首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human chromogranin A (CgA) is a member of the granin family and is widely distributed in large dense core granules of endocrine and neuroendocrine cells. A variety of non-neuroendocrine carcinomas arising in various tissues show patterns of neuroendocrine differentiation. Expression of CgA has been documented in epithelial cells of normal mammary gland as well as in breast cancers, and elevation of serum CgA has been detected in patients with breast cancer. Our study was undertaken to evaluate the relationship between serum CgA levels and neuroendocrine features in breast cancer. In addition, we evaluated the expression of serum CgA in patients affected by breast cancer compared to controls and the relationship between serum CgA and tumor histology, extent of disease, lymph node status, tumor stage and serum CA 15.3 levels. We enrolled 266 patients with infiltrating ductal or lobular breast carcinoma and a group of 100 age-matched healthy women serving as controls. Serum CgA and CA 15.3 were assayed by specific immunoradiometric methods. The overall sensitivity of CgA and CA 15.3 was 0.06 and 0.34, respectively (chi2 19.1, p<0.0005). No relationship was found between serum levels of CgA and tumor histology, extent of disease, lymph node status or tumor stage while serum levels of CA 15.3 were strongly correlated with all these variables but tumor histology. No relationship was found between serum levels of CgA and CA 15.3. Immunostaining against CgA, CgB, NSE and synaptophysin was performed on primary tumor tissue of 14 serum CgA-positive and 24 serum CgA-negative patients and was negative in all cases. We also evaluated eight cases of pathologically-proven neuroendocrine breast cancer: only four and two of these showed positive CgA immunostaining and increased serum CgA concentration, respectively. In conclusion, serum CgA assay offers no additional information regarding the presence, the extent and the histology of breast cancer compared to the CA 15.3 assay. Moreover, serum CgA was not an accurate marker to identify or exclude the rare neuroendocrine differentiation of breast cancer. We therefore conclude that CgA is not useful as a serum marker in breast cancer.  相似文献   

2.
Chromogranin A (CgA) is transported restrictedly to secretory granules in neuroendocrine cells. In addition to pH- and Ca(2+)-dependent aggregation, CgA is known to bind to a number of vesicle matrix proteins. Because the binding-prone property of CgA with secretory proteins may be essential for its targeting to secretory granules, we screened its binding partner proteins using a yeast two-hybrid system. We found that CgA bound to secretogranin III (SgIII) by specific interaction both in vitro and in endocrine cells. Localization analysis showed that CgA and SgIII were coexpressed in pituitary and pancreatic endocrine cell lines, whereas SgIII was not expressed in the adrenal glands and PC12 cells. Immunoelectron microscopy demonstrated that CgA and SgIII were specifically colocalized in large secretory granules in male rat gonadotropes, which possess large-type and small-type granules. An immunocytochemical analysis revealed that deletion of the binding domain (CgA 48-111) for SgIII missorted CgA to the constitutive pathway, whereas deletion of the binding domain (SgIII 214-373) for CgA did not affect the sorting of SgIII to the secretory granules in AtT-20 cells. These findings suggest that CgA localizes with SgIII by specific binding in secretory granules in SgIII-expressing pituitary and pancreatic endocrine cells, whereas other mechanisms are likely to be responsible for CgA localization in secretory granules of SgIII-lacking adrenal chromaffin cells and PC12 cells.  相似文献   

3.
Chromogranin A (CgA) and related acidic proteins are widely distributed in the organism. They are also present in entero-endocrine cells and in other members of the paraneuron family. Therefore, CgA has been claimed as an universal marker of this cellular community. To yield precise data about the distribution of CgA in entero-endocrine cells, all segments of the gastro-intestinal tract of five mammalian species (man, cattle, pig, cat, guinea-pig) were investigated immunohistochemically for CgA. In serial semithin plastic sections, all CgA-immunoreactive endocrine cells were identified for resident amines or peptides. CgA could be found in ten hormonally identified endocrine cell types and in two or three other endocrine cell types. Entero-endocrine cells containing amines (histamine, serotonin) regularly exhibited CgA-immunoreactivities. In contrast, peptide-containing endocrine cells were largely heterogeneous: Their CgA-immunoreactivities varies among the species, among the gastro-intestinal segments, and even among the members of the same cell population. Hence, seen histochemically, CgA is no universal marker for entero-endocrine cells. Seen biochemically, the observed heterogeneities of CgA-immunoreactivities theoretically can be attributed to various factors (species-specificities of CgA, subclasses of chromogranins, processing of CgA or its pro-protein). Most probably, these heterogeneities are caused by species- or cell-specific differences in the extent of processing of CgA. In addition, some findings point to certain interrelations between the processing or storage of CgA and resident peptides in the secretion granules of enteroendocrine cells.  相似文献   

