首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The immune system driven by cytokines is now known to be influenced by various other endocrine glands and its hormones. Results of the present study indicate a bidirectional relation between the pineal-thymus axis and the immune system status of an Indian tropical rodent, Funambulus pennanti, during winter months (reproductive inactive phase), when it faces maximum challenges from nature. Pinealectomy during the reproductive inactive phase inhibited thymus and spleen functions, which resulted in significant changes in leukocyte and lymphocyte counts and T-cell-mediated immune function (measured in terms of delayed-type hypersensitivity response to oxazolone). Blastogenic responses of lymphoid cells (thymocytes, splenocytes, and lymph node cells) also decreased following ablation of the pineal gland. To check the definite role of the pineal gland we injected melatonin into pinealectomized squirrels, and the suppressed immune function was significantly restored. Neuroendocrine control of the pineal gland on the histocompatible tissues in this seasonal breeder, F. pennanti, suggests an adaptive mechanism of the immune system for survival in the tropical zone. J. Exp. Zool. 289:90-98, 2001.  相似文献   

2.
Bidirectional communication between the pineal gland and the immune system   总被引:1,自引:0,他引:1  
The pineal gland is a vertebrate neuroendocrine organ converting environmental photoperiodic information into a biochemical message (melatonin) that subsequently regulates the activity of numerous target tissues after its release into the bloodstream. A phylogenetically conserved feature is increased melatonin synthesis during darkness, even though there are differences between mammals and birds in the regulation of rhythmic pinealocyte function. Membrane-bound melatonin receptors are found in many peripheral organs, including lymphoid glands and immune cells, from which melatonin receptor genes have been characterized and cloned. The expression of melatonin receptor genes within the immune system shows species and organ specificity. The pineal gland, via the rhythmical synthesis and release of melatonin, influences the development and function of the immune system, although the postreceptor signal transduction system is poorly understood. Circulating messages produced by activated immune cells are reciprocally perceived by the pineal gland and provide feedback for the regulation of pineal function. The pineal gland and the immune system are, therefore, reciprocally linked by bidirectional communication.  相似文献   

3.
The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.  相似文献   

4.
5.
Pineal gland, by the diurnal rhythm of synthesis and release of its principal hormone, melatonin (MEL), is involved in reciprocal relationships between neuroendocrine and immune systems, responsible for keeping internal homeostasis in vertebrate animals. In this paper the experimental data, indicating that both strategic (developmental, thus antigen independent) and emergency (evoked by antigenic activation of the mature immune system) levels of interactions between pineal gland and immune system, operate in mammals and birds, are reviewed. The cells and organs of immune system using membrane receptors as well as nuclear orphan receptors perceive MEL message. Effects exerted by MEL on immune parameters are different, and depend on several factors, including dose and way of MEL application, species, sex, age of animal, its immune system maturation, way of immune system activation, and parameter examined, as well as the season, circadian rhythm of both immunity and pineal gland function, stressful conditions, accompanying experimental procedure, etc. In turn, lymphoid organ-derived hormones and cytokines, soluble factors secreted by activated immune cells act as messages understood by the pineal gland, closing the regulatory loop of the bi-directional functional connections between both systems.  相似文献   

