首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We constructed a set of Escherichia coli strains containing deletions in genes encoding three SOS polymerases, and defective in MutS and DNA polymerase I (PolI) mismatch repair, and estimated the rate and specificity of spontaneous endogenous tonB(+)-->tonB- mutations. The rate and specificity of mutations in strains proficient or deficient in three SOS polymerases was compared and found that there was no contribution of SOS polymerases to the chromosomal tonB mutations. MutS-deficient strains displayed elevated spontaneous mutation rates, consisting of dominantly minus frameshifts and transitions. Minus frameshifts are dominated by warm spots at run-bases. Among 57 transitions (both G:C-->A:T and A:T-->G:C), 35 occurred at two hotspot sites. PolI-deficient strains possessed an increased rate of deletions and frameshifts, because of a deficiency in postreplicative deletion and frameshift mismatch corrections. Frameshifts in PolI-deficient strains occurred within the entire tonB gene at non-run and run sequences. MutS and PolI double deficiency indicated a synergistic increase in the rate of deletions, frameshifts and transitions. In this case, mutS-specific hotspots for frameshifts and transitions disappeared. The results suggested that, unlike the case previously known pertaining to postreplicative MutS mismatch repair for frameshifts and transitions and PolI mismatch repair for frameshifts and deletions, PolI can recognize and correct transition mismatches. Possible mechanisms for distinct MutS and PolI mismatch repair are discussed. A strain containing deficiencies in three SOS polymerases, MutS mismatch repair and PolI mismatch repair was also constructed. The spectrum of spontaneous mutations in this strain is considered to represent the spectrum of in vivo DNA polymerase III replication errors. The mutation rate of this strain was 219x10(-8), about a 100-fold increase relative to the wild-type strain. Uncorrected polymerase III replication errors were predominantly frameshifts and base substitutions followed by deletions.  相似文献   

2.
Using the CAN1 gene in haploid cells or heterozygous diploid cells, we characterized the effects of mutations in the RAD52 and REV3 genes of Saccharomyces cerevisiae in spontaneous mutagenesis. The mutation rate was 5-fold higher in the haploid rad52 strain and 2.5-fold lower in rev3 than in the wild-type strain. The rate in the rad52 rev3 strain was as low as in the wild-type strain, indicating the rad52 mutator phenotype to be dependent on REV3. Sequencing indicated that G:C-->T:A and G:C-->C:G transversions increased in the rad52 strain and decreased in the rev3 and rad52 rev3 strains, suggesting a role for REV3 in transversion mutagenesis. In diploid rev3 cells, frequencies of can1Delta::LEU2/can1Delta::LEU2 from CAN1/can1Delta::LEU2 due to recombination were increased over the wild-type level. Overall, in the absence of RAD52, REV3-dependent base-substitutions increased, while in the absence of REV3, RAD52-dependent recombination events increased. We further found that the rad52 mutant had an increased rate of chromosome loss and the rad52 rev3 double mutant had an enhanced chromosome loss mutator phenotype. Taken together, our study indicates that the error-free RAD52 pathway and error-prone REV3 pathway for rescuing replication fork arrest determine spontaneous mutagenesis, recombination, and genome instability.  相似文献   

3.
To investigate the mutation spectrum of a well-known mutagen, methylglyoxal, and the influence of nucleotide excision repair (NER) on methylglyoxal-induced mutations, we treated wild-type and NER-deficient (uvrA or uvrC) Escherichia coli strains with methylglyoxal, and analyzed mutations in the chromosomal lacI gene. In the three strains, the cell death and the mutation frequency increased according to the dose of methylglyoxal added to the culture medium. The frequencies of methylglyoxal-induced base-pair substitutions were higher in the NER-deficient strains than in the wild-type strain, in the presence and absence of mucAB gene. Paradoxically, the frequency of methylglyoxal-induced TGGC frameshifts was higher in the wild-type strain than in the NER-deficient strains. When the methylglyoxal-induced mutation spectra in the presence and absence of mucAB gene are compared, the ratios of base-pair substitutions to frameshifts were increased by the effects of mucAB gene. In the three strains, more than 75% of the base-pair substitutions occurred at G:C sites, independent of the mucAB gene. When the mucAB gene was present, G:C-->T:A transversions were predominant, followed by G:C-->A:T transitions. When the mucAB gene was absent, the predominant mutations differed in the three strains: in the wild-type and uvrC strains, G:C-->A:T transitions were predominant, followed by G:C-->T:A transversions, while in the uvrA strains, G:C-->T:A transversions were predominant, followed by G:C-->A:T transitions. These results suggest that NER may be involved in both the repair and the fixation of methylglyoxal-induced mutations.  相似文献   