4.
Chromogranin A (CgA) in the gastro-entero-pancreatic (GEP) endocrine system   总被引:1,自引:0,他引:1  
Summary Chromogranin A (CgA) and related acidic proteins are widely distributed in the organism. They are also present in entero-endocrine cells and in other members of the paraneuron family. Therefore, CgA has been claimed as an universal marker of this cellular community. To yield precise data about the distribution of CgA in entero-endocrine cells, all segments of the gastro-intestinal tract of five mammalian species (man, cattle, pig, cat, guinea-pig) were investigated immunohistochemically for CgA. In serial semithin plastic sections, all CgA-immunoreactive endocrine cells were identified for resident amines or peptides. CgA could be found in ten hormonally identified endocrine cell types and in two or three other endocrine cell types. Entero-endocrine cells containing amines (histamine, serotonin) regularly exhibited CgA-immunoreactivities. In contrast, peptide-containing endocrine cells were largely heterogeneous: Their CgA-immunoreactivities varied among the species, among the gastro-intestinal segments, and even among the members of the same cell population. Hence, seen histochemically, CgA is no universal marker for entero-endocrine cells. Seen biochemically, the observed heterogeneities of CgA-immunoreactivities theoretically can be attributed to various factors (species-specificities of CgA, subclasses of chromogranins, processing of CgA or its proprotein). Most probably, these heterogeneities are caused by species- or cell-specific differences in the extent of processing of CgA. In addition, some findings point to certain interrelations between the processing or storage of CgA and resisdent peptides in the secretion granules of entero-endocrine cells.The results were partly presented at the 7th Workshop of the Anatomische Gesellschaft, Würzburg (FRG), 1988 (see Cetin and Grube 1989)  相似文献   

5.
Krylova MI 《Tsitologiia》2007,49(7):538-543
Chromogranin A (CgA) is a member of the granin family of acidic proteins that present in the secretory granules (SGs) of many endocrine, neuroendocrine and neuronal cells. Atrial natriuretic peptide (ANP)-storing SGs in atrial cardiomyocytes of rat heart also contain CgA. Cardiosuppressive effect of CgA-derived peptides (vasostatins) on in vitro isolated and perfused working frog and rat hearts has been shown under both basal conditions and beta-adrenergic stimulation. More recently it has been revealed that rat heart produces and processes CgA-derived vasostatin-containing peptides. Until now nothing has been known about the presence of CgA in an amphibian heart. We have investigated the subcellular localization of CgA in atrial myocytes of adult frog Rana temporaria heart using ultraimmunocytochemical method. Immunocytochemical staining of the frog atrial tissue for CgA and ANP has shown that out of three morphologically different types (A, B and D) of specific cytoplasmic granules (SCGs) present in myocytes only two (A and B)--large (120-200 nm in diameter) granules with more and with less electron dense core--exhibit immunoreactivity (IR) to these two antigens. The third type (D) of granules (80-100 nm in diameter) are small membrane bound granules characterized by highly electron dense core surrounded with a thin halo. These granules revealed negative reaction on immunostaining for both CgA and ANP. The presence of CgA- and ANP-IR in the same SCGs in frog atrial myocytes is consistent with the endocrine nature of these granules. Taking into account our and literature data we propose that CgA present in frog atrial cardiomyocite SCGs might be a precursor of vasostatin-containing peptides, as it takes place in rat heart. It is possible that these CgA-derived peptides together with ANP exert their regulatory function through the autocrine and/or paracrine mechanisms and play important cardioprotective role in frog heart under stress condition.  相似文献   

