首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cystatin C, an endogenous inhibitor of cathepsin proteases has emerged as a biomarker of cardiovascular risk and reduced renal function. Epidemiological studies indicate that serum cystatin C increased in human obesity. Here, we evaluated the contribution of adipose tissue to this elevation, based on our previous observation that cystatin C is produced by in vitro differentiated human adipocytes. We measured serum cystatin C in 237 nonobese (age: 51 ± 0.8 years; BMI: 22.8 ± 0.11 kg/m2) and 248 obese subjects (age: 50 ± 0.8 years; BMI: 34.7 ± 0.29 kg/m2). Creatinine‐based estimated glomerular filtration rate (eGFR) was calculated to account for renal status. Cystatin C gene expression and secretion were determined on surgical adipose tissue biopsies in a distinct group of subjects. Serum cystatin C is elevated in obese subjects of both genders, independently of reduced eGFR. Cystatin C mRNA is expressed in subcutaneous and omental adipose tissue, at twice higher levels in nonadipose than in adipose cells. Gene expression and cystatin C release by adipose tissue explants increase two‐ to threefold in obesity. These data confirm elevation of serum cystatin C in human obesity and strongly argue for a contribution of increased production of cystatin C by enlarged adipose tissue. Because cystatin C has the potential to affect adipose tissue and vascular homeostasis through local and/or systemic inhibition of cathepsins, this study adds a new factor to the list of adipose tissue secreted bioactive molecules implicated in obesity and obesity‐linked complications.  相似文献   

2.
Remyelination is disrupted in demyelinating diseases such as multiple sclerosis, but the underlying pathogenetic mechanisms are unclear. In this study, we employed the murine cuprizone model of demyelination, in which remyelination occurs after removal of the toxin from the diet, to examine the cellular and molecular changes during demyelination and remyelination. Microglia accumulated in the corpus callosum during weeks 2–4 of the cuprizone diet, and these cells remained activated 2 weeks after the change to the normal diet. To examine the role of microglia in remyelination, mice were treated with minocycline to inactivate these cells after cuprizone‐induced demyelination. Minocycline treatment reduced the number of CC1‐positive oligodendrocytes, as well as levels of myelin basic protein (MBP) and CNPase in the remyelination phase. The expression of CNTF mRNA in the corpus callosum increased after 4 weeks on the cuprizone diet and remained high 2 weeks after the change to the normal diet. Minocycline suppressed CNTF expression during the remyelination phase on the normal diet. Primary culture experiments showed that CNTF was produced by microglia in addition to astrocytes. In vitro, CNTF directly affected the differentiation of oligodendrocytic cells. These findings suggest that minocycline reduces remyelination by suppressing CNTF expression by microglia after cuprizone‐induced demyelination.  相似文献   

3.
The aim of the present investigation was to elucidate possible effects of cystatin C on inflammatory responses mediated by macrophages. Previously it has been shown that in vitro treatment of murine peritoneal macrophages with interferon-γ (IFN-γ) causes a down-regulation of cystatin C secretion. To investigate whether such changes in cystatin C expression in turn can affect inflammatory responses mediated by macrophages, we have compared effects of IFN-γ on macrophages isolated from wild-type (cysC+/+) and cystatin C knockout (cysC−/−) mice. It was shown that IFN-γ-primed cysC−/− macrophages exhibit significantly higher interleukin-10 (IL-10) but lower tumor necrosis factor-α (TNF-α) expression, and reduced nuclear factor (NF)-κB p65 activation, compared to similarly primed cysC+/+ cells. Exogenously added cystatin C enhanced IFN-γ-induced activation of NF-κB p65 and increased mRNA levels for inducible NO synthase (iNOS) in cysC−/− macrophages as well as levels of nitric oxide and TNF-α in the cell culture medium, in agreement with an enhanced pro-inflammatory response. Accordingly, IFN-γ-induced IL-10 mRNA expression in cysC−/− macrophages was down-regulated by exogenously added cystatin C. Taken together, our data provide evidence that changes in cystatin C levels alter macrophage responses to IFN-γ. The latter down-regulates the production of cystatin C, which leads to a suppressed inflammatory condition with enhanced IL-10 levels and down-regulated TNF-α and NF-κB. It is concluded that cystatin C through this effect can act as an immunomodulatory molecule.  相似文献   