6.
Data on a unique phenomenon of annual involution and neogenesis of thymus gland in hibernating animals are reviewed. In accordance with morphological findings, the annual thymus involution in hibernating animals is close to the age-dependent thymus involution occurring in all mammals once in a lifetime. In opposite, thymus involution in hibernating animals is totally different from the accidental involution. During hibernation, the thymus tissue is substituted by the brown fat tissue. In the spring, thymus gland neogenesis stats with intensive growth of epithelial tissue followed by lymphocyte infiltration and exhaustion of brown tissue. Morphological changes in the thymus gland within the annual cycle were compared with seasonal dynamics of structural and functional changes in peripheral lymphoid organs (spleen, lymphoglandular, peritoneal fluid). A general regularity was observed involving a decreased functional activity of immune cells in autumn, its sharp depression during winter hibernation, and obvious increase in summer with the onset of a season of animal activity. It is supposed that a sharp increase in the tumor necrosis factor (TNF) production observed during short-term awakenings in winter may serve an important link in this unique immune adaptation mechanism. The season changes in cellular TNF secretion suggest a mobilization of protective resources in hibernating animals in autumn and winter, i.e. in seasons when the thymus gland activity is depressed. The annual involution of thymus gland cannot be related to droppings in the environmental or body temperatures, as it comes long before their fall. Additionally, it is not related to ageing, as it occurs already in young hibernating animals. The role of hormones, including melatonine and corticosteroids, in mechanisms regulating thymus gland involution in hibernating animals is discussed.  相似文献   

7.
The primary antibody response of lymphoid tissue occupying the pineal gland of 6-wk-old chickens was studied subsequent to injection of the carotid artery with sheep red blood cells (SRBC) or bovine serum albumin (BSA). Injection of SRBC did not produce plaque-forming cells (PFC) among pineal lymphocytes whereas BSA stimulated synthesis of anti-BSA immunoglobulin in pineal lymphoid tissue. A cytotoxic assay using appropriate anti-lymphocyte sera indicated that single-cell suspensions of pineal lymphocytes were composed of 42% B lymphocytes and 51% T lymphocytes. Bursal and thymic lymphocytes labeled with tritiated thymidine migrated into pineal lymphoid tissue when injected into 4- and 5-wk-old naive chicks. These observations indicate that the bursa and thymus make equivalent contributions to the lymphoid mass in the chicken pineal gland. Challenge of pineal-established lymphocytes by antigen introduced via the blood vascular system suggests that soluble antigens--rather than particulate ones--stimulate antibody production in the pineal gland. Collectively, these studies indicate that the pineal gland should be considered as a functional component of the chicken's lymphomyeloid system.  相似文献   

8.
Todate, report about the role of pineal gland in maintaining the normal physiology of gestation is scanty. Present study is the first of its kind giving a detail profile of organ weights and plasma concentration of melatonin, estradiol and progesterone to suggest a possible role of pineal gland in maintaining normal physiology during gestation and post-parturition periods of female Indian palm squirrel F. pennanti. Inspite of, inverse pineal-gonadal/melatonin-steroids interrelationship in adult (non-pregnant) females, the present results study suggest a direct relationship of pineal gland activity with ovarian steroids especially during the gestation period. The inverse relationship of melatonin and ovarian steroids is again established after parturition and maintained throughout the life. Thus the pineal gland (activity as judged by its weight, biochemical contents i.e. protein and cholesterol and plasma melatonin level) maintained ovarian/uterine physiology and regulated plasma concentrations of estradiol and progesterone during gestation and post-parturition periods. It is suggested that the pineal gland and its hormone melatonin play an important role to maintain the normal physiology of gestation and the post-partum recovery in Indian palm squirrel F. pennanti.  相似文献   

9.
Experiments on rats were made to study the action of 7 anticarcinogenic substances administered postnatally for a long time (sodium selenite, retinol acetate, phenformin, amber acid, low-molecular polypeptide factors of the thymus, pineal gland, and bone marrow) on the transplacental carcinogenic effect of N-ethyl-N-nitrosourea (ENU) The polypeptide factors of the thymus and pineal gland and phenformin inhibited the development of nervous system and renal tumors induced transplacentally by ENU. The rest of the substances did not influence the transplacental carcinogenesis.  相似文献   

