistance to steroids. Furthermore, suppression of c-myc by antisense oligonucleotides also kills the cells. Therefore, c-myc appears to be a pivotal gene related both to ability of steroid to kill and to cell viability.  相似文献   

8.
The human thyrotropin receptor cDNA was transfected in CHO cells and individual clones were isolated. They were tested for their response to thyrotropin, forskolin and antibodies from a patient with high levels of thyroid stimulating antibodies. Several clones were characterized extensively with respect to membrane binding of labeled thyrotropin, cAMP accumulation in response to thyrotropin and kinetics of cAMP production. Data for three representative clones are presented. Receptor number as assessed by membrane binding of labeled thyrotropin, and cAMP production, measured in a thyrotropin response bioassay, are correlated. The Kd value for the human thyrotropin receptor expressed in CHO was estimated to be 50 pM.  相似文献   

9.
Cyclic AMP is essential for the accumulation of many prespore mRNAs and can advance the time of appearance of mRNAs specifically enriched in prestalk cells. Additionally, when late-developing cells are washed free of cAMP, a number of growth phase mRNAs reaccumulate. This reaccumulation can be suppressed by cAMP. These effects of cAMP are all mediated through the cell surface cAMP receptor and can occur under conditions where the receptor-associated adenylate cyclase is inactive, indicating that the initial intracellular transduction event necessary for expression of these mRNAs does not depend upon cAMP synthesis. The dihydropyridine derivatives, nifedipine and nitrendipine, are highly specific Ca++ channel blockers. They are shown here to prevent the influx of Ca++ from the external medium that occurs in response to cAMP binding to the cell surface receptor during development. These two compounds as well as another Ca++ antagonist, 8-N,N-diethylamino)octyl-3,4,5-trimethoxy-benzoate (TMB-8) and a calmodulin inhibitor, N-(6-amino-hexyl)-5-chloro-1-naphthalene sulfonamide (W7), all specifically decrease cAMP-mediated prespore mRNA accumulation in a dose-dependent manner. They also prevent cAMP from suppressing the expression of the growth phase genes. The growth phase mRNAs reaccumulate in cAMP-treated cells in the presence of increasing concentrations of these drugs. By contrast, cAMP induction of the pre-stalk-enriched mRNA is not as significantly affected by these agents. These results raise the possibility that the cell surface cAMP receptor can couple to different signal transduction systems and thereby induce or suppress the expression of different sets of cAMP-regulated genes during development.  相似文献   

10.
Regulation of glucocorticoid receptor expression.   总被引:4,自引:0,他引:4  
  相似文献   

11.
12.
The three Galphai subunits were independently depleted from rat pituitary GH4C1 cells by stable transfection of each Galphai antisense rat cDNA construct. Depletion of any Galphai subunit eliminated receptor-induced inhibition of basal cAMP production, indicating that all Galphai subunits are required for this response. By contrast, receptor-mediated inhibition of vasoactive intestinal peptide (VIP)-stimulated cAMP production was blocked by selective depletions for responses induced by the transfected serotonin 1A (5-HT1A) (Galphai2 or Galphai3) or endogenous muscarinic-M4 (Galphai1 or Galphai2) receptors. Strikingly, receptor activation in Galphai1-depleted clones (for the 5-HT1A receptor) or Galphai3-depleted clones (for the muscarinic receptor) induced a pertussis toxin-sensitive increase in basal cAMP production, whereas the inhibitory action on VIP-stimulated cAMP synthesis remained. Finally, in Galphai2-depleted clones, activation of 5-HT1A receptors increased VIP-stimulated cAMP synthesis. Thus, 5-HT1A and muscarinic M4 receptor may couple dominantly to Galphai1 and Galphai3, respectively, to inhibit cAMP production. Upon removal of these Galphai subunits to reduce inhibitory coupling, stimulatory receptor coupling is revealed that may involve Gbetagamma-induced activation of adenylyl cyclase II, a Gi-stimulated cyclase that is predominantly expressed in GH4C1 cells. Thus Gi-coupled receptor activation involves integration of both inhibitory and stimulatory outputs that can be modulated by specific changes in alphai subunit expression level.  相似文献   

13.
Structure and expression of the cAMP cell-surface receptor   总被引:3,自引:0,他引:3  
Using antibodies specific for the 3',5'-cyclic AMP (cAMP) cell surface receptor of Dictyostelium discoideum, we have screened lambda gtll expression libraries and isolated a series of cDNAs derived from cAMP receptor mRNA during early development. The identity of the cDNA clones was verified by multiple criteria: 1) beta-galactosidase fusion proteins synthesized by isolated cDNA clones stain intensely with cAMP receptor directed antiserum, 2) these fusion proteins affinity purify antibodies specific for the cAMP receptor, 3) the cDNA probes hybridize to a 2 kb mRNA whose change in relative level of abundance during development parallels that of receptor mRNA as assayed by in vitro translation, 4) the 2 kb mRNA size equals that of receptor mRNA as determined by in vitro translation of size fractionated poly (A)+ RNA, and 5) RNA transcribed in vitro from cDNAs containing the entire protein-coding region produces a polypeptide by in vitro translation with an apparent molecular weight in close agreement with that of nascent cAMP receptor protein produced by in vitro translation of cellular RNA. The DNA sequence predicts an open reading frame of 392 amino acids. The deduced amino acid sequence contains seven domains enriched in hydrophobic residues. A model is proposed in which the cAMP cell-surface receptor traverses the lipid bilayer seven times in a pattern similar to that of other receptors, such as rhodopsin, which interact with G-proteins. The structural similarities suggest a gene family of related surface receptors from such evolutionarily diverse species as Dictyostelium, yeast, and mammals.  相似文献   