4.
Degradation of cyclin B was effectively suppressed when cells were treated with ALLN (N-acetylleucylleucylnorleucinal) which inhibits proteasome, calpain and cysteine proteinase cathepsins. In order to examine which protease degrades cyclin B, the effect of a cathepsin inhibitor, cystatin α, was investigated. The cystatin α gene was inserted into an inducible expression vector, pMSG, and transfected into NIH3T3 mouse fibroblasts. The expression of cystatin α was induced effectively in the transfected cells after treatment with dexamethasone. Overexpression of cystatin α resulted in an increase of the amount of cyclin B, suggesting that cysteine proteinase cathepsins might be involved in the degradation of cyclin B.  相似文献   

5.
Phospholipases A2 (PLA2) are the enzymatic keys for the activation of the arachidonic acid (AA) cascade and the subsequent synthesis of pro-inflammatory prostanoids (prostaglandins and tromboxanes). Prostanoids play critical roles in the initiation and modulation of inflammation and their levels have been reported increased in several neurological and neurodegenerative disorders, including multiple sclerosis (MS).Here, we aimed to determine whether brain expression PLA2 enzymes and the terminal prostagland in levels are changed during cuprizone-induced demyelination and in the subsequent remyelination phase.Mice were given the neurotoxicant cuprizone through the diet for six weeks to induce brain demyelination. Then, cuprizone was withdrawn and mice were returned to a normal diet for 6 weeks to allow spontaneous remyelination.We found that after 4-6 weeks of cuprizone, sPLA2(V) and cPLA2, but not iPLA2(VI), gene expression was upregulated in the cortex, concomitant with an increase in the expression of astrocyte and microglia markers. Cyclooxygenase (COX)-2 gene expression was consistently upregulated during all the demyelination period, whereas COX-1 sporadically increased only at week 5 of cuprizone exposure. However, we found that at the protein level only sPLA2(V) and COX-1 were elevated during demyelination, with COX-1 selectively expressed by activated and infiltrated microglia/macrophages and astrocytes. Levels of PGE2, PGD2, PGI2 and TXB2 were also increased during demyelination. During remyelination, none of the PLA2 isoforms was significantly changed, whereas COX-1 and -2 were sporadically upregulated only at the gene expression level. PGE2, PGI2 and PGD2 levels returned to normal, whereas TXB2 was still upregulated after 3 weeks of cuprizone withdrawal.Our study characterizes for the first time time-dependent changes in the AA metabolic pathway during cuprizone-induced demyelination and the subsequent remyelination and suggests that sPLA2(V) is the major isoform contributing to AA release.  相似文献   

6.
7.

Background

Cysteine protease cathepsins are important in extracellular matrix protein degradation, cell apoptosis, and angiogenesis. Mice lacking cathepsins are protected from tumor progression in several animal models, suggesting that the regulation of cathepsin activities controls the growth of various malignant tumors.

Methods and Results

We tested the role of cathepsins using a mouse model of multistage epithelial carcinogenesis, in which the human keratin-14 promoter/enhancer drove the expression of human papillomavirus type 16 (HPV16) early region E6/E7 transgenes. During the progression of premalignant dysplasia, we observed increased expression of cysteine protease cathepsin S, but concomitantly reduced expression of cathepsin endogenous inhibitor cystatin C in the skin tissue extract. Absence of cystatin C in these transgenic mice resulted in more progression of dysplasia to carcinoma in situ on the face, ear, chest, and tail. Chest and ear skin extract real time PCR and immunoblot analysis, mouse serum sample ELISA, tissue immunohistological analysis, and tissue extract-mediated in vitro elastinolysis and collagenolysis assays demonstrated that cystatin C deficiency significantly increased cathepsin expression and activity. In skin from both the chest and ear, we found that the absence of cystatin C reduced epithelial cell apoptosis but increased proliferation. From the same tissue preparations, we detected significantly higher levels of pro-angiogenic laminin 5-derived γ2 peptides and concurrently increased neovascularization in cystatin C-deficient mice, compared to those from wild-type control mice.