6.
大鼠胰腺嗜铬颗粒素A分布的免疫组织化学研究   总被引:3,自引:0,他引:3  
本研究用ABC免疫组织化学方法,在Bouin液固定的常规石蜡切片上,观察了啥铬颗粒素A在大鼠胰腺内分泌细胞内的定位和分布,并用相邻切片双标记法,观察了它与胰高血糖素、胰岛素、生长抑素的共存关系。结果发现,大鼠胰腺嗜铬颗粒素A样免疫反应细胞主要分布于胰岛的周边部,胰腺外分泌部的导管和腺泡等处均未见CgA祥物质存在。用相邻薄切片免疫显色技术证明,大鼠胰腺中CgA样物质与胰高血糖素共存。结果提示,CgA可能是胰腺内分泌细胞的一个新的标志物,在胰腺功能调节上发挥着重要作用。  相似文献   

7.
人和大鼠胃窦部神经内分泌细胞分布和形态学的比较研究   总被引:2,自引:1,他引:1  
目的探讨人和大鼠胃窦部神经内分泌细胞的分布和形态学特征。方法采用免疫细胞化学方法,检测人和大鼠胃窦部粘膜内生长抑素细胞(D细胞)、胃泌素细胞(G细胞)、5-羟色胺细胞(5-HT细胞)、嗜铬粒素A细胞(CgA细胞)的分布。结果人和大鼠的G、D细胞的特征是都具有细胞突起,但是在细胞密度及其分布上是不同的;5-HT细胞的分布在两组稍有不同,在大鼠胃窦部,大多数5-HT细胞位于腺体基部,而人的5-HT细胞主要在间质,少数位于腺上皮内;在两组中,CgA细胞几乎布满整个胃粘膜,其数量也高于其他神经内分泌细胞,CgA细胞形态多样,胞质内充满细小颗粒。结论1)人与大鼠的G、D细胞通常都伴有突起,但其分布不同。2)5-HT细胞形态多样,分布于间质和腺上皮内。3)CgA细胞特征是胞质内充满细小颗粒,细胞形态多样,几乎布满整个粘膜。  相似文献   

8.
Summary The chromogranins are acidic proteins present in various endocrine cells and organs. They consist of chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). In the pancreas, these proteins or their breakdown products are possibly involved in the regulation of pancreatic hormone secretion. The guinea-pig endocrine pancreas was now investigated immunohistochemically for the presence of the chromogranins in five endocrine cell types. CgA is a regular constituent of insulin (B-), pancreatic polypeptide (PP-) and enterochromaffin (EC-) cells. In addition, a minority of somatostatin (D-) cells were immunoreactive for CgA. CgB immunoreactivities were very faint and exclusively observed in B-cells. SgII was found in B- and PP-cells; a faint immunostaining for SgII was also seen in a few glucagon (A-) cells. Typically, the densities of CgA or SgII immunoreactivities varied among the members of a given cell population, e.g. among individual B- or PP-cells. The present findings about the heterogeneities of immunoreactivities for the chromogranins are in line with findings obtained in pancreatic endocrine cells of other species. The true reasons for these heterogeneities are enigmatic. It seems probable, however, that the corresponding immunoreactivities depend on the intracellular processing of the chromogranins which in turn might be related to the metabolic state of endocrine cells. This has to be examined in future by experimental investigations.  相似文献   

9.
Y Cetin  D Grube 《Histochemistry》1990,94(5):479-484
The chromogranins are acidic proteins present in various endocrine cells and organs. They consist of chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). In the pancreas, these proteins or their breakdown products are possibly involved in the regulation of pancreatic hormone secretion. The guinea-pig endocrine pancreas was now investigated immunohistochemically for the presence of the chromogranins in five endocrine cell types. CgA is a regular constituent of insulin (B-), pancreatic polypeptide (PP-) and enterochromaffin (EC-) cells. In addition, a minority of somatostatin (D-) cells were immunoreactive for CgA. CgB immunoreactivities were very faint and exclusively observed in B-cells. SgII was found in B- and PP-cells; a faint immunostaining for SgII was also seen in a few glucagon (A-) cells. Typically, the densities of CgA or SgII immunoreactivities varied among the members of a given cell population, e.g. among individual B- or PP-cells. The present findings about the heterogeneities of immunoreactivities for the chromogranins are in line with findings obtained in pancreatic endocrine cells of other species. The true reasons for these heterogeneities are enigmatic. It seems probable, however, that the corresponding immunoreactivities depend on the intracellular processing of the chromogranins which in turn might be related to the metabolic state of endocrine cells. This has to be examined in future by experimental investigations.  相似文献   

