首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Passage of immunomodulators across the blood-brain barrier   总被引:10,自引:0,他引:10  
The question is considered of how and where cytokines, such as interleukin 1 (IL-1), that are released into the circulation during the host defense response, reach and interact with the central nervous system to produce fever or act as neuroimmunomodulators. Evidence is presented suggesting a role for a brain circumventricular organ (CVO) in this respect. Several interactions between a specific CVO, the organum vasculosum laminae terminalis (OVLT) and endogenous pyrogen (EP) in the production of fever are reviewed. A more general hypothesis is developed on a role for the brain CVOs in monitoring the blood concentrations of several proteins and complex polypeptides such as the circulating endocrines that are regulated via the autonomic nervous system. A proposed connection between the release of prostaglandin E (PGE) at the blood-brain interface in response to infection and the ability of the brain to maintain an immunoprivileged status in the face of exposure of its CVOs to foreign antigens is discussed.  相似文献   

2.
3.
There is no persuasive evidence of a correlation between proinflammatory cytokines and avian fever. In this study, for the first time, we use avian cytokines to investigate a role for proinflammatory cytokines in the central component of avian fever. IL-1β and IL-6 injected intracerebroventricularly into Pekin ducks (n = 8) initiated robust fevers of equal magnitude and duration, although there was a significant difference in the latency to a febrile response. In addition, the IL-1β-induced fever could be abolished with an intracerebroventricular injection of antibodies to avian IL-6 or an oral administration of a PG synthesis inhibitor. Our findings indicate the following sequence of events within the central component of the avian febrile mechanism: IL-1β gives rise to bioactive IL-6, which stimulates an accelerated synthesis of PGs, and these PGs then adjust the sensitivity of warm-sensitive neurons in the avian brain stem to mediate fever. Yet PGE? was not upregulated in the cerebrospinal fluid of ducks made febrile with LPS. We conclude that IL-1β and IL-6 may well mediate fever by instigating an accelerated synthesis of brain-derived PG, of a class other than PGE?, or that IL-6 serves as one of the terminal mediators of the avian febrile response.  相似文献   

4.
The elicitation of delayed-type hypersensitivity (DTH) reactions in mice is due to the sequential action of two different, antigen-specific, Thy-1+ cells. We have previously cloned the early-acting DTH-initiating cell from nude mice that were immunized and boosted by contact sensitization with oxazolone (OX). This cell clone, WP-3.27, releases an antigen-specific factor (OX-F) that sensitizes mast cells such that specific antigen challenge will induce serotonin release which mediates the early phase of DTH. In normal mice contact sensitized with picryl chloride (PCl), a similar polyclonal factor (PCl-F) has a similar activity and is also known to bind to macrophages. Thus, we measured macrophage production of TNF alpha, IL-1, IL-6, and PGE2 in response to the hapten affinity-purified DTH-initiating factors OX-F and PCl-F. Both factors induced significant release of each cytokine and PGE2. The production of TNF alpha, IL-1, and IL-6 was measured by bioassays. Northern blot analysis showed rapid accumulation of cytokine mRNA (2-4 hr), while maximal production of PGE2 occurred at approximately 8 hr. These macrophage activating properties of OX-F and PCl-F were not due to contamination with LPS as determined by the low levels of LPS present in OX-F and PCl-F and by the failure of polymyxin B to inhibit factor-induced PGE2 and TNF alpha production. Also, macrophage activation was shown not to be due to the action of several lymphokines known to be produced by WP3.27. Separation of OX-F and PCl-F by preparative isoelectric focusing showed a similar pattern: there were two major peaks of PGE2-inducing activity observed for both factors (for PCl-F at pI of 2-3 and 5.0, and for OX-F at pI of 3.5-4 and 5.0), but not for a sham factor produced by WEHI-3 cells. The ability of DTH-initiating factors to rapidly induce macrophage cytokine release and PGE2 synthesis 4-6 hr later may suggest a role for these mediators during the respective early vascular and late cellular phases of inflammation in DTH.  相似文献   