Conclusion

Enhanced cathepsin expression and activity in cystatin C-deficient mice contributed to the progression of dysplasia by altering premalignant tissue epithelial proliferation, apoptosis, and neovascularization.  相似文献   

8.
Zhao  Zhe  Bao  Xiu-qi  Zhang  Zihong  Liu  Hui  Zhang  Dan 《中国科学:生命科学英文版》2020,63(6):905-914
Multiple sclerosis(MS) is a chronic autoimmune demyelinating disease in the central nervous system. The myelin loss is mainly caused by dysfunction of oligodendrocytes and inflammatory responses of microglia and astrocytes further aggravate the demyelination. Current therapies for MS focus on suppressing the overactivated immune response but cannot halt the disease progress, so effective drugs are urgently needed. Compound 21 is a phloroglucinol derivative that has been proved to have an outstanding anti-inflammatory effect. The purpose of the present study is to investigate whether this novel compound is effective in MS. The cuprizone-induced model was used in this study to mimic the pathological progress of MS. The results showed that Compound 21 significantly improved the neurological dysfunction and motor coordination impairment. Luxol Fast Blue staining and myelin basic protein immunostaining demonstrated that Compound 21 remarkably promoted remyelination. In addition,Compound 21 significantly promoted oligodendrocytes differentiation. Furthermore, we found that Compound 21 decreased microglia and astrocytes activities and the subsequent neuroinflammatory response, indicating that the anti-inflammatory effect of Compound 21 was also involved in its neuro-protection. All the data prove that Compound 21 exerts protective effect on MS through promoting remyelination and suppressing neuroinflammation, indicating that Compound 21 might be a potential drug candidate for MS treatment.  相似文献   

9.

Cells in the white matter of the adult brain have a characteristic distribution pattern in which several cells are contiguously connected to each other, making a linear array (LA) resembling pearls-on-a-string parallel to the axon axis. We have been interested in how this pattern of cell distribution changes during aging and remyelination after demyelination. In the present study, with a multiplex staining method, semi-quantitative analysis of the localization of oligodendrocyte lineage cells (oligodendrocyte progenitors, premyelinating oligodendrocytes, and mature oligodendrocytes), astrocytes, and microglia in 8-week-old (young adult) and 32-week-old (aged) corpus callosum showed that young adult cells still include immature oligodendrocytes and that LAs contain a higher proportion of microglia than isolated cells. In aged mice, premyelinating oligodendrocytes were decreased, but microglia continued to be present in the LAs. These results suggest that the presence of microglia is important for the characteristic cell localization pattern of LAs. In a cuprizone-induced demyelination model, we observed re-formation of LAs after completion of cuprizone treatment, concurrent with remyelination. These re-formed LAs again contained more microglia than the isolated cells. This finding supports the hypothesis that microglia contribute to the formation and maintenance of LAs. In addition, regardless of the distribution of cells (LAs or isolated cells), astrocytes were found to be more abundant than in the normal corpus callosum at 24 weeks after cuprizone treatment when remyelination is completed. This suggests that astrocytes are involved in maintaining the functions of remyelinated white matter.

  相似文献   

10.
Microglia are a proliferative population of resident brain macrophages that under physiological conditions self‐renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as ‘priming’. To date, it remains unknown whether telomere shortening affects the proliferative capacity and induces priming of microglia. We addressed this issue using early (first‐generation G1 mTerc?/?)‐ and late‐generation (third‐generation G3 and G4 mTerc?/?) telomerase‐deficient mice, which carry a homozygous deletion for the telomerase RNA component gene (mTerc). Late‐generation mTerc?/? microglia show telomere shortening and decreased proliferation efficiency. Under physiological conditions, gene expression and functionality of G3 mTerc?/? microglia are comparable with microglia derived from G1 mTerc?/? mice despite changes in morphology. However, after intraperitoneal injection of bacterial lipopolysaccharide (LPS), G3 mTerc?/? microglia mice show an enhanced pro‐inflammatory response. Nevertheless, this enhanced inflammatory response was not accompanied by an increased expression of genes known to be associated with age‐associated microglia priming. The increased inflammatory response in microglia correlates closely with increased peripheral inflammation, a loss of blood–brain barrier integrity, and infiltration of immune cells in the brain parenchyma in this mouse model of telomere shortening.  相似文献   

