首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rpb4 and Rpb7, the fourth and the seventh largest subunits of RNA polymerase II, form a heterodimer in Saccharomyces cerevisiae. To identify the site of interaction between these subunits, we constructed truncation mutants of both these proteins and carried out yeast two hybrid analysis. Deletions in the amino and carboxyl terminal domains of Rpb7 abolished its interaction with Rpb4. In comparison, deletion of up to 49 N-terminal amino acids of Rpb4 reduced its interaction with Rpb7. Complete abolishment of interaction between Rpb4 and Rpb7 occurred by truncation of 1-106, 1-142, 108-221, 172-221 or 198-221 amino acids of Rpb4. Use of the yeast two-hybrid analysis in conjunction with computational analysis of the recently reported crystal structure of Rpb4/Rpb7 sub-complex allowed us to identify regions previously not suspected to be involved in the functional interaction of these proteins. Taken together, our results have identified the regions that are involved in interaction between the Rpb4 and Rpb7 subunits of S. cerevisiae RNA polymerase II in vivo.  相似文献   

2.
3.
The interaction of RNA polymerases from Escherichia coli and Thermus aquaticus with lacUV5 promoter was studied at various temperatures. Using DNA-protein cross-linking induced by formaldehyde, it was demonstrated that each RNA polymerase formed a unique pattern of contacts with DNA in the open promoter complex. In the case of E. coli RNA polymerase, beta and sigma subunits were involved into formation of cross-links with the promoter, whereas in the case of T. aquaticus RNA polymerase its beta subunit formed the cross-links with the promoter. A cross-linking pattern in promoter complexes of a hybrid holoenzyme comprised of the core-enzyme of E. coli and sigma subunit of T. aquaticus was similar to that of the E. coli holoenzyme. This suggests that DNA-protein contacts in the promoter complex are primarily determined by the core-enzyme of RNA polymerase. However, temperature-dependent behavior of contact formation is determined by the sigma subunit. Results of the present study indicate that the method of formaldehyde cross-linking can be employed for elucidation of differences in the structure of promoter complexes of RNA polymerases from various bacteria.  相似文献   

4.
RNA polymerase can both synthesize and cleave RNA. Both reactions occur at the same catalytic center containing two magnesium ions bound to three aspartic acid residues of the absolutely conserved NADFDGD motif of the RNA polymerase beta subunit. We have demonstrated that RNA polymerase from Deinococcus radiodurans possesses much higher rate of intrinsic RNA cleavage than RNA polymerase from Escherichia coli (the difference in the rates is about 15-fold at 20 degrees C). However, these RNA polymerases do not differ in the rates of RNA synthesis. Comparison of the RNA polymerase sequences adjacent to the NADFDGD motif reveals the only amino acid substitution in this region (Glu751 in D. radiodurans vs. Ala455 in E. coli), which is localized in the secondary enzyme channel and can potentially affect the rate of RNA cleavage. Introduction of the corresponding substitution in the E. coli RNA polymerase leads to a slight (about 2-3-fold) increase in the cleavage rate, but does not affect RNA synthesis. Thus, the difference in the RNA cleavage rates between E. coli and D. radiodurans RNA polymerases is likely determined by multiple amino acid substitutions, which do not affect the rate of RNA synthesis and are localized in several regions of the active center.  相似文献   

5.
6.
7.
8.
9.

Background  

Protein interaction networks aim to summarize the complex interplay of proteins in an organism. Early studies suggested that the position of a protein in the network determines its evolutionary rate but there has been considerable disagreement as to what extent other factors, such as protein abundance, modify this reported dependence.  相似文献   

10.
The RNA-dependent RNA polymerase (RdRP) cDNA, designated as Gossypium hirsutum RdRP (GhRdRP) was cloned from cotton by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The full-length cDNA was 3,672 bp in size and encoded an open reading frame (ORF) of 1,110 amino acids which contained the RdRP conserved functional domain and the signature motif DbDGD. Amino acid sequence alignment indicated that GhRdRP shared the highest identity (66.37%) with AtRdRP1 and had homology with other plant, fungal, yeast and nematode RdRPs. The corresponding genomic DNA containing five exons and four introns, was isolated and analyzed. Also a 5′-flanking region was cloned, and a group of putative cis-acting elements were identified. Southern blot analysis revealed a single copy of the GhRdRP gene in cotton genome. The expression analysis by semi-quantitative RT-PCR showed that GhRdRP was induced by salicylic acid (SA), 5-chloroSA (5-CSA) and fungal infection of Rhizoctonia solani Kuhn. The cloning and characterization of the GhRdRP gene will be useful for further studies of biological roles of GhRdRP in plants.  相似文献   