4.
Escherichia coli cells expressing the mutA allele of a glyV (glycine tRNA) gene express a strong mutator phenotype. The mutA allele differs from the wild type glyV gene by a base substitution in the anticodon such that the resulting tRNA misreads certain aspartate codons as glycine, resulting in random, low-level Asp-->Gly substitutions in proteins. Subsequent work showed that many types of mistranslation can lead to a very similar phenotype, named TSM for translational stress-induced mutagenesis. Here, we have determined the specificity of forward mutations occurring in the lacI gene in mutA cells as well as in wild type cells. Our results show that in comparison to wild type cells, base substitutions are elevated 23-fold in mutA cells, as against a eight-fold increase in insertions and a five-fold increase in deletions. Among base substitutions, transitions are elevated 13-fold, with both G:C-->A:T and A:T-->G:C mutations showing roughly similar increases. Transversions are elevated 35-fold, with G:C-->T:A, G:C-->C:G and A:T-->C:G elevated 28-, 13- and 27-fold, respectively. A:T-->T:A mutations increase a striking 348-fold over parental cells, with most occurring at two hotspot sequences that share the G:C-rich sequence 5'-CCGCGTGG. The increase in transversion mutations is similar to that observed in cells defective for dnaQ, the gene encoding the proofreading function of DNA polymerase III. In particular, the relative proportions and sites of occurrence of A:T-->T:A transversions are similar in mutA and mutD5 (an allele of dnaQ) cells. Interestingly, transversions are also the predominant base substitutions induced in dnaE173 cells in which a missense mutation in the alpha subunit of polymerase III abolishes proofreading without affecting the 3'-->5' exonuclease activity of the epsilon subunit.  相似文献   

5.
We previously reported that the majority of base-pair substitutions induced by an endogenous mutagen, methylglyoxal, were G:C-->T:A transversions and G:C-->A:T transitions in wild-type and nucleotide excision repair (NER)-deficient (uvrA or uvrC) Escherichia coli strains. To investigate the mutation spectrum of methylglyoxal in mammalian cells and to compare the spectrum with those detected in other experimental systems, we analyzed mutations in a bacterial suppressor tRNA (supF) gene in the shuttle vector plasmid pMY189. We treated pMY189 with methylglyoxal and immediately transfected it into simian COS-7 cells. The cytotoxicity and the mutation frequency (MF) increased according to the dose of methylglyoxal. In the mutants induced by methylglyoxal, multi-base deletions were predominant (50%), followed by base-pair substitutions (35%), in which 89% of the substitutions occurred at G:C sites. Among them, G:C-->C:G and G:C-->T:A transversions were predominant. The overall distribution of methylglyoxal-induced mutations detected in the supF gene was different from that for the spontaneous mutations. These results suggest that methylglyoxal may take part in causing G:C-->C:G and G:C-->T:A transversions in vivo.  相似文献   

6.
Spontaneous Mutation in the Escherichia Coli Laci Gene   总被引:9,自引:0,他引:9       下载免费PDF全文
R. M. Schaaper  R. L. Dunn 《Genetics》1991,129(2):317-326
To gain more detailed insight into the nature and mechanisms of spontaneous mutations, we undertook a DNA sequence analysis of a large collection of spontaneous mutations in the N-terminal region of the Escherichia coli lacI gene. This region of circa 210 base pairs is the target for dominant lacI mutations (i-d) and is suitable for studies of mutational specificity since it contains a relatively high density of detectable mutable sites. Among 414 independent i-d mutants, 70.8% were base substitutions, 17.2% deletions, 7.7% additions and 4.3% single-base frameshifts. The base substitutions were both transitions (60%) and transversions (40%), the largest single group being G.C----A.T (47% of base substitutions). All four transversions were observed. Among the 71 deletions, a hotspot (37 mutants) was present: an 87-bp deletion presumably directed by an 8-bp repeated sequence at its endpoints. The remaining 34 deletions were distributed among 29 different mutations, either flanked (13/34) or not flanked (21/34) by repeated sequences. The 32 additions comprised 29 different events, with only two containing a direct repeat at the endpoints. The single-base frameshifts were the loss of a single base from either repeated (67%) or nonrepeated (33%) bases. A comparison with the spectrum obtained previously in strains defective in DNA mismatch correction (mutH, mutL, mutS strains) yielded information about the apparent efficiency of mismatch repair. The overall effect was 260-fold but varied substantially among different classes of mutations. An interesting asymmetry was uncovered for the two types of transitions, A.T----G.C and G.C----A.T being reduced by mismatch repair 1340- and 190-fold, respectively. Explanations for this asymmetry and its possible implications for the origins of spontaneous mutations are discussed.  相似文献   