10.
Immunohistochemical investigation of the post-translational processing of chromogranin A (CgA) to generate WE-14 in the sympathoadrenal cell lineage of the developing porcine fetus (F) detected intense CgA and weak WE-14 immunoreactivity in migrating neuroblast cells of the diffuse sympathetic ganglia adjacent to the dorsal aorta and projecting toward the cortical mass at F24-27. F37-42; WE-14 immunoreactivity was detected in chromaffinoblasts at the periphery of the developing cortex and at F54-56 days gestation WE-14 immunoreactivity was detected in a large population of central medullary cells. From F74 to F76 days and thereafter the number of cells exhibiting intense WE-14 immunostaining decreased, and the majority of chromaffin cells exhibited uniform weak WE-14 immunostaining. At postnatal day 1 (P1) intense WE-14 immunoreactivity was primarily confined to clusters of chromaffin cells with weak immunostaining in the general population. The transitory neuroblasts, chromaffinoblasts, and maturing chromaffin cell population exhibited uniform intense CgA immunostaining through gestation and after birth. Additional observations detected intense CgA and WE-14 immunostaining in extrachromaffin tissue at P1 and in neuronal-like cells in vessels of the aortic arch at F37. This study has demonstrated that CgA is post-translationally processed to generate WE-14 during early fetal development in the migrating progenitor cells of the porcine sympathoadrenal lineage.  相似文献   

11.
We have previously suggested that an origin of a stomach cancer is from a progenitor cell specializing toward exocrine cell (Exo-cell) lineages. To clarify whether our hypothesis is correct or not, we analyzed the expression of Exo-cell and endocrine cell (End-cell) markers in a series of lesions for comparison. We evaluated chromogranin A (CgA) expression in 37 early and 73 advanced stomach cancers, in 30 stomach adenomas, in 8 carcinoid tumors, and in 4 endocrine cell carcinomas (ECCs) with assessment of gastric and/or intestinal (G/I) phenotypes in both Exo-cell and End-cell by immunohistochemistry. CgA expression was observed in 10.8% of the early and 16.4% of the advanced stomach cancers, respectively. The End-cell G/I phenotypes were in line with the Exo-cell counterparts in the CgA-positive stomach cancerous areas, and there was strong association between Cdx2 expression and the intestinal End-cell markers. All of the adenoma cases had the intestinal Exo-cell phenotypic expression, with the positive link between Exo-cell and End-cell G/I phenotypes. All stomach carcinoids had CgA expression but no expression of Exo-cell markers. In conclusion, most stomach cancers might develop from a progenitor cell specializing towards Exo-cell lineages, but some cases possessed both Exo-cell and End-cell markers with maturely differentiated phenotypes. In such cases, Exo-cell and End-cell phenotypes were found to correlate strongly, suggesting the possibility of histogenesis from "cancer stem cells".  相似文献   

12.
Although the functions of hormones and neuropeptides in the thymus have been extensively studied, we still do not know whether these intra-thymic humoral elements are released in a stimulated manner via the regulated secretory pathway or in a constitutive manner. Carboxypeptidase E (CpE) and chromogranin A (CgA) are functional and structural hallmarks of the regulated secretory pathway in (neuro)endocrine cells. Whereas we have previously shown a CgA-positive neuroendocrine population in the chicken thymus, the current study assesses the expression of CpE in the thymus, both at the mRNA and the protein level. Our immunohistochemical studies provide evidence for the co-existence of CgA and CpE in identical neuroendocrine cells in the thymus. CpE and CgA dual-positive cells have primarily been found in the transition zone between the cortex and medulla of the thymus, an area known to contain numerous arterioles and to be innervated by the autonomic nervous system. Our findings suggest that the diffuse neuroendocrine system serves as a relay for nervous stimuli delivered by the sympathetic and/or parasympathetic nervous system. Thus, these newly defined neuroendocrine cells might play an important role in the immuno-neuro-endocrine cross-talk in the thymus, potentially enabling thymopoiesis to be fine-tuned via the regulated secretory pathway by a variety of physical and environmental factors.  相似文献   