5.
We have previously shown that febrile responses in both rats and rabbits are elicited by the intravenous injection of a semipurified endogenous pyrogen (EP) prepared from human monocytes. We are now presenting evidence that these febrile responses are mediated via activation of Ca2+ channels by EP. The febrile responses of male New Zealand White rabbits and Sprague-Dawley rats to a standard dose of EP were determined at their respective thermoneutral ambient temperatures. The animals were then treated with Ca2+ channel blocker verapamil (7.5 mg/kg iv) 30-60 min before the EP challenge. In every case the febrile response to EP was markedly attenuated after verapamil pretreatment, while administration of verapamil by itself had no detectable effect on body temperature. Another Ca2+ channel blocker, nifedipine (5 mg/kg iv), was shown to possess antipyretic activity in rats also. To localize where in the fever pathway these Ca2+ channel blockers were acting, we investigated the effect of verapamil at the same dose on fevers that were produced by microinjection of prostaglandin E (PGE) directly into the brain. These PGE fevers were unaffected by verapamil pretreatment, indicating that the antipyretic action of Ca2+ channel blockers occurs before the formation of PGE in response to EP stimulation. The most likely locus of action is the activation of the enzyme phospholipase A2, which regulates the production of arachidonic acid from cellular phospholipids in the prostanoid cascade.  相似文献   

6.
A Negro-Vilar 《Peptides》1982,3(3):305-310
Presynaptic receptors in peptidergic neurons within the brain should be considered as an important target upon which different neurotransmitters or neuromodulators can act to affect peptide release. Evidence reviewed in this paper indicates that the median eminence (ME) of the hypothalamus is an area where many such interactions at the presynaptic level take place. Release of LHRH, somatostatin and vasopressin is affected by a variety of neurotransmitters or neuromodulators, such as norepinephrine, dopamine, epinephrine, histamine, cholinergic and opioid agonists, and peptides such as angiotensin II. The actions of these agents were prevented by the use of specific receptor blockers, indicating the specificity of the response evoked. Furthermore, with the use of classical pharmacological approaches, the type and affinity of the receptor involved is well defined. Other agents, such as prostaglandins (PGE2) or steroids (estradiol) were found to affect the activity of the peptidergic neuron at the synaptic terminal by stimulating directly peptide release (as seems to be the case for the PGE2/LHRH interaction) or by changing the sensitivity of the terminal to other transmitters, as shown for estradiol. In conclusion, the evidence presented indicates that the ME is an excellent model to study presynaptic regulation of neural peptide release. A set of criteria was defined within the text to establish the physiological significance of the in vitro studies. Several of the substances tested, and particularly norepinephrine and dopamine, seem to meet all the requirements to be considered physiological presynaptic regulators of neural peptide release at the level of the ME.  相似文献   

7.
PGE2 is known to inhibit IL-2 and IFN-gamma production from Th cells and is widely viewed as a general immunosuppressant. However, PGE2 was found not to inhibit IL-4 production from Th2 clones, and IL-5 production from these clones was slightly enhanced. The same results were obtained with short term T cell lines, which indicates that the lack of inhibition of IL-4 and IL-5 production by PGE2 is a general phenomenon. PGE2 functions by increasing cAMP levels through activation of adenylate cyclase. Despite its failure to inhibit lymphokine release, PGE2 was capable of increasing cAMP levels in Th2 cells, and forskolin, a direct activator of adenylate cyclase, also did not inhibit IL-4 or IL-5 production. These data indicate that the failure of PGE2 to inhibit IL-4 and IL-5 production was not due to an inability of PGE2 to induce an increase in intracellular cAMP, and suggested instead that the expression of IL-4 and IL-5 in Th2 cells is insensitive to elevated cAMP levels. When Th0 clones were examined, PGE2 was again found to differentially affect IL-2 and IL-4 production in three of five clones tested. In two additional Th0 clones, both IL-2 and IL-4 production were inhibited. These data suggest that lymphokine production may be regulated on two different levels. First, Th1- and Th2-associated lymphokines may be differentially sensitive to intracellular signals such as cAMP. Second, T cell subsets may exist, including subsets of Th0 cells, with different signaling pathways. In addition, our data suggest that PGE2 may play an important role in regulating the development of a response dominated by Th1- or Th2-associated lymphokines.  相似文献   