7.
Summary Altered sequences were determined of 52 independent spontaneous mutations occuring in a cDNA of the human hypoxanthine phosphoribosyltransferase (hprt) gene, which was integrated into chromosomal DNA of the mouse cell as a part of the retroviral shuttle vector. Spontaneous mutations comprised a variety of events: base substitutions, frameshifts, deletions, duplications, and complex mutational events, and were distributed randomly over the coding region of the gene. Frameshifts were the most frequent mutational event (38%), and base substitutions were the next most frequent (25%), followed by deletions (19%). Frameshift and deletion mutations commonly occurred preferentially at sites flanked by short direct repeats. Short inverted repeats were frequently found to be associated with duplication and complex mutational events. Analysis of the sequence alterations in the mutant genes suggests that misalignment mutagenesis represents an important molecular mechanism for the generation of spontaneous mutations in eukaryotic cells.  相似文献   

8.
The endometrial tumor cell line HHUA carries mutations in two mismatch repair (MMR) genes MSH3 and MSH6. We have established an MSH3-deficient HHUA/chr.2 cell line by introducing human chromosome 2, which carries wild-type MSH6 and MSH2 genes, to HHUA cells. Introduction of chromosome 2 to HHUA cells partially restored G:G MMR activity to the cell extract and reduced the frequency of mutation at the hypoxanthine-guanine phosphoribosyltransferase (hprt*) locus to about 3% that of the parental HHUA cells, which is five-fold the frequency in MMR-proficient cells, indicating that the residual mutator activity in HHUA/chr.2 is due to an MSH3-deficiency in these cells. The spectrum of mutations occurring at the HPRT locus of HHUA/chr.2 was determined with 71 spontaneous 6TG(r) clones. Base substitutions and +/-1 bp frameshifts were the major mutational events constituting, respectively, 54% and 42% of the total mutations, and more than 70% of them occurred at A:T sites. A possible explanation for the apparent bias of mutations to A:T sites in HHUA/chr.2 is haploinsufficiency of the MSH6 gene on the transferred chromosome 2. Comparison of the mutation spectra of HHUA/chr.2 with that of the MSH6-deficient HCT-15 cell line [S. Ohzeki, A. Tachibana, K. Tatsumi, T. Kato, Carcinogenesis 18 (1997) 1127-1133.] suggests that in vivo the MutSalpha (MSH2:MSH6) efficiently repairs both mismatch and unpaired extrahelical bases, whereas MutSbeta (MSH2:MSH3) efficiently repairs extrahelical bases and repairs mismatch bases to a limited extent.  相似文献   

9.
We investigate the relationships between acylation defects and structure alterations due to base substitutions in yeast mitochondrial (mt) tRNA(UUR)(Leu). The studied substitutions are equivalent to the A3243G and T3250C human pathogenetic tRNA mutations. Our data show that both mutations can produce tRNA(UUR)(Leu) acylation defects, although to a different extent. For mutant A14G (equivalent to MELAS A3243G base substitution), the presence of the tRNA and its defective aminoacylation could be observed only in the nuclear context of W303, a strain where the protein synthesis defects caused by tRNA base substitutions are far less severe than in previously studied strains. For mutant T20C (equivalent to the MM/CPEO human T3250C mutation), the acylation defect was less severe, and a thermosensitive acylation could be detected also in the MCC123 strain. The correlation between the severity of the in vivo phenotypes of yeast tRNA mutants and those obtained in in vitro studies of human tRNA mutants supports the view that yeast is a suitable model to study the cellular and molecular effects of tRNA mutations involved in human pathologies. Furthermore, the yeast model offers the possibility of modulating the severity of yeast respiratory phenotypes by studying the tRNA mutants in different nuclear contexts. The nucleotides at positions 14 and 20 are both highly conserved in yeast and human mt tRNAs; however, the different effect of their mutations can be explained by structure analyses and quantum mechanics calculations that can shed light on the molecular mechanisms responsible for the experimentally determined defects of the mutants.  相似文献   