13.
14.
Mast cells are granular immunocytes that reside in the body's barrier tissues. These cells orchestrate inflammatory responses. Proinflammatory mediators are stored in granular structures within the mast cell cytosol. Control of mast cell granule exocytosis is a major therapeutic goal for allergic and inflammatory diseases. However, the proteins that control granule biogenesis and abundance in mast cells have not been elucidated. In neuroendocrine cells, whose dense core granules are strikingly similar to mast cell granules, granin proteins regulate granulogenesis. Our studies suggest that the Secretogranin III (SgIII) protein is involved in secretory granule biogenesis in mast cells. SgIII is abundant in mast cells, and is organized into vesicular structures. Our results show that over-expression of SgIII in mast cells is sufficient to cause an expansion of a granular compartment in these cells. These novel granules store inflammatory mediators that are released in response to physiological stimuli, indicating that they function as bona fide secretory vesicles. In mast cells, as in neuroendocrine cells, we show that SgIII is complexed with Chromogranin A (CgA). CgA is granulogenic when complexed with SgIII. Our data show that a novel non-granulogenic truncation mutant of SgIII (1-210) lacks the ability to interact with CgA. Thus, in mast cells, a CgA-SgIII complex may play a key role in secretory granule biogenesis. SgIII function in mast cells is unlikely to be limited to its partnership with CgA, as our interaction trap analysis suggests that SgIII has multiple binding partners, including the mast cell ion channel TRPA1.  相似文献   

15.
16.
Angiotensin II (AII)-like immunoreactivity and binding sites have recently been demonstrated at the pituitary level. This peptide also exerts a stimulatory effect on anterior pituitary hormone release. Immunocytochemistry on ultrathin sections obtained by cryoultramicrotomy was used with the aim of localizing endogenous AII-like material at the cellular and subcellular levels of the anterior pituitary gland. AII-like immunostaining was observed only in gonadotrophs, lactotrophs, and corticotrophs. In gonadotrophs, AII-like immunoreactivity was restricted only to secretion granules. In the two other immunoreactive cells, lactotrophs and corticotrophs, immunostaining was observed in the cytoplasm and in the nucleus. In the cytoplasm, AII-like material was visualized in the cytoplasmic matrix and in the secretory granules. In the nucleus, immunostaining was distributed in the euchromatin in the vicinity of the heterochromatin. AII-like immunoreactivity was also seen at the plasma membrane, but only scarcely. No reaction product was found when anti-AII serum preincubated with AII was used. These immunocytochemical results (1) provide evidence that gonadotrophs are only a site of synthesis and/or storage of AII-like material, (2) indicate that lactotrophs and corticotrophs are cells for AII and (3) provide cytological evidence for a direct participation of AII in the regulation of the lactotropic and corticotropic function.  相似文献   

17.
Whether or not germ cells contain the androgen receptor remains a matter of controversy. In the present study we performed biotinstreptavidin immunoperoxidase using an affinity purified rabbit polyclonal antibody made to a 21 amino acid peptide of the amino terminus of the rat AR to determine androgen receptor (AR) distribution in the rat and mouse testes. Specificity of the antibody was confirmed as follows: 1) Western immunoblots rendered a specific band at approximately 110 kD; 2) preadsorption of the antibody with the 21 amino acid peptide eliminated specifice immunostaining; 3) the intensity of staining in all AR positive cells diminished as a function of antisera dilution; 4) tissues known to express abundant AR (e.g., epididymis, prostate, seminal vesicles) all rendered a robust, nuclear AR immunostaining pattern in the epithelial cells; 5) prostate cell lines known to express AR immunostained positive with the antibody; 6) AR negative COS-7 cells became AR immunopositive when transfected with a vector expressing the rat AR and intracellular AR distribution was a function of androgens. AR immunostaining results revealed the following: Within the interstitial compartment of adult rats, AR was detected in some Leydig cells and all smooth muscle cells forming the walls of blood vessels, but endothelial cells were negative. In the seminiferous tubules AR was observed in all peritubular myoid cell nuelei, but not in the distal layer of Iymphatic endothelial cells. In Sertoli cells, nuclear AR immunostaining was stage specific; moderate AR immunostaining became evident at late stage IV of the cycle, reached a robust peak at stages VII-VIII, and then disappeared completely. Specific AR immunostaining was also discerned in the nuclei of stage XI elongated spermatids, in which nuclear elongation is apparent but chromatin condensation has not yet begun. With onset of chromatin condensation, nuclear AR immunostaining in elongated spermatids was not discerned concomitant with its detection in the cytoplasm. In general, similar observations have now been confirmed in the adult mouse testis, except that an Leydig cells were strongly AR positive. Nucleic acid in situ hybridization studies for AR were performed in adult rat testis using a 236 bp antisense cRNA probe (rat AR cDNA was provided by Dr. C. Chang, U. Wisconsin, Madison, WI) to confirm the AR immunostaining. A prominent hybridization signal at the base of the seminiferous epithelium was observed, in the area occupied by Sertofi and spermatogonia. This led us to re-examine the immunostaining results to determine if spermatogonia were also AR positive. Preliminary results are consistent with the interpretation that AR is present in certain spermatogonial populations. Taken together, these results concur with prior observations suggesting that AR is present in the somatic cells of the testis; thus, it is these cell types that likely respond to circulating androgens to control spermatogenesis. However, they raise anew the controversy of whether germ cells respond directly to androgens.  相似文献   