11.
O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is an important post-translational modification in many cellular processes. It is mediated by O-GlcNAc transferases (OGTs), which catalyze the addition of O-GlcNAc to serine or threonine residues of the target proteins. In this study, we expressed a putative Yarrowia lipolytica OGT (YlOGT), the only homolog identified in the subphylum Saccharomycotina through bioinformatics analysis, and the human OGT (hOGT) as recombinant proteins in Saccharomyces cerevisiae, and performed their functional characterization. Immunoblotting assays using antibody against O-GlcNAc revealed that recombinant hOGT (rhOGT), but not the recombinant YlOGT (rYlOGT), undergoes auto-O-GlcNAcylation in the heterologous host S. cerevisiae. Moreover, the rhOGT expressed in S. cerevisiae showed a catalytic activity during in vitro assays using casein kinase II substrates, whereas no such activity was obtained in rYlOGT. However, the chimeric human-Y. lipolytica OGT, carrying the human tetratricopeptide repeat (TPR) domain along with the Y. lipolytica catalytic domain (CTD), mediated the transfer of O-GlcNAc moiety during the in vitro assays. Although the overexpression of full-length OGTs inhibited the growth of S. cerevisiae, no such inhibition was obtained upon overexpression of only the CTD fragment, indicating the role of TPR domain in growth inhibition. This is the first report on the functional analysis of the fungal OGT, indicating that the Y. lipolytica OGT retains its catalytic activity, although the physiological role and substrates of YlOGT remain to be elucidated.  相似文献   

12.
This study examines the interactions that occur between Saccharomyces cerevisiae and Oenococcus oeni strains during the process of winemaking. Various yeast/bacteria pairs were studied by applying a sequential fermentation strategy which simulated the natural winemaking process. First, four yeast strains were tested in the presence of one bacterial strain leading to the inhibition of the bacterial component. The extent of inhibition varied widely from one pair to another and closely depended on the specific yeast strain chosen. Inhibition was correlated to weak bacterial growth rather than a reduction in the bacterial malolactic activity. Three of the four yeast strains were then grown with another bacteria strain. Contrary to the first results, this led to the bacterial stimulation, thus highlighting the importance of the bacteria strain. The biochemical profile of the four yeast fermented media exhibited slight variations in ethanol, SO(2) and fatty acids produced as well as assimilable consumed nitrogen. These parameters were not the only factors responsible for the malolactic fermentation inhibition observed with the first bacteria strain. The stimulation of the second has not been reported before in such conditions and remains unexplained.  相似文献   

13.
14.
Summary Biosorption of manganese from its aqueous solution using yeast biomass Saccharomyces cerevisiae and fungal biomass Aspergillus niger was carried out. Manganese biosorption equilibration time for A. niger and S. cerevisiae were found to be 60 and 20 min, with uptakes of 19.34 and 18.95 mg/g, respectively. Biosorption increased with rise in pH, biomass, and manganese concentration. The biosorption equilibrium data fitted with the Freundlich isotherm model revealed that A. niger was a better biosorbent of manganese than S. cerevisiae.  相似文献   

15.
To illustrate the effect of a cellulose-binding domain (CBD) on the enzymatic characteristics of non-cellulolytic exoglucanases, 10 different recombinant enzymes were constructed combining the Saccharomyces cerevisiae exoglucanases, EXG1 and SSG1, with the CBD2 from the Trichoderma reesei cellobiohydrolase, CBH2, and a linker peptide. The enzymatic activity of the recombinant enzymes increased with the CBD copy number. The recombinant enzymes, CBD2-CBD2-L-EXG1 and CBD2-CBD2-SSG1, exhibited the highest cellobiohydrolase activity (17.5 and 16.3 U mg –1 respectively) on Avicel cellulose, which is approximately 1.5- to 2-fold higher than the native enzymes. The molecular organisation of CBD in these recombinant enzymes enhanced substrate affinity, molecular flexibility and synergistic activity, contributing to their elevated action on the recalcitrant substrates as characterised by adsorption, kinetics, thermostability and scanning electron microscopic analysis.  相似文献   