10.
Oxidative stress enhances lipid peroxidation (LPO) implicated in the promotion and progression of carcinogenesis. One of the major LPO products is trans-4-hydroxy-2-nonenal (HNE), which was shown to react with guanosine and under peroxidizing conditions also with adenosine. We show here that all four DNA bases are targets for HNE, although displaying different reactivity: dG > dC > dA approximately equal to dT. HPLC and mass spectrometry analyses of HNE reactions with deoxynucleosides showed in each case the formation of several products, with mass peaks corresponding to HNE-dN adducts at a 1:1 and also 2:1 and 3:1 ratios. In the dA, dC and dG reactions, mass peaks corresponding to heptyl-substituted etheno-adducts were also detected, indicating HNE oxidation to its epoxide by air oxygen. In DNA pretreated with HNE, DNA synthesis by T7 DNA polymerase was stopped in a sequence-dependent manner at G > or = C > A and T sites. HNE increased the mutation rates in the lac Z gene of M13 phage transfected into wild type Escherichia coli. The most frequent event was the recombination between lacZ gene sequences in M13 and the E. coli F' factor DNA. Base substitutions and frameshifts were also observed in approximately similar numbers. Over 50% of base substitutions were the C-->T transitions, followed by the G-->C and A-->C transversions. In the E. coli recA strain recombination was not observed, although one mutational G-->T hot-spot appeared within the DNA fragment undergoing recombination in the wild type E. coli. We conclude that long chain HNE adducts to DNA bases arrest DNA synthesis and cause recombination, base substitutions and frameshift mutations in ssDNA.  相似文献   

11.
K. R. Tindall  J. Stein    F. Hutchinson 《Genetics》1988,118(4):551-560
Mutations in the cI (repressor) gene were induced by gamma-ray irradiation of lambda phage and of prophage, and 121 mutations were sequenced. Two-thirds of the mutations in irradiated phage assayed in recA host cells (no induction of the SOS response) were G:C to A:T transitions; it is hypothesized that these may arise during DNA replication from adenine mispairing with a cytosine product deaminated by irradiation. For irradiated phage assayed in host cells in which the SOS response had been induced, 85% of the mutations were base substitutions, and in 40 of the 41 base changes, a preexisting base pair had been replaced by an A:T pair; these might come from damaged bases acting as AP (apurinic or apyrimidinic) sites. The remaining mutations were 1 and 2 base deletions. In irradiated prophage, base change mutations involved the substitution of both A:T and of G:C pairs for the preexisting pairs; the substitution of G:C pairs shows that some base substitution mechanism acts on the cell genome but not on the phage. In the irradiated prophage, frameshifts and a significant number of gross rearrangements were also found.  相似文献   

12.
We previously reported the development of mutation-specific Escherichia coli B tester strains WP3101 to WP3106 from strain WP2uvrA. In this study we constructed their pKM101-containing derivatives WP3101P to WP3106P, and further isolated their rfa derivatives WP4101-WP4106 and WP4101P-WP4106P. The six kinds of F' plasmids (lacI-, lacZ-, proAB+), each of which carries a different lacZ allele, contained in the above strains were originally derived from E. coli K-12 strains CC101-CC106. All the tester strains show Lac- and Trp- phenotype. Assays for transitions and transversions are based upon Lac+ reversion of a specific mutation located within the lacZ gene on an F' plasmid. The trpE65(ochre) allele in the same strains enables them to be used for Trp+ reversion assays as well. In the present paper, we evaluated the sensitivity, specificity, and usefulness of the newly developed tester strains. Strains WP3101P-WP3106P were highly sensitive to determine mutational profile of heterocyclic amines with S9 mix-mediated metabolic activation and most of the oxidative mutagens and free radical generators tested. Every type of base-pair substitutions induced by 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) or 5-diazouracil were detected in strains WP3101P-WP3106P, while A:T-->C:G and G:C-->A:T mutations induced by MeIQ, and A:T-->C:G, G:C-->A:T, and G:C-->C:G by 5-diazouracil were not detected in pKM101-free tester strains. In pKM101-carrying strains, cumene hydroperoxide induced all types of base substitutions, while formaldehyde preferentially induced G:C-->T:A transversions. Phenazine methosulfate induced predominantly G:C-->A:T transitions and G:C-->T:A transversions, while H2O2 induced predominantly G:C-->T:A and A:T-->T:A transversions. Introduction of the rfa mutation considerably enhanced sensitivity to bulky mutagens such as polycyclic aromatic compounds. All six possible base substitutions induced by 9, 10-dimethyl-1,2-benzanthracene (DMBA) were detected in tester strains WP4101P-WP4106P. In conclusion, our tester strains WP3101P-WP3106P and WP4101P-WP4106P permitted rapid and simple detection of specific mutations induced by variety of mutagens.  相似文献   