11.
Di Bello  I. Cenci  Dawson  M.R.L.  Levine  J.M.  Reynolds  R. 《Brain Cell Biology》1999,28(4-5):365-381
Remyelination is an extremely efficient process in the adult rodent central nervous system yet the source of new oligodendroglia that appear following primary demyelination is still subject to much debate. Using a reliable marker for oligodendroglial progenitor cells in vivo, the NG2 chondroitin sulphate proteoglycan, we have evaluated the response of endogenous NG2+ cells in the adult rat brain stem and cerebellum to inflammatory demyelinating lesions in an experimentally induced animal model of multiple sclerosis (MS), antibody augmented experimental allergic encephalomyelitis (ADEAE). We have manipulated T-cell mediated EAE in Lewis rats by injecting in addition, either anti-myelin/oligodendroglial glycoprotein (MOG) antibodies to induce inflammatory demyelination, or non-specific mouse immunoglobulins to induce an inflammatory response without demyelination. We have examined the relationship of NG2+ progenitor cells to microglia (OX-42+), astrocytes (GFAP+) and mature oligodendroglia (CNP+), in the normal and demyelinated CNS. In the normal CNS NG2-expressing cells are closely intermingled with other glia but represent a distinct cell population. A prominent inflammatory response, identified by the presence of large perivascular and periventricular accumulations of reactive OX42+ macrophages/microglia, occurred in animals with ADEAE at 7–9 days post injection (DPI), coinciding with severe clinical symptoms. In animals injected with anti-MOG antibodies inflammation was followed by the appearance of large areas of demyelination at 11–14 DPI, at which point the animals had recovered clinically. The response of NG2+ cells was different depending on whether the inflammation was accompanied by demyelination. In the presence of inflammation, NG2+ cells responded by an increase in immunoreactivity and an alteration in their morphology, exhibiting enlarged cell bodies and an increased number of intensely stained processes. In areas of demyelination NG2+ cells had fewer intensely stained processes reminiscent of progenitor cells seen during development. Quantitative analysis revealed a 3-fold increase in the number of NG2+ cells in demyelinated lesions at 11 DPI, whereas no change was observed in areas of inflammation in the absence of demyelination. Mitotic figures were only seen in NG2+ cells in areas of demyelination. NG2+ cell numbers appeared to return to control levels following remyelination. These results suggest that endogenous oligodendroglial progenitors divide and/or migrate, in response to signals triggered by demyelinating rather than inflammatory events, to generate a large progenitor population sufficient to promote the rapid and successful remyelination observed in this model.  相似文献   

12.
Maintaining the cholesterol homeostasis is essential for normal CNS functioning. The enzyme responsible for elimination of cholesterol excess from the brain is cholesterol 24-hydroxylase (Cyp46). Since cholesterol homeostasis is disrupted following brain injury, in this study we examined the effect of right sensorimotor cortex suction ablation on cellular and temporal pattern of Cyp46 expression in the rat brain. Increased expression of Cyp46 at the lesion site at all post injury time points (2, 7, 14, 28 and 45 days post injury, dpi) was detected. Double immunofluorescence staining revealed colocalization of Cyp46 expression with different types of glial cells in time-dependent manner. In ED1+ microglia/macrophages Cyp46 expression was most prominent at 2 and 7 dpi, whereas Cyp46 immunoreactivity persisted in reactive astrocytes throughout all time points post-injury. However, during the first 2 weeks Cyp46 expression was enhanced in both GFAP+ and Vim+ astrocytes, while at 28 and 45 dpi its expression was mostly associated with GFAP+ cells. Pattern of neuronal Cyp46 expression remained unchanged after the lesion, i.e. Cyp46 immunostaining was detected in dendrites and cell body, but not in axons. The results of this study clearly demonstrate that in pathological conditions, like brain injury, Cyp46 displayed atypical expression, being expressed not only in neuronal cells, but also in microglia and astrocytes. Therefore, injury-induced expression of Cyp46 in microglial and astroglial cells may be involved in the post-injury removal of damaged cell membranes contributing to re-establishment of the brain cholesterol homeostasis.  相似文献   

13.
《Research in virology》1991,142(2-3):145-149
We have investigated the level of expression of CD4 and MHC-II antigens on CNS cells and compared it to that on monocytes. MHC-II antigens were expressed spontaneously on cultured astrocytes and monocytes, whereas they were detected only after IFNγ stimulation of microglial cells. In vitro, CD4 receptor was present on monocytes but not on neurons, astrocytes or microglial cells. In normal brain, CD4 antigen was expressed on perivascular microglial cells, a specialized microglia expressing monocytic markers, whereas in HIV1-infected brain, CD4+ cells were numerous and scattered throughout the whole parenchyma. These CD4+ macrophages may be HIV1-infected monocytes which have crossed the blood-brain barrier after infection, or perivascular microglial cells infected by HIV1-infected blood lymphocytes or free virions.  相似文献   