14.
During cellular senescence, non-clonal cultures of bovine adrenocortical cells show a continuous decline in the rate of production of cyclic AMP (cAMP) stimulated by adrenocorticotropin (ACTH), without changes in the rate of forskolin- or prostaglandin E1-stimulated cAMP production. We investigated the possible mechanisms for loss of response to ACTH by examining the properties of clones of bovine adrenocortical cells. ACTH-stimulated cAMP production rates were measured in clones immediately after isolation, during long-term growth following isolation, and after subcloning. ACTH-stimulated rates were compared with cAMP production in response to forskolin, which acts directly on the catalytic subunit of adenylate cyclase. The results show that cloning is not necessarily associated with a loss of response to ACTH, but that clones with high ACTH response can give rise to subclones with low response. Clones of adrenocortical cells, at the same approximate population doubling level (PDL), showed ACTH response levels that ranged from 12 to 135 pmol cAMP/10(6) cells/min, whereas mass cultures at this PDL showed approximately 50 pmol/10(6) cells/min. Forskolin-stimulated cAMP production rates in clones varied only over the range of 59-119 pmol/10(6) cells/min and showed no correlation with the ACTH-stimulated rates. All clones were adrenocortical cells, as shown by mitogenic response to angiotensin II and cAMP-inducible 17 alpha-hydroxylase activity. The replicative potential of clones varied widely, and there was no apparent correlation between ACTH response levels and growth potential. The level of ACTH response in each clone was stable during proliferation through at least 25 PD beyond the stage at which the clone was isolated. When clones were subcloned, a clone with a high ACTH response level produced sister subclones that had ACTH response levels ranging from 3% of that of the parent clone to a level slightly greater than that of the parent clone. The growth potential of sister subclones varied widely, as for the parent clones, and there was no obvious correlation between growth potential and ACTH response. Two subclones were cloned; in sub-subclones, levels of ACTH response were again different from each other and also from the parent subclone; in one case, the level of ACTH response was approximately eight-fold higher than that of the parent subclone. These experiments show that clonal variation in the extent of expression of a differentiated property may occur in a normal differentiated cell in culture. The loss of ACTH response and the loss of proliferative potential appear to be independent stochastic events.  相似文献   

15.
The physiological implication of elevated cortisol levels on cellular heat-shock protein 70 (hsp70) response was examined using primary cultures of rainbow trout (Oncorhynchus mykiss) hepatocytes. Trout hepatocytes treated with cortisol, the predominant glucocorticoid in teleosts, responded to the heat shock (+15 degrees C for 1 h) with a significant drop in hsp70 accumulation over a 24-h recovery period. [(35)S]methionine incorporation and pulse-chase studies confirmed that this cortisol impact was due to decreased hsp70 synthesis and not enhanced protein breakdown. Cortisol also significantly decreased glucocorticoid receptor (GR) expression in trout hepatocytes. This receptor downregulation was inhibited by the proteasomal inhibitors, lactacystin and MG-132, implying a role for the proteasome in GR downregulation by cortisol. Inhibiting the proteasome did not significantly modify heat-induced hsp70 accumulation in the absence of cortisol but significantly elevated hsp70 expression in the presence of cortisol in heat-shocked trout hepatocytes. Taken together, our results suggest proteasome-mediated GR degradation as a mechanism for the attenuation of hsp70 response by cortisol in heat-shocked hepatocytes.  相似文献   

16.
The m1 muscarinic acetylcholine receptor gene was transfected into and stably expressed in A9 L cells. The muscarinic receptor agonist, carbachol, stimulated inositol phosphate generation, arachidonic acid release, and cAMP accumulation in these cells. Carbachol stimulated arachidonic acid and inositol phosphate release with similar potencies, while cAMP generation required a higher concentration. Studies were performed to determine if the carbachol-stimulated cAMP accumulation was due to direct coupling of the m1 muscarinic receptor to adenylate cyclase via a GTP binding protein or mediated by other second messengers. Carbachol failed to stimulate adenylate cyclase activity in A9 L cell membranes, whereas prostaglandin E2 did, suggesting indirect stimulation. The phorbol ester, phorbol 12-myristate 13-acetate (PMA), stimulated arachidonic acid release yet inhibited cAMP accumulation in response to carbachol. PMA also inhibited inositol phosphate release in response to carbachol, suggesting that activation of phospholipase C might be involved in cAMP accumulation. PMA did not inhibit prostaglandin E2-, cholera toxin-, or forskolin-stimulated cAMP accumulation. The phospholipase A2 inhibitor eicosatetraenoic acid and the cyclooxygenase inhibitors indomethacin and naproxen had no effect on carbachol-stimulated cAMP accumulation. Carbachol-stimulated cAMP accumulation was inhibited with TMB-8, an inhibitor of intracellular calcium release, and W7, a calmodulin antagonist. These observations suggest that carbachol-stimulated cAMP accumulation does not occur through direct m1 muscarinic receptor coupling or through the release of arachidonic acid and its metabolites, but is mediated through the activation of phospholipase C. The generation of cytosolic calcium via inositol 1,4,5-trisphosphate and subsequent activation of calmodulin by m1 muscarinic receptor stimulation of phospholipase C appears to generate the accumulation of cAMP.  相似文献   