16.
17.
18.
In this paper we present a new method for detecting block duplications in a genome. It is more stringent than previous ones in that it requires a more rigorous definition of paralogous genes and that it requires the paralogous proteins on the two blocks to be contiguous. In addition, it provides three criterion choices: (1) the same composition (i.e., having the same paralogues in the two windows), (2) the same composition and gene order, and (3) the same composition, gene order, and gene orientation. The method is completely automated, requiring no visual inspection as in previous methods. We applied it to analyze the complete genomes of S. cerevisiae and C. elegans. In yeast we detected fewer duplicated blocks than previously reported. In C. elegans, however, we detected more block duplications than previously reported, indicating that although our method has a more stringent definition of block duplication than previous ones, it may be more sensitive in detection because it considers every possible window rather than only fixed nonoverlapping windows. Our results show that block duplication is a common phenomenon in both organisms. The patterns of block duplication in the two species are, however, markedly different. The yeast shows much more extensive block duplication than the nematode, with some chromosomes having more than 40% of the duplications derived from block duplications. Moreover, in the yeast the majority of block duplications occurred between chromosomes, while in the nematode most block duplications occurred within chromosomes.  相似文献   

19.

Background

Starch is one of the most abundant organic polysaccharides available for the production of bio-ethanol as an alternative transport fuel. Cost-effective utilisation of starch requires consolidated bioprocessing (CBP) where a single microorganism can produce the enzymes required for hydrolysis of starch, and also convert the glucose monomers to ethanol.

Results

The Aspergillus tubingensis T8.4 α-amylase (amyA) and glucoamylase (glaA) genes were cloned and expressed in the laboratory strain Saccharomyces cerevisiae Y294 and the semi-industrial strain, S. cerevisiae Mnuα1. The recombinant AmyA and GlaA displayed protein sizes of 110–150 kDa and 90 kDa, respectively, suggesting significant glycosylation in S. cerevisiae. The Mnuα1[AmyA-GlaA] and Y294[AmyA-GlaA] strains were able to utilise 20 g l-1 raw corn starch as sole carbohydrate source, with ethanol titers of 9.03 and 6.67 g l-1 (0.038 and 0.028 g l-1 h-1), respectively, after 10 days. With a substrate load of 200 g l-1 raw corn starch, Mnuα1[AmyA-GlaA] yielded 70.07 g l-1 ethanol (0.58 g l-1 h-1) after 120 h of fermentation, whereas Y294[AmyA-GlaA] was less efficient at 43.33 g l-1 ethanol (0.36 g l-1 h-1).

Conclusions

In a semi-industrial amylolytic S. cerevisiae strain expressing the A. tubingensis α-amylase and glucoamylase genes, 200 g l-1 raw starch was completely hydrolysed (saccharified) in 120 hours with 74% converted to released sugars plus fermentation products and the remainder presumably to biomass. The single-step conversion of raw starch represents significant progress towards the realisation of CBP without the need for any heat pretreatment. Furthermore, the amylases were produced and secreted by the host strain, thus circumventing the need for exogenous amylases.
  相似文献   

20.
In this study we analyse several aspects of cytoplasmic RNA silencing by agroinfiltration of DNA constructs encoding single- and double-stranded RNAs derived from a GFP transgene and from the endogenous Virp1 gene. Both types of inductors resulted after 2–4 days in much higher concentration of siRNAs in the agroinfiltrated zone than normally seen during systemic silencing. More specifically, infiltration of two transgene hairpin constructs resulted in elevated levels of siRNAs. However, differences between the two constructs were observed: the antisense–sense arrangement was more effective than the sense–antisense order. For both double-stranded forms, we observed a relative increase of the 24-mer size class of siRNAs. When a comparable hairpin construct of the endogenous Virp1 gene was assayed, the portion of the 24-mer siRNA class remained low as observed for all kinds of single-stranded inducers. The lack of increase of Virp1-derived 24-mers was independent of the expression level, as demonstrated by agroinfiltration into a transgenic plant that overexpressed Virp1 and showed the same pattern. Using transducer constructs, we could detect within a week transitive silencing from GFP to GUS sequences in the infiltrated zone and in either direction 5′–3′ and 3′–5′. Conversely, for the endogenous Virp1 gene neither transitive silencing nor the induction of systemic silencing could be observed. These results are discussed in view of the current models of RNA silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号