8.
Production of prostaglandin E (PGE) by rheumatoid synovium appears important to regulation of the pathologic process in rheumatoid arthritis. Cells derived from human synovium by proteolytic digestion produce large amounts of PGE which in turn can elevate synovial cell cAMP levels and inhibit cell proliferation. Data presented here indicate that cAMP can further increase production of PGE from adherent synovial cells (ASC). PGE production occurs over 12–72 hr and is not due to the ability of cAMP to inhibit cell proliferation. Exposure of cells to cAMP results in increased release of 3H arachidonic acid from precursors but not in activation of the cyclooxygenase enzyme. This phenomenon suggests that presence in adherent synovial cells of a mechanisms for amplifying PGE production.  相似文献   

9.
We have reviewed the evidence in favor of a prostaglandin mediator of the thermal responses in fever and found that PGE injected into the hypothalamus does not always cause fever, that cerebrospinal fluid concentrations of PGE are not reliable reflections of hypothalamic events, and that antipyretic drugs may act in ways other than inhibiting PGE synthesis. Fever is not blocked by prostaglandin antagonists, nor by ablation of PGE-sensitive areas of the brain. There is poor correlation between the effects of pyrogens and of PGE on cerebral neurons. There is evidence that at least one prostanoid other than prostaglandin is a mediator of fever, but the prostanoid has not been identified yet. We conclude that PGE may contribute to the neural responses in fever but is not essential.  相似文献   

10.
The febrile mechanism in all vertebrates involves endogenous molecules which mediate and attenuate the fever response. This mechanism is considered phylogenetically conserved, and the molecules are thought to be analogous in different species. The above notion is supported by evidence which show avian and mammalian fevers to have similar mediators. There is, however, a paucity of information regarding the modulators of the avian febrile response. Natriuretic peptides were shown to modulate mammalian fevers and, although natriuretic peptides are also present in birds, they have never been investigated in the context of fever. We induced fever in Pekin ducks with lipopolysaccharide and, at the same time, treated the animals with natriuretic peptide antiserum at a dose that effectively inhibited the known renal actions of endogenously secreted natriuretic peptide. We compared fever responses after ducks received either the antiserum or an appropriate control along with the lipopolysaccharide. The antiserum did not attenuate the fever responses of ducks. Our results differ from the results of a study in rats, which demonstrated natriuretic peptides to be potently antipyretic. This molecule seems to be antipyretic in mammals but not in ducks. We suggest a species variation regarding the ability of natriuretic peptides to modulate fever.  相似文献   

11.
We have demonstrated that the Ca2+ channel blocker verapamil, administered intravenously, exerts an antipyretic effect on the febrile responses of rats to intravenously injected endogenous pyrogen (EP). We have also shown that the same intravenous dose of verapamil is ineffective in blocking fevers induced by the microinjection of exogenous prostaglandin E (PGE) into the organum vasculosum laminae terminalis (OVLT) of rats. Experiments were conducted to determine whether the site of this verapamil antipyresis was in the OVLT itself. The febrile responses of six male Sprague-Dawley rats to EP were determined at thermoneutrality. Verapamil (10 micrograms/rat) was microinjected directly into the OVLT, and the febrile responses to the EP dose were redetermined 15-30 min later. In every case the EP fevers were attenuated after verapamil pretreatment. Intra-OVLT injections of verapamil alone were without effect on body temperature. When the same dose of verapamil was injected into the OVLT 15 min before the injection of PGE into the same site, it had no effect on the ensuing PGE-induced fever. In view of the fact that less than 1/250th of the effective systemic dose of verapamil, when injected into the OVLT, was equally effective in blocking the EP fevers, we conclude that verapamil acts within the OVLT to block fever rather than peripherally. Furthermore, because verapamil administered into the OVLT does not block PGE fevers, it is unlikely that PGE produces fever by acting as a Ca2+ ionophore on hypothalamic neurons.  相似文献   

