首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditional assays for secreted proteins include methods such as Western blot and enzyme-linked immunosorbent assay (ELISA) detection of the protein in the cell culture medium. We describe a method for the detection of a secreted protein based on fluorescent measurement of an mCherry fusion reporter. This microplate reader-based mCherry fluorescence detection method has a wide dynamic range of 4.5 orders of magnitude and a sensitivity that allows detection of 1 to 2 fmol fusion protein. Comparison with the Western blot detection method indicated greater linearity, wider dynamic range, and a similar lower detection threshold for the microplate-based fluorescent detection assay of secreted fusion proteins. An mCherry fusion protein of matrix metalloproteinase-9 (MMP-9), a secreted glycoprotein, was created and expressed by transfection of human embryonic kidney (HEK) 293 cells. The cell culture medium was assayed for the presence of the fluorescent signal up to 32 h after transfection. The secreted MMP-9–mCherry fusion protein was detected 6 h after transfection with a linear increase in signal intensity over time. Treatment with chloroquine, a drug known to inhibit the secretion of many proteins, abolished the MMP-9–mCherry secretion, demonstrating the utility of this method in a biological experiment.  相似文献   

2.
Transient gene expression (TGE) in mammalian cells at the reactor scale is becoming increasingly important for the rapid production of recombinant proteins. We improved a process for transient calcium phosphate-based transfection of HEK293-EBNA cells in a 1-3 L bioreactor volume. Cells were adapted to suspension culture using a commercially available medium (BioWhittaker, Walkersville, MD). Process parameters were optimized using a plasmid reporter vector encoding the enhanced green fluorescent protein (EGFP/CLONTECH, Palo Alto, CA, USA). Using GFP as a marker-protein, we observed by microscopic examination transfection efficiencies between 70-100%. Three different recombinant proteins were synthesized within a timeframe of 7 days from time of transfection to harvest. The first, a human recombinant IgG(1)-type antibody, was secreted into the supernatant of the cell culture and achieved a final concentration of >20 mg/L. An E. coli-derived DNA-binding protein remained intracellular, as expected, but accumulated to such a concentration that the lysate of cells, taken up into the entire culture volume, gave a concentration of 18 mg/L. The third protein, a transmembrane receptor, was expressed at 3-6 x 10(6) molecules/cell.  相似文献   

3.
Our laboratory has developed a series of Gateway? compatible lentiviral expression systems for constitutive and conditional gene knock-down and over-expression. For tetracycline-regulated transgenic expression, we constructed a lentiviral “DEST” plasmid (pHR-TetCMV-Dest-IRES-GFP5) containing a tetracycline-responsive minimal CMV promoter, followed by an attP site-flanked DEST cassette (for efficient cloning of cDNAs by “Gateway?” recombination cloning) and green fluorescent protein (GFP) driven by an internal ribosomal entry site (IRES).This lentiviral bicistronic plasmid allows immediate FACS identification and characterization of successfully transfected cell lines. Although this system worked well with several cDNAs, we experienced serious problems with SLA, Bam and BMF. Particularly, we cloned the cDNA for human SLA (Src–like adapter), a candidate gene in GC-induced apoptosis, into this plasmid. The resulting construct (pHR-TetCMV-SLA-IRES-GFP5) was transfected into HEK 293-T packaging cells to produce viral particles for transduction of CEM-C7H2-2C8 cells. Although the construct produced many green fluorescent colonies at the HEK 293-T and the CEM-C7H2-2C8 level, we could not detect any SLA protein with α-SLA antibody from corresponding cell lysates. In contrast, the antibody readily detected SLA in whole cell lysate of HEK 293-T cells transfected with a GST-flagged SLA construct lacking IRES-GFP. To directly address the potential role of the IRES-GFP sequence, we cloned the SLA coding region into pHR-TetCMV-Dest, a vector that differs from pHR-TetCMV-Dest-IRES-GFP5 just by the absence of the IRES-GFP cassette. The resulting pHR-TetCMV-SLA construct was used for transfection of HEK 293-T cells. Corresponding lysates were assayed with α-SLA antibody and found positive. These data, in concert with previous findings, suggest that the IRES-GFP cassette may interfere with translation of certain smaller size cDNAs (like SLA) or generate fusion proteins and entail defective virus production in an unpredictable manner.  相似文献   