14.
Microglia are cells of the myeloid lineage that reside in the central nervous system (CNS)1. These cells play an important role in pathologies of many diseases associated with neuroinflammation such as multiple sclerosis (MS)2. Microglia in a normal CNS express macrophage marker CD11b and exhibit a resting phenotype by expressing low levels of activation markers such as CD45. During pathological events in the CNS, microglia become activated as determined by upregulation of CD45 and other markers3. The factors that affect microglia phenotype and functions in the CNS are not well studied. MicroRNAs (miRNAs) are a growing family of conserved molecules (~22 nucleotides long) that are involved in many normal physiological processes such as cell growth and differentiation4 and pathologies such as inflammation5. MiRNAs downregulate the expression of certain target genes by binding complementary sequences of their mRNAs and play an important role in the activation of innate immune cells including macrophages6 and microglia7. In order to investigate miRNA-mediated pathways that define the microglial phenotype, biological function, and to distinguish microglia from other types of macrophages, it is important to quantitatively assess the expression of particular microRNAs in distinct subsets of CNS-resident microglia. Common methods for measuring the expression of miRNAs in the CNS include quantitative PCR from whole neuronal tissue and in situ hybridization. However, quantitative PCR from whole tissue homogenate does not allow the assessment of the expression of miRNA in microglia, which represent only 5-15% of the cells of neuronal tissue. Hybridization in situ allows the assessment of the expression of microRNA in specific cell types in the tissue sections, but this method is not entirely quantitative. In this report we describe a quantitative and sensitive method for the detection of miRNA by real-time PCR in microglia isolated from normal CNS or during neuroinflammation using experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. The described method will be useful to measure the level of expression of microRNAs in microglia in normal CNS or during neuroinflammation associated with various pathologies including MS, stroke, traumatic injury, Alzheimer''s disease and brain tumors.  相似文献   

15.
Cystatins are a superfamily of low Ki cysteine proteinase inhibitors found in both plants and animals. Cystatin C, a secreted molecule of this family, is of interest from biochemical and evolutionary points of view, and also has biotechnological applications. Recently we cloned and sequenced the cDNA for rainbow trout (Oncorhynchus mykiss) cystatin C [Li et al., 1998. Molecular cloning, sequence analysis and expression distribution of rainbow trout (Oncorhynchus mykiss) cystatin C. Comp. Biochem. Phys. B 121, 135–143]. To explore the relationship between protein structure and function of trout cystatin C, we established a bacterial system for expression of the protein. Trout cystatin C expressed in the cytoplasm of bacterial cells did not have detectable protease inhibitory activity. Activity was regained by Ni–NTA chromatography under denaturing conditions followed by dialysis-based refolding. Titration of purified cystatin C preparations with papain indicated that 20% of the total protein had been converted to the active form after one refolding cycle. Expression levels were 3–5 mg/l. The protease-inhibitory properties of recombinant trout cystatin C were similar to those of human and chicken cystatin C derived from biological sources and recombinant cystatin C derived from rat and mouse genes. The Ki for papain was 1.2×10−15 M, exhibiting the high affinity binding unique to this family of protease inhibitors.  相似文献   

16.
17.

Background

Promotion of remyelination is a major goal in treating demyelinating diseases such as multiple sclerosis (MS). The recombinant human monoclonal IgM, rHIgM22, targets myelin and oligodendrocytes (OLs) and promotes remyelination in animal models of MS. It is unclear whether rHIgM22-mediated stimulation of lesion repair is due to promotion of oligodendrocyte progenitor cell (OPC) proliferation and survival, OPC differentiation into myelinating OLs or protection of mature OLs. It is also unknown whether astrocytes or microglia play a functional role in IgM-mediated lesion repair.

Methods

We assessed the effect of rHIgM22 on cell proliferation in mixed CNS glial and OPC cultures by tritiated-thymidine uptake and by double-label immunocytochemistry using the proliferation marker, Ki-67. Antibody-mediated signaling events, OPC differentiation and OPC survival were investigated and quantified by Western blots.