12.
13.
The ability of pharmacologic doses of PGE2 to alter the release of superoxide (O2-) and hydrogen peroxide (H2O2) from elicited peritoneal macrophages (M theta) was studied. Twice-daily administration of 200 or 100 micrograms of PGE2 to mice during accumulation of peritoneal M theta resulted in a significant reduction in M theta recovery and in the triggered release of H2O2, but not O2-. Cultivation of elicited M theta from normal mice with concentrations of PGE2 in excess of 10(-7) M for 24-48 h resulted in a significant reduction in the triggered release of H2O2, but not O2-. Cultivation for shorter periods of time or with lower concentrations of PGE2 failed to alter H2O2 release. This effect of PGE2 was reproduced by the phosphodiesterase inhibitor theophylline. The ability of PGE2 to inhibit H2O2 release in the presence of normal production of O2- was not prevented by the addition of superoxide dismutase. Cultivation of peritoneal M theta with 10(-5) M PGE2 for 48 h failed to increase intracellular catalase, although increased H2O2 scavenger activity was demonstrated. The inhibition of extracellular release of H2O2, but not O2-, by pharmacologic doses of PGE2 may be one mechanism for the anti-inflammatory action of this compound.  相似文献   

14.
While fever is known to occur in invertebrates and vertebrates, the mechanisms of fever in animals other than mammals have received scant attention. We look initially at the recognition, by the avian immune system, of pathogen associated molecular patterns and the likely role of toll-like receptors in signaling the presence of bacteria and viruses. Several mediators of fever are subsequently released by immune cells, including interleukin-6 and interleukin-1β, that eventually reach the brain and alter thermoregulatory function. As is the case in mammals, prostaglandins appear to be the ultimate mediators of fever in birds, since the febrile response is attenuated when prostaglandin synthesis is inhibited. Ambient temperature modulates the fever response, with larger fevers at higher, and smaller fevers at lower ambient temperatures. Glucocorticoid levels are increased during fever and seem to play an important role by modulating the extent of fever generation, possibly playing a role in the attenuation of fever after repeated exposure to a pathogen in a process termed tolerance, suggesting that the fever process can be phenotypically adapted to likely future conditions. While fever has an ancient phylogenetic history and many of the underling mechanisms in birds appear similar to mammals, there are several important differences that suggest fever has evolved quite differently in these two homeothermic classes.  相似文献   

15.
Production of prostaglandin E (PGE) by rheumatoid synovium appears important to regulation of the pathologic process in rheumatoid arthritis. Cells derived from human synovium by proteolytic digestion produce large amounts of PGE which in turn can elevate synovial cell cAMP levels and inhibit cell proliferation. Data presented here indicate that cAMP can further increase production of PGE from adherent synovial cells (ASC). PGE production occurs over 12-72 hr and is not due to the ability of cAMP to inhibit cell proliferation. Exposure of cells to cAMP results in increased release of 3H arachidonic acid from precursors but not in activation of the cyclooxygenase enzyme. This phenomenon suggests the presence in adherent synovial cells of a mechanism for amplifying PGE production.  相似文献   

16.
We have compared the characteristics of fevers produced by endogenous pyrogen administered by the intravenous (iv) and by the intracerebroventricular (icv) routes in conscious rabbits. Fevers induced by the intracerebroventricular route have a longer latency to onset, a less steep rise in body temperature, and a longer time to peak elevation in body temperature than do fevers induced by the intravenous route. Furthermore, a dose of indomethacin (2 mg/kg) administered intravenously, which is effective in markedly attenuating fevers produced by the intravenous route, was completely without effect on fevers induced by the intracerebroventricular route. On the other hand, when indomethacin (500 micrograms) was infused intracerebroventricularly, it markedly reduced fevers induced by the subsequent injection of endogenous pyrogen into the contralateral cerebral ventricle, but such pretreatment had little effect on fevers elicited by intravenous injections of endogenous pyrogen. It is concluded that the sites of action of endogenous pyrogen in response to intravenous injections of pyrogen are different from those responding to intracerebroventricular injections of pyrogen and that this is manifest in several distinct differences in the characteristics of the two fevers. These results indicate that the intracerebroventricular model of fever production is not appropriate for the study of the normal pathogenesis of fever.  相似文献   