4.
The goals of this study were to identify mammalian cell lines which could be efficiently transiently-transfected and scaled-up for protein production. The transfection efficiencies of eight cell lines (NSO, NSO-TAg, CV-1, COS-7, CHO, CHO-TAg, HEK 293, and 293-EBNA) were measured using electroporation for DNA delivery and green fluorescent protein (Evans, 1996) as the reporter gene. In addition, we have evaluated the effects of stable expression of viral proteins, cell cycle manipulation, and butyrate post-treatment in small scale experiments. The cell lines varied widely in their GFP transfection efficiencies. Stable expression of simian virus 40 large T-antigen or Epstein Barr nuclear antigen failed to significantly increase transfection efficiency above that seen in the parental lines. Aphidicolin (a DNA polymerase inhibitor), which blocked cells from S or G2/M, brought about an increase in transfection efficiency in two cell lines. The primary effect of butyrate (a histone deacetylase inhibitor) post-treatment was an increased intensity of the fluorescent signal of green fluorescent protein, as measured by flow cytometry (1.0 to 4.2-fold, depending on the cell line). The combined use of aphidicolin pretreatment followed by butyrate treatment post- electroporation yielded increases in fluorescence intensities ranging from 0.9 to 6.8-fold. Based on their high transfection efficiencies in small scale experiments, rapid growth, and ability to grow in suspension culture, CHO, CHO-TAg, and 293-EBNA were selected to assess the feasibility of using flow electroporation for large-scale transfections. Using secreted placental alkaline phosphatase as a reporter, 293-EBNA cells produced the highest protein levels in both the presence and absence of butyrate. These data indicate that flow electroporation provides an efficient method of DNA delivery into large numbers of cells for mammalian protein production. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The efficient transfection of cloned genes into mammalian cells system plays a critical role in the production of large quantities of recombinant proteins (r-proteins). In order to establish a simple and scaleable transient protein production system, we have used a cationic lipid-based transfection reagent-FreeStyle MAX to study transient transfection in serum-free suspension human embryonic kidney (HEK) 293 and Chinese hamster ovary (CHO) cells. We used quantification of green fluorescent protein (GFP) to monitor transfection efficiency and expression of a cloned human IgG antibody to monitor r-protein production. Parameters including transfection reagent concentration, DNA concentration, the time of complex formation, and the cell density at the time of transfection were analyzed and optimized. About 70% GFP-positive cells and 50-80 mg/l of secreted IgG antibody were obtained in both HEK-293 and CHO cells under optimal conditions. Scale-up of the transfection system to 1 l resulted in similar transfection efficiency and protein production. In addition, we evaluated production of therapeutic proteins such as human erythropoietin and human blood coagulation factor IX in both HEK-293 and CHO cells. Our results showed that the higher quantity of protein production was obtained by using optimal transient transfection conditions in serum-free adapted suspension mammalian cells.  相似文献   

6.
Human interleukin-2 (hIL-2) production in Escherichia coli and insect cell/baculovirus expression systems can be inefficient. Here we investigated secreted production of hIL-2 fused with green fluorescent protein (GFP) as a versatile fusion partner in optimized stably transfected insect Drosophila melanogaster S2 cells. This nonlytic S2 insect cell expression system employs a plasmid vector and allows for secretion of functional human proteins. We report that, following stable transfection and induction, S2 cells secreted hIL-2 as a fusion protein (approximately 2.3 microg/mL yield), with a secretion efficiency of approximately 90%. Regression analysis indicated a single linear relationship existed between GFP fluorescence and hIL-2 mass in both whole cell and secreted medium samples, indicating that in vivo monitoring and quantification of target foreign protein expression and even secretion is possible using this system. The simple comparative measurement of GFP fluorescence also allowed monitoring of secretion efficiency during periods of high GFP/hIL-2 expression.  相似文献   