10.
During the last decade, attention was concentrated on melatonin -- one of the hormones of the diffuse neuroendocrine system, which has been considered only as a hormone of the pineal gland, for many years. Currently, melatonin has been identified not only in the pineal gland, but also in extrapineal tissues -- retina, harderian gland, gut mucosa, cerebellum, airway epithelium, liver, kidney, adrenals, thymus, thyroid, pancreas, ovary, carotid body, placenta and endometrium as well as in non-neuroendocrine cells like mast cells, natural killer cells, eosinophilic leukocytes, platelets and endothelial cells. The above list of the cells storing melatonin indicates that melatonin has a unique position among the hormones of the diffuse neuroendocrine system, which is present in practically all organ systems. Functionally, melatonin-producing cells are certain to be part and parcel of the diffuse neuroendocrine system as a universal system of response, control and organism protection. Taking into account the large number of melatonin-producing cells in many organs, the wide spectrum of biological activities of melatonin and especially its main property as a universal regulator of biological rhythms, it should be possible to consider extrapineal melatonin as a key paracrine signal molecule for the local coordination of intercellular relationships. Analysis of our long-term clinical investigations shows the direct participation and active role of extrapineal melatonin in the pathogenesis of tumor growth and many other non-tumor pathologies such as gastric ulcer, immune diseases, neurodegenerative processes, radiation disorders, etc. The modification of antitumor and other specific therapy by the activation or inhibition of extrapineal melatonin activity could be useful for the improvement of the treatment of illness.  相似文献   

11.
12.
The thymus gland, which plays a key role in the maturation and functioning of the lymphoid system, is implicated in the acquired immune deficiency syndrome (AIDS). The observation that the thymic hormone, thymosin α1, is elevated in individuals at risk for AIDS (as opposed to being depressed in other immunodeficient states) has provided the first direct evidence that the thymus is malfunctioning early in the course of this deadly disease. These observations have been valuable in screening for the syndrome with a rapid radioimmunoassay and in the initiation of the first clinical trials with thymosin in high risk homosexuals and hemophiliacs. If the progressive immune paralysis in AIDS is due to a dying thymus, the early identification of asymptomatic carriers of AIDS or individuals with modest AIDS-related dysfunction may lead to therapy with thymosin or other thymomimetic agents that can restore immune function and prevent the onset of frank AIDS.  相似文献   

13.
Melatonin (MEL) regulation of seasonal variation in immunity has been studied extensively in temperate mammals. This report is the first on a tropical mammal, the Indian palm squirrel, F. pennanti. In response to the annual environmental cycle, we studied the rhythms of plasma MEL and the immune parameters of total blood leucocytes, absolute blood lymphocytes and blastogenic responses of blood, thymus and spleen lymphocytes. We found that in parallel with MEL all the immune parameters increased during the month of April onward, when natural day length, temperature, humidity and rainfall were increasing. Maximum values occurred during November (reproductively inactive phase) when the values of all the physical factors were comparatively low. Lowest values occurred during January-March (reproductively active phase) when the values of the physical factors were lowest. In order to establish a clear interrelationship between the pineal MEL and the immune system function, we manipulated these squirrels with exogenous MEL (25mg/100g B wt/day) at 1730 h during their pineal inactive phase (March) while another group was pinealectomized (Px) during November when their pineal was active. The MEL injection significantly increased all the immune parameters, while Px decreased them significantly. Hence, we suggest that MEL is immuno-enhancing for this tropical squirrel, and plays an important role in the maintenance of its immunity in accordance with the seasonal changes in environmental factors and gonadal status. (Chronobiology International, 18(1), 61-69, 2001)  相似文献   

14.
This review presents data from the literature on structure and function of the pineal gland. Discussed are the histological and ultrastructural characteristics of the gland, its function according to novel results, peculiarity of synthesis and secretion of melatonin and its function, as well as the role of the pineal gland in circadian organization of organisms. The problems of evolution of the pineal function in the row of vertebrates are considered.  相似文献   