17.
Nerve growth factor (NGF) is well recognized to have a number of potent effects on mast cells, including increasing mast cell numbers in vivo and inducing mast cell degranulation in vitro. More recently, NGF has been demonstrated to induce PGD2 production by mast cells through the induction of mast cell cyclooxygenase expression. We have observed that NGF at doses as low as 10 ng/ml will induce IL-6 production and inhibit TNF-alpha release from rat peritoneal mast cells in the presence of lysophosphatidylserine as a cofactor. NGF synergizes with LPS treatment of peritoneal mast cells (PMC) for the induction of IL-6. Examination of the mechanism of this phenomenon has revealed that NGF can induce both rat PMC and mouse bone marrow-derived cultured mast cells to produce substantial levels of PGE2. This response is maximal at later time points 18-24 h after NGF activation. The ability of NGF to induce PGE2 is not dependent on mast cell degranulation. Other stimuli capable of inducing IL-6, such as LPS, do not induce production of this prostanoid. Inhibition of cyclooxygenase activity by PMC using either flurbiprofen or indomethacin inhibited both the NGF-induced PGE2 synthesis and the NGF-induced alterations in TNF-alpha and IL-6 production. These results suggest a role for mast cell-derived prostanoids in the regulation of local inflammatory responses and neuronal degeneration after tissue injury involving induction of NGF production.  相似文献   

18.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

19.
Prostaglandins (PGs) of the E series are recognized by specific receptors on T lymphocytes which lead to an increase in cAMP. The role of cAMP in modulation of T lymphocyte function is unknown. Here, we demonstrate that agents which increase cAMP in human T cells raise the intracellular free calcium concentration ([Ca2+]i). This increase in [Ca2+]i occurred following receptor stimulation with PGEs or by bypassing the receptor with the cell-permeant analog 8-(4-chlorophenylthio)-cAMP or forskolin, a direct activator of adenylyl cyclase. The calcium response to a submaximally stimulatory concentration of PGE2 was potentiated by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine. A time course of cAMP production in response to PGE2 stimulation closely resembled the calcium response and suggested that the two events were coincident. The PGE2 concentrations required to achieve 50% maximum effect of cAMP production and increases in [Ca2+]i were similar, 0.07 and 0.15 microM respectively. Chelation of extracellular Ca2+ did not abolish the PGE2-stimulated Ca2+ response, suggesting that an intracellular source of calcium was sensitive to cAMP. Significant inositol phosphate production was not detected in response to PGE2 over a wide concentration range. The PGE2-induced calcium response curves were of lesser magnitude with shorter times to peak than those of a known inositol 1,4,5 trisphosphate-producing agonist, anti-CD3, suggesting distinct Ca2+ release mechanisms. However, the cAMP-releasable store appeared to be contained within the inositol trisphosphate-releasable store since no response could be seen with cAMP-elevating agents following emptying of the inositol trisphosphate-sensitive pool of Ca2+.  相似文献   

20.
Lipopolysaccharide (LPS) administration induces hypothalamic nitric oxide (NO); NO is antipyretic in the preoptic area (POA), but its mechanism of action is uncertain. LPS also stimulates the release of preoptic norepinephrine (NE), which mediates fever onset. Because NE upregulates NO synthases and NO induces cyclooxygenase (COX)-2-dependent PGE(2), we investigated whether NO mediates the production of this central fever mediator. Conscious guinea pigs with intra-POA microdialysis probes received LPS intravenously (2 mug/kg) and, thereafter, an NO donor (SIN-1) or scavenger (carboxy-PTIO) intra-POA (20 mug/mul each, 2 mul/min, 6 h). Core temperature (T(c)) was monitored constantly; dialysate NE and PGE(2) were analyzed in 30-min collections. To verify the reported involvement of alpha(2)-adrenoceptors (AR) in PGE(2) production, clonidine (alpha(2)-AR agonist, 2 mug/mul) was microdialyzed with and without SIN-1 or carboxy-PTIO. To assess the possible involvement of oxidative NE and/or NO products in the demonstrated initially COX-2-independent POA PGE(2) increase, (+)-catechin (an antioxidant, 3 mug/mul) was microdialyzed, and POA PGE(2), and T(c) were determined. SIN-1 and carboxy-PTIO reduced and enhanced, respectively, the rises in NE, PGE(2), and T(c) produced by intravenous LPS. Similarly, they prevented and increased, respectively, the delayed elevations of PGE(2) and T(c) induced by intra-POA clonidine. (+)-Catechin prevented the LPS-induced elevation of PGE(2), but not of T(c). We conclude that the antipyretic activity of NO derives from its inhibitory modulation of the LPS-induced release of POA NE. These data also implicate free radicals in POA PGE(2) production and raise questions about its role as a central LPS fever mediator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号