7.
A simple and reliable quantitative assay for measuring cellular DNA repair capacity has been developed. It is based on the host cell reactivation of the UV-irradiated plasmid pEGFP carrying the marker gene for the enhanced green fluorescent protein (EGFP). As a reference we used the plasmid pEYFP carrying the gene for a red-shifted fluorescent protein (EYFP). Both proteins can be excited by visible light with a maximum at 488 nm, but EGFP emits with a maximum at 509 nm, while EYFP emits with a maximum at 527 nm. This makes it possible to monitor the expression of the two genes simultaneously by measuring the fluorescence at two wavelengths. HEK293 cells were cotransfected with a mixture of UV-irradiated pEGFP and undamaged pEYFP. At different time intervals after transfection the fluorescence of EGFP was determined relative to the fluorescence of EYFP to compensate for any differences in the transfection efficiency or other experimental variables. It was used to calculate the number of UV lesions in DNA and hence the repair capacity of the host cells. It was found that HEK293 cells were able to repair approximately 1.4 UV lesions per 1000 nucleotides DNA for 12 h on the average.  相似文献   

8.
Recombinant production of complex eukaryotic proteins for structural analyses typically requires a profound screening process to identify suitable constructs for the expression of ample amounts of properly folded protein. Furthermore, the evaluation of an optimal expression host has a major impact on protein yield and quality as well as on actual cost of the production process. Here we present a novel fast expression system for multiple hosts based on a single donor vector termed pFlp-Bac-to-Mam. The range of applications of pFlp-Bac-to-Mam comprises highly efficient transient transfection of HEK293-6E in serum-free suspension culture and subsequent large-scale production of challenging proteins expressing in mg per Liter level using either the baculoviral expression vector system or stable CHO production cell lines generated by Flp-mediated cassette exchange. The success of the multi-host expression vector to identify the optimal expression strategy for efficient production of high quality protein is demonstrated in a comparative expression study of three model proteins representing different protein classes: intracellular expression using a fluorescent protein, secretion of a single-chain-Fv-hIgG1Fc fusion construct and production of a large amount of highly homogeneous protein sample of the extracellular domain of a Toll-like receptor. The evaluation of the production efficiency shows that the pFlp-Bac-to-Mam system allows a fast and individual optimization of the expression strategy for each protein class.  相似文献   

9.
目的:构建人尿激酶型纤溶酶原激活因子(uPA)截短型突变体与绿色荧光蛋白(EGFP)分泌型融合表达载体并在真核细胞中表达。方法:采用PCR法,分别以质粒pIRES2-EGFP和重组质粒pcDNA3.1(+)/uPA为模板,扩增出带BamHⅠ和XbaⅠ酶切位点的EGFP及带NheⅠ和HindⅢ酶切位点的uPA截短体基因片段,先后将EGFP和截短型uPA基因片段克隆到真核表达载体pcDNA3.1(+)上,转入HEK293F细胞,用G418对转染细胞进行加压筛选,通过共聚焦显微镜观察和ELISA方法鉴定表达产物。结果:DNA测序结果显示,uPA不同截短型突变体基因片段与EGFP基因融合的真核表达载体构建成功,共聚焦显微镜观察发现HEK293F细胞中有绿色荧光且定位于细胞质中,ELISA检测到HEK293F细胞培养上清中分泌型融合蛋白的表达。结论:构建了uPA截短型突变体与EGFP分泌型融合表达载体并在真核细胞中表达,为后期研究uPA的相互作用蛋白及其生理功能奠定了基础。  相似文献   

10.
A scalable transfection procedure using polyethylenimine (PEI) is described for the human embryonic kidney 293 cell line grown in suspension. Green fluorescent protein (GFP) and human placental secreted alkaline phosphatase (SEAP) were used as reporter genes to monitor transfection efficiency and productivity. Up to 75% of GFP-positive cells were obtained using linear or branched 25 kDa PEI. The 293 cell line and two genetic variants, either expressing the SV40 large T-antigen (293T) or the Epstein–Barr virus (EBV) EBNA1 protein (293E), were tested for protein expression. The highest expression level was obtained with 293E cells using the EBV oriP-containing plasmid pCEP4. We designed the pTT vector, an oriP-based vector having an improved cytomegalovirus expression cassette. Using this vector, 10- and 3-fold increases in SEAP expression was obtained in 293E cells compared with pcDNA3.1 and pCEP4 vectors, respectively. The presence of serum had a positive effect on gene transfer and expression. Transfection of suspension-growing cells was more efficient with linear PEI and was not affected by the presence of medium conditioned for 24 h. Using the pTT vector, >20 mg/l of purified His-tagged SEAP was recovered from a 3.5 l bioreactor. Intracellular proteins were also produced at levels as high as 50 mg/l, representing up to 20% of total cell proteins.  相似文献   