15.
The interaction of immunological system, thyroid and pineal gland was studied in 5-week old males of Gallus domesticus. Several morphometrical parameters in pineal and thyroid glands were measured after bird immunization with human red blood cells and/or treatment with melatonin or seduxen, melatonin receptor blocker. The peak of the thyroid activity was found on Day 7 after immunization. The immune system appears to directly activate the thyroid gland only in the presence of certain level of melatonin. We suggest that the melatonin mechanism of action includes the enhancement of thyroid gland sensitivity to immune factors. Seduxen prevented the stimulatory influence of the immune system on the thyroid gland.  相似文献   

16.
Morphological and biochemical changes in the pineal gland in pregnancy   总被引:1,自引:0,他引:1  
G M Lew 《Life sciences》1987,41(24):2589-2596
Although systematic and detailed studies of pineal structure and function during pregnancy are rare, the available evidence indicates that morphological and biochemical changes do take place in this gland during this reproductive state. The majority of studies indicate increased activity in cytoplasmic organelles and enzymes of pinealocytes during gestation. Changes in pineal and plasma melatonin levels in pregnancy have been described in a number of species. Results of biochemical studies emphasize the existence of the feedback system which involves the gonads, the hypothalamus and the pineal gland. More ultrastructural and biochemical studies on this intriguing gland in pregnancy are fully warranted.  相似文献   

17.
During the last decade, much attention has centred on melatonin, one of the hormones of the diffuse neuroendocrine system. For many years it was considered to be only a hormone of the pineal gland. As soon as highly sensitive antibodies to indolealkylamines became available, melatonin was identified not only in pineal gland, but also in extrapineal tissues. These included the retina, Harderian gland, gut mucosa, cerebellum, airway epithelium, liver, kidney, adrenals, thymus, thyroid, pancreas, ovary, carotid body, placenta and endometrium. It has also been localized in non-neuroendocrine cells such as mast cells, natural killer cells, eosinophilic leukocytes, platelets and endothelial cells. This list of cells indicates that melatonin has a unique position among the hormones of the diffuse neuroendocrine system. It is found in practically all organ systems. Functionally, melatonin-producing cells are part and parcel of the diffuse neuroendocrine system as a universal system of response, control and organism protection. Taking into account the large number of such melatonin-producing cells in many organs, the wide spectrum of biological activities of melatonin and especially its main property as a universal regulator of biological rhythms, it is now possible to consider extrapineal melatonin as a key paracrine signal molecule for the local co-ordination of intercellular relationships.  相似文献   

18.
With the exception of Agnatha, fish possess the functional equivalent of the thymus gland found in higher vertebrates. As in other vertebrates, this gland originates from the pharyngeal pouches and ontogenically is the first lymphoid organ to be infiltrated with lymphoid cells. Histology of the structure may differ from one species to another but the cellular component is basically similar. The (paired) gland is surrounded by an epithelial capsule. Within the gland a framework of reticulo-epithelial cells supports the lymphocytes. The age-related involution process, which characterizes the thymus of higher vertebrates, does not necessarily occur in fish. Nevertheless, thymus growth and function may be modulated by those factors that induce its involution such as aging, season, sexual maturity, and stress. The major role played by the thymus in the immune response of higher vertebrates is presumed to occur in fish. Thymus-derived cell dependent immune reactions have been demonstrated in fish. The cells that mediate these functions are designated as T-like cells. So far, cell surface markers equivalent to those of mammalian T lymphocytes have not been characterized. The T lymphocyte specificities are supposed to be acquired within or via the thymic microenvironment. Unfortunately, there is limited data concerned with the cytological and physiological basis of the maturation of thymus-derived cells. Direct involvement of the fish thymus in defense mechanisms has not been investigated extensively. The gland appears to be weakly protected because of its superficial location and is easily exposed to pathogens. Neoplasia is the main pathologic condition reported in the thymus of fish, with little else having been published regarding thymic pathology.  相似文献   

19.
20.
Circadian clock system in the pineal gland   总被引:8,自引:0,他引:8  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号