13.
We have examined the mutational specificity of 1-nitroso-8-nitropyrene (1,8-NONP), an activated metabolite of the carcinogen 1,8-dinitropyrene, in the lacI gene of Escherichia coli strains which differ with respect to nucleotide excision repair (+/- delta uvrB) and MucA/B-mediated error-prone translesion synthesis (+/- pKM101). Several different classes of mutation were recovered, of which frameshifts, base substitutions, and deletions were clearly induced by 1,8-NONP treatment. The high proportion of point mutations (> 92%) which occurred at G.C sites correlates with the percentage of 1,8-NONP-DNA adducts which occur at the C(8) position of guanine. The most prominent frameshift mutations were -(G.C) events, which were induced by 1,8-NONP treatment in all strains, occurred preferentially in runs of guanine residues, and whose frequency increased markedly with the length of the reiterated sequence. Of the base substitution mutations G.C-->T.A transversions were induced to the greatest extent by 1,8-NONP. The distribution of the G.C-->T.A transversions was not influenced by the nature of flanking bases, nor was there a strand preference for these events. The presence of plasmid pKM101 specifically increased the frequency of G.C-->T.A transversions by a factor of 30-60. In contrast, the -(G.C) frameshift mutation frequency was increased only 2-4-fold in strains harboring pKM101 as compared to strains lacking this plasmid. There was, however, a marked influence of pKM101 on the strand specificity of frameshift mutation; a preference was observed for -G events on the transcribed strand. The ability of the bacteria to carry out nucleotide excision repair had a strong effect on the frequency of all classes of mutation but did not significantly influence either the overall distribution of mutational classes or the strand specificity of G.C-->T.A transversions and -(G.C) frameshifts. Deletion mutations were induced in the delta uvr, pKM101 strain. The endpoints of the majority of the deletion mutations were G.C rich and contained regions of considerable homology. The specificity of 1,8-NONP-induced mutation suggests that DNA containing 1,8-NONP adducts can be processed through different mutational pathways depending on the DNA sequence context of the adduct and the DNA repair background of the cell.  相似文献   

14.
Mutations induced by glyoxal and methylglyoxal in mammalian cells.   总被引:3,自引:0,他引:3  
To investigate the mutation spectra of glyoxal and methylglyoxal in mammalian cells, we analyzed mutations in a bacterial suppressor tRNA (supF) gene in the shuttle vector plasmid pMY189. The cytotoxicity and the mutation frequency increased according to the doses of glyoxal and methylglyoxal. The majority of glyoxal-induced mutations (65%) were base-pair substitutions, in which G:C-->C:G transversions were predominant. In the mutants induced by methylglyoxal, multi-base deletions were predominant (50%), followed by base-pair substitutions (35%), in which G:C-->C:G and G:C-->T:A transversions were predominant.  相似文献   

15.
Plasmid DNA carrying the adenosine 3',5'-cyclic monophosphate receptor protein (crp) gene of Escherichia coli was irradiated, in solution, with X-rays, and the mutations produced in the crp gene were assayed by transforming the recipient E. coli cells. Ninety-six mutant clones were isolated, and mutational changes were determined by DNA sequencing. Of the 92 mutations thus detected, 74 represented base substitution mutations and the remaining 18 were frameshifts. The base substitutions included 56 G:C to A:T transitions, 10 G:C to T:A transversions and 7 G:C to C:G transversions. An A:T to G:C transition was found only once, and neither an A:T to T:A nor an A:T to C:G transversion was detected. The frameshift mutations consisted of 11 one-base deletions and 7 one-base insertions. Accordingly, G:C to A:T transition was the predominant type of mutation, which constituted 76% (56/74) of the total base substitutions and 60% (56/92) of all detected mutations. Furthermore, of the 56 transitions, about three-quarters (41 clones) clustered at an identical site, a cytosine residue at the 706 position, demonstrating that this site is a distinct hot spot for X-ray mutagenesis. These results raise the possibility that radiation-induced mutations may not necessarily occur randomly, at least in certain cases.  相似文献   