17.
Human secretin receptor is a G protein-coupled receptor that is functionally linked to the cAMP second messenger system by stimulation of adenylate cyclase. To functionally characterize the receptor and evaluate its signal transduction pathway, the full-length human secretin receptor cDNA was subcloned into the mammalian expression vector pRc/CMV and expressed in cultured CHO cells. Intracellular cAMP accumulation of the stably transfected cells was measured by a radioimmunoassay (RIA), while the extracellular acidification rate was measured by the Cytosensor microphysiometer. Human secretin and biotinylated human secretin were equipotent in both assays in a dose-dependent manner. The EC50 values of stimulating the intracellular cAMP accumulation and the extracellular acidification rate were 0.2-0.5 nM and 0.1 nM, respectively, indicating that microphysiometry is more sensitive than the cAMP assay in monitoring ligand stimulation of the human secretin receptor. The secretin-stimulated response could be mimicked by forskolin and augmented by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, indicating that the extracellular acidification response is positively correlated with intracellular cAMP level. The response could be abolished by the protein kinase A inhibitor H-89, suggesting that protein kinase A plays an essential role in the intracellular signaling of the receptor. Upon repeated stimulation by the ligand, the peak acidification responses did not change significantly at both physiological (0.03 nM and 3 nM) and pharmacological (0.3 microM) concentrations of human secretin, suggesting that the human secretin receptor did not exhibit robust homologous desensitization.  相似文献   

18.
19.
Epidermal growth factor (EGF) treatment of A-431 cells potentiates up to 5-fold the intracellular cyclic AMP (cAMP) accumulation induced by isoproterenol, cholera toxin, forskolin, or 3-isobutyl-1-methylxanthine (IBMX). EGF potentiates cAMP accumulation in several epithelial cell lines which overexpress the EGF receptor including A-431 cells, HSC-1 cells, and MDA-468 cells, and in the A-431-29S clone which expresses a normal complement of EGF receptors. Although EGF potentiates cAMP accumulation, EGF by itself does not measurably alter the basal level of cAMP. EGF rapidly enhances cAMP accumulation (within 1 to 3 min) in A-431 cells treated with these cAMP-elevating agents. EGF potentiation of cAMP accumulation does not reflect enhancement of beta-adrenergic receptor activation and is not a consequence of intracellular cAMP elevation or the concomitant activation of cAMP-dependent protein kinase. Since EGF potentiates accumulation of both intracellular and extracellular cAMP in isoproterenol-treated A-431 cells, EGF does not potentiate intracellular cAMP accumulation by inhibition of cAMP export. EGF potentiation of cAMP accumulation is pertussis toxin-insensitive and does not result from EGF inhibition of cAMP degradation in A-431 cells. These results demonstrate that EGF transmembrane signaling includes an interaction with a component of the adenylate cyclase system and that this interaction stimulates cAMP synthesis resulting in enhancement of cAMP accumulation.  相似文献   

20.
In Dictyostelium, extracellular cAMP interacts specifically with cell-surface receptors to promote the accumulation of a variety of intracellular second messengers, such as 3'-5' cyclic adenosine monophosphate (cAMP) and 1,4,5 inositol trisphosphate (IP3). We and others have shown that activation of the cell-surface cAMP receptor can also modulate the expression of the Dictyostelium genome during development. In at least one instance, synthesis of intracellular cAMP is required for appropriate gene regulation. However, the induction of most cAMP-dependent gene expression can occur in the absence of receptor-mediated activation of adenylate cyclase and a consequent accumulation of intracellular cAMP. These results suggest that other intracellular second messengers produced in response to receptor activation may potentially act as signal transducers to modulate gene expression during development. In vertebrate cells, IP3 and diacylglycerol (DAG) are intracellular activators of specific protein kinases; they are produced in equimolar amounts by cleavage of phosphoinositol bisphosphate after a receptor-mediated activation of a membrane-bound phosphodiesterase. IP3 and, thus, by inference, diacyl-glycerol are synthesized in Dictyostelium as a response to cAMP interacting with its cell-surface receptor. Using defined conditions to inhibit the accumulation of extracellular cAMP, we have examined the effects of these compounds on the expression of genes that require cAMP for their maximal expression. Our results suggest that intracellular IP3 and DAG may in part mediate the action of extracellular cAMP on the expression of the Dictyostelium genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号