Results

rHIgM22 stimulates OPC proliferation in mixed glial cultures but not in purified OPCs. There is no proliferative response in astrocytes or microglia. rHIgM22 activates PDGFαR in OPCs in mixed glial cultures. Blocking PDGFR-kinase inhibits rHIgM22-mediated OPC proliferation in mixed glia. We confirm in isolated OPCs that rHIgM22-mediated anti-apoptotic signaling and inhibition of OPC differentiation requires PDGF and FGF-2. We observed no IgM-mediated effect in mature OLs in the absence of PDGF and FGF-2.

Conclusion

Stimulation of OPC proliferation by rHIgM22 depends on co-stimulatory astrocytic and/or microglial factors. We demonstrate that rHIgM22-mediated activation of PDGFαR is required for stimulation of OPC proliferation. We propose that rHIgM22 lowers the PDGF threshold required for OPC proliferation and protection, which can result in remyelination of CNS lesions.  相似文献   

18.
19.
Multiple sclerosis (MS) is a disease induced by demyelination in the central nervous system, and the remission period of MS is crucial for remyelination. In addition, abnormal levels of thyroid hormone (TH) have been identified in MS. However, in the clinic, insufficient attention has been paid to the role of TH in the remission period. Indeed, TH not only functions in the development of the brain but also affects myelination. Therefore, it is necessary to observe the effect of TH on remyelination during this period. A model of demyelination induced by cuprizone (CPZ) was used to observe the function of TH in remyelination during the remission period of MS. Through weighing and behavioral tests, we found that TH improved the physical symptoms of mice impaired by CPZ. Supplementation of TH led to the repair of myelin as detected by immunohistochemistry and western blot. In addition, a sufficient TH supply resulted in an increase in myelinated axons without affecting myelin thickness and g ratio in the corpus callosum, as detected by electron microscopy. Double immunostaining with myelin basic protein and neurofilament 200 (NF200) showed that the CPZ-induced impairment of axons was alleviated by TH. Conversely, insufficient TH induced by 6-propyl-2-thiouracil resulted in the enlargement of mitochondria. Furthermore, we found that an adequate supply of TH promoted the proliferation and differentiation of oligodendrocyte lineage cells by immunofluorescence, which was beneficial to remyelination. Further, we found that TH reduced the number of astrocytes without affecting microglia. Conclusively, it was shown that TH alleviated demyelination induced by CPZ by promoting the development of oligodendrocyte lineage cells and remyelination. The critical time for remyelination is the remission period of MS. TH plays a significant role in alleviating demyelination during the remission period in the clinical treatment of MS.  相似文献   

20.
Digestive proteases of the phytophagous mite Tetranychus urticae have been characterised by comparing their activity in body and faecal extracts. Aspartyl, cathepsin B- and L-like and legumain activities were detected in both mite bodies and faeces, with a specific activity of aspartyl and cathepsin L-like proteases about 5- and 2-fold higher, respectively, in mite faeces than in bodies. In general, all these activities were maintained independently of the host plant where the mites were reared (bean, tomato or maize). Remarkably, this is the first report in a phytophagous mite of legumain-like activity, which was characterised for its ability to hydrolyse the specific substrate Z-VAN-AMC, its activation by DTT and inhibition by IAA but not by E-64. Gel free nanoLC–nanoESI-QTOF MS/MS proteomic analysis of mite faeces resulted in the identification of four cathepsins L and one aspartyl protease (from a total of the 29 cathepsins L, 27 cathepsins B, 19 legumains and two aspartyl protease genes identified the genome of this species). Gene expression analysis reveals that four cathepsins L and the aspartyl protease identified in the mite faeces, but also two cathepsins B and two legumains that were not detected in the faeces, were expressed at high levels in the spider mite feeding stages (larvae, nymphs and adults) relative to embryos. Taken together, these results indicate a digestive role for cysteine and aspartyl proteases in T. urticae. The expression of the cathepsins B and L, legumains and aspartyl protease genes analysed in our study increased in female adults after feeding on Arabidopsis plants over-expressing the HvCPI-6 cystatin, that specifically targets cathepsins B and L, or the CMe trypsin inhibitor that targets serine proteases. This unspecific response suggests that in addition to compensation for inhibitor-targeted enzymes, the increase in the expression of digestive proteases in T. urticae may act as a first barrier against ingested plant defensive proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号