18.
Our purpose was to evaluate cellular androgen receptor (AR) distribution and intensity of immunostaining in the human azoospermic testis. Thirty six biopsy specimens from azoospermic men were immunostained, using a monoclonal antibody of human AR. The localization and the intensity of AR immunostaining was evaluated in Sertoli Cell Only (SCO) testis (G1, n = 21), in spermatogenesis arrest testis (G2, n = 11) and in histologically normal testis (G3, n = 4). We found an AR immunostaining in Sertoli, peritubular myoid and Leydig cells, but not in germ cells. The intensity of the immunostaining varied substantially between biopsy specimens of different patients. Sertoli and Leydig cells AR immunostaining (score and intensity) in SCO group was higher than in the other groups. For Sertoli cells, the score means of AR immunoreactivity were 20 +/- 2.36, 10.18 +/- 1.0 and 1 +/- 1, for G1, G2 and G3 groups, respectively. For Leydig cells, the score means were 10.24 +/- 1.37, 6 +/- 0.71 and 0, for G1, G2 and G3 groups, respectively. We found significant differences between G1 and G2 (p = 0.0008), between G1 and G3 (p = 1.54 10-7) and G2 and G3 (p = 0.00032). These results suggest that in the testis AR is located exclusively in somatic cells and its expression is higher in SCO syndrome than in normal and in arrest spermatogenesis testes.  相似文献   

19.
Chromogranin A (CgA) may be critical for secretory granule biogenesis in sympathoadrenal cells. We found that silencing the expression of CgA reduced the number of secretory granules in normal sympathoadrenal cells (PC12), and we therefore questioned whether a discrete domain of CgA might promote the formation of a regulated secretory pathway in variant sympathoadrenal cells (A35C) devoid of such a phenotype. The secretory granule-forming activity of a series of human CgA domains labeled with a hemagglutinin epitope, green fluorescent protein, or embryonic alkaline phosphatase was assessed in A35C cells by deconvolution and electron microscopy and by secretagogue-stimulated release assays. Expression of CgA in A35C cells induced the formation of vesicular organelles throughout the cytoplasm, whereas two constitutive secretory pathway markers accumulated in the Golgi complex. The lysosome-associated membrane protein LGP110 did not co-localize with CgA, consistent with non-lysosomal targeting of the granin in A35C cells. Thus, CgA-expressing A35C cells showed electron-dense granules approximately 180-220 nm in diameter, and secretagogue-stimulated exocytosis of CgA from A35C cells suggested that expression of the granin may be sufficient to restore a regulated secretory pathway and thereby rescue the sorting of other secretory proteins. We show that the formation of vesicular structures destined for regulated exocytosis may be mediated by a determinant located within the CgA N-terminal region (CgA-(1-115), with a necessary contribution of CgA-(40-115)), but not the C-terminal region (CgA-(233-439)) of the protein. We propose that CgA promotes the biogenesis of secretory granules by a mechanism involving a granulogenic determinant located within CgA-(40-115) of the mature protein.  相似文献   

20.
Summary The adrenal medulla of ox was studied by an indirect immunofluorescent technique using anti-ox chromaffin granule serum. The serum had a weak cross reaction with ox brain stem and splenic nerve. There was a species cross reaction with sheep, pig and horse. Immunoelectrophoresis showed five components in the serum against ox adrenal lysates. The whole adrenal medulla of ox was found to fluoresce by the immunofluorescent technique but not the cortex. The adrenals of sheep, pig and horse behaved similarly using the anti-ox serum. A serum prepared against ox chromogranin-A, the most abundant soluble protein of the chromaffin granules, was also used for immunofluorescence. Again both the adrenaline and noradrenaline storing cells fluoresced, but not the cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号