16.
To characterize the hisD3052 -1 frameshift allele of Salmonella typhimurium, we analyzed approximately 6000 spontaneous revertants (rev) for a 2-base deletion hotspot within the sequence (CG)4, and we sequenced approximately 500 nonhotspot rev. The reversion target is a minimum of 76 bases (nucleotides 843-918) that code for amino acids within a nonconserved region of the histidinol dehydrogenase protein. Only 0.4-3.9% were true rev. Of the following classes, 182 unique second-site mutations were identified: hotspot, complex frameshifts requiring DeltauvrB + pKM101 (TA98-specific) or not (concerted), 1-base insertions, duplications, and nonhotspot deletions. The percentages of hotspot mutations were 13.8% in TA1978 (wild type), 24.5% in UTH8413 (pKM101), 31.6% in TA1538 (DeltauvrB), and 41.0% in TA98 (DeltauvrB, pKM101). The DeltauvrB allele decreased by three times the mutant frequency (MF, rev/10(8) survivors) of duplications and increased by about two times the MF of deletions. Separately, the DeltauvrB allele or pKM101 plasmid increased by two to three times the MF of hotspot mutations; combined, they increased this MF by five times. The percentage of 1-base insertions was not influenced by either DeltauvrB or pKM101. Hotspot deletions and TA98-specific complex frameshifts are inducible by some mutagens; concerted complex frameshifts and 1-base insertions are not; and there is little evidence for mutagen-induced duplications and nonhotspot deletions. Except for the base substitutions in TA98-specific complex frameshifts, all spontaneous mutations of the hisD3052 allele are likely templated. The mechanisms may involve (1) the potential of direct and inverted repeats to undergo slippage and misalignment and to form quasi-palindromes and (2) the interaction of these sequences with DNA replication and repair proteins.  相似文献   

17.
The endogenous tonB gene of Escherichia coli was used as a target for spontaneous deletion mutations which were isolated from ruvAB-, recG-, and ruvC- cells. The rates of tonB mutation were essentially the same in ruv+, ruvAB-, recG-, and ruvC- cells. We analyzed tonB mutants by sequencing. In the ruv+, recG-, and ruvC- strains, the spectra were different from those obtained from the ruvAB- cells, where deletions dominated followed by IS insertions, base substitutions, and frameshifts, in that order. We then analyzed the tonB-trp large deletion, due to simultaneous mutations of the trp operon, and found that the frequency in ruvAB- was higher than those in ruv+, recG-, and ruvC- cells. To characterize deletion formation further, we analyzed all the tonB mutants from one colicin plate. Seven deletions were identified at five sites from the 45 tonB mutants of ruv+ cells and 24 deletions at 11 sites from the 43 tonB mutants of ruvAB- cells. Thus, the ruvAB- strain is a deletion mutator. We discuss the role of RuvAB in avoiding deletions.  相似文献   

18.
氟氏链霉菌离子束注入突变谱的分析   总被引:1,自引:0,他引:1  
用低能N+离子束注入转谷氨酰胺酶产生菌氟氏链霉菌后,通过试验,初步确定了注入的效应曲线,获得了一系列突变菌株。提取原始菌株和突变菌株的DNA,采用PCR反应分段扩增出转谷氨酰胺酶基因进行单链构象多态性分析(SSCP),并将特异性条带克隆测序进行基因突变型的鉴定,分析离子束注入引起链霉菌基因的基因突变类型及特点。结果显示:碱基变异的类型包括转换、颠换和缺失。在检测到的24个碱基突变中,主要是碱基的置换(87.5%),碱基缺失的比例比较小(12.5%)。在碱基置换中,转换的频率(58.3%)高于颠换的频率(29.2%)。转换主要以C→T,A→G为主,颠换以G→T,C→G为主。此外构成DNA的4种碱基均可以被离子束辐照诱发变异,其中胞嘧啶发生突变的频率较高。  相似文献   

19.
Sunlight ultraviolet A (UVA) irradiation has been implicated in the etiology of human skin cancer. A genotoxic mode of action for UVA radiation has been suggested that involves photosensitization reactions giving rise to promutagenic DNA lesions. We investigated the mutagenicity of UVA in the lacI transgene in Big Blue mouse embryonic fibroblasts. UVA irradiation of these cells at a physiologically relevant dose of 18J/cm(2) caused a 2.8-fold increase in the lacI mutant frequency relative to control, i.e., 12.12+/-1.84 versus 4.39+/-1.99 x 10(-5) (mean+/-S.D.). DNA sequencing analysis showed that of 100 UVA-induced mutant plaques and 54 spontaneously arisen control plaques, 97 and 51, respectively, contained a minimum of one mutation along the lacI transgene. The vast majority of both induced- and spontaneous mutations were single base substitutions, although less frequently, there were also single and multiple base deletions and insertions, and tandem base substitutions. Detailed mutation spectrometry analysis revealed that G:C-->T:A transversions, the signature mutations of oxidative DNA damage, were significantly induced by UVA irradiation (P<0.003). The absolute frequency of this type of mutations was 7.4-fold increased consequent to UVA irradiation as compared to control (3.38 versus 0.454 x 10(-5); P<0.00001). These findings are in complete agreement with those previously observed in the cII transgene of the same model system, and reaffirm the notion that intracellular photosensitization reactions causing promutagenic oxidative DNA damage are involved in UVA genotoxicity.  相似文献   

20.
Colis LC  Raychaudhury P  Basu AK 《Biochemistry》2008,47(31):8070-8079
Comparative mutagenesis of gamma- or X-ray-induced tandem DNA lesions G[8,5-Me]T and T[5-Me,8]G intrastrand cross-links was investigated in simian (COS-7) and human embryonic (293T) kidney cells. For G[8,5-Me]T in 293T cells, 5.8% of progeny contained targeted base substitutions, whereas 10.0% showed semitargeted single-base substitutions. Of the targeted mutations, the G --> T mutation occurred with the highest frequency. The semitargeted mutations were detected up to two bases 5' and three bases 3' to the cross-link. The most prevalent semitargeted mutation was a C --> T transition immediately 5' to the G[8,5-Me]T cross-link. Frameshifts (4.6%) (mostly small deletions) and multiple-base substitutions (2.7%) also were detected. For the T[5-Me,8]G cross-link, a similar pattern of mutations was noted, but the mutational frequency was significantly higher than that of G[8,5-Me]T. Both targeted and semitargeted mutations occurred with a frequency of approximately 16%, and both included a dominant G --> T transversion. As in 293T cells, more than twice as many targeted mutations in COS cells occurred in T[5-Me,8]G (11.4%) as in G[8,5-Me]T (4.7%). Also, the level of semitargeted single-base substitutions 5' to the lesion was increased and 3' to the lesion decreased in T[5-Me,8]G relative to G[8,5-Me]T in COS cells. It appeared that the majority of the base substitutions at or near the cross-links resulted from incorporation of dAMP opposite the template base, in agreement with the so-called "A-rule". To determine if human polymerase eta (hpol eta) might be involved in the mutagenic bypass, an in vitro bypass study of G[8,5-Me]T in the same sequence was carried out, which showed that hpol eta can bypass the cross-link incorporating the correct dNMP opposite each cross-linked base. For G[8,5-Me]T, nucleotide incorporation by hpol eta was significantly different from that by yeast pol eta in that the latter was more error-prone opposite the cross-linked Gua. The incorporation of the correct nucleotide, dAMP, by hpol eta opposite cross-linked T was 3-5-fold more efficient than that of a wrong nucleotide, whereas incorporation of dCMP opposite the cross-linked G was 10-fold more efficient than that with dTMP. Therefore, the nucleotide incorporation pattern by hpol eta was not consistent with the observed cellular mutations. Nevertheless, at and near the lesion, hpol eta was more error-prone compared to a control template. The in vitro data suggest that translesion synthesis by another Y-family DNA polymerase and/or flawed participation of an accessory protein is a more likely scenario in the mutagenesis of these lesions in mammalian cells. However, hpol eta may play a role in correct bypass of the cross-links.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号