11.
The green fluorescent protein (GFP) has attracted much interest as a reporter for gene expression. In this paper, application of capillary electrophoresis with laser-induced fluorescent (CE-LIF) for quantitation of green fluorescence protein in cellular extracts and single cells is investigated. The S65T mutant form of GFP protein was successfully expressed in human embryonic kidney (HEK293) cells, and its production was confirmed by fluorescence microscopy and CE-LIF. The mass limit of detection for the mutant S65T was 5.3 x 10(-20) mol, which was better than that for the wild-type GFP by a factor of six. Detection of a small amount of GFP is difficult by conventional techniques such as fluorescent microscopy due to interference from cell autofluorescence at low GFP concentrations. The HEK293 cells were transfected with the GFP plasmid that produced S65T-GFP. Transient production of S65T protein was detected 2 h after the transfection and reached a maximum after 48 h. The protein concentration began to decrease significantly after 96 h. Single cell analysis of HEK293 cells after transfection with GFP plasmid indicate a nonuniform production of S65T-GFP protein among cells.  相似文献   

12.
The green fluorescent protein (GFP) and its analogs are standard markers of protein expression and intracellular localization of proteins. The fluorescent properties of GFP complicate accurate measurement of intracellular calcium using calcium sensitive fluorophores, which show a great degree of spectral overlap with GFP, or their K(d) values are too high for accurate measurement of subtle changes in cytoplasmic calcium concentrations. Here we describe a simple modification of the standard microscope-based Fura-2 calcium-imaging technique which permits the quantitative measurement of intracellular calcium levels in cells expressing enhanced green fluorescent protein (EGFP) fusion proteins. Longpass emission filtering of the Fura-2 signal in cells expressing an EGFP fusion protein is sufficient to eliminate the EGFP-Fura-2 emission spectra overlap and allows quantitative calibration of intracellular calcium. To validate this technique, we investigated the ability of rotavirus enterotoxin NSP4-EGFP to elevate intracellular calcium levels in mammalian HEK 293 cells. We show here that inducible intracellular expression of NSP4-EGFP fusion protein elevates basal intracellular calcium more than two-fold by a phospholipase C (PLC) independent mechanism.  相似文献   

13.
To support and meet the demand for recombinant proteins early in the drug discovery process, much work has been directed toward improving the methods used for transient gene transfection and expression. A factor which could potentially affect the outcome of experiments is the choice of the expression vector. Conventional vectors such as pCIneo and pcDNA3 have been used frequently. Each of these places the gene of interest under the control of the CMV promoter. An interesting alternative is provided by episomal vectors. For example, the pCEP4 vector contains the gene coding for the Epstein Barr nuclear antigen as well as the EBNA ori P sequence. This combination allows for the episomal replication of the plasmid. In preliminary experiments, we compared transient secreted placental alkaline phosphatase production in 8 cell lines from 3 different species using the pCIneo vs. pCEP4 vectors and found the utility of the pCEP4 vector to be limited to the human 293 EBNA cell line. In this paper, we have compared the two vectors in six cell lines of simian and human origin, measuring the transient production of secreted placental alkaline phosphatase and human hepatocyte growth factor. In general, the pCEP4 vector produced higher amounts of both proteins in transient transfections. Results were particularly pronounced in the HEK 293 and 293 EBNA cell lines. Stable pools of cells (uncloned) expressing human hepatocyte growth factor were isolated using pCIneo and pCEP4 and protein production levels were compared to those seen in transient transfections. Stable expression with pCEP4 was found to produce the highest levels of human hepatocyte growth factor in 3 of 4 cell lines. Finally, electroporation and FuGENETM6(Roche, Indianapolis IN) as transfection methods were compared measuring transient production of secreted placental alkaline phosphatase, human hepatocyte growth factor, and green fluorescent protein. FuGENE produced higher protein concentrations in less time than electroporation for all 3 proteins. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Immunotoxins consist of a target-cell-specific binding moiety, chemically or recombinantly linked to a cytotoxic component. A number of different immunotoxins (IT) have increasingly been evaluated for immunotherapy. Since these foreign proteins are highly immunogenic in human, we have developed recombinant IT using the human ribonuclease angiogenin. Due to their potential toxic effects on eucaryotic cells, these IT are usually expressed in bacteria. Depending on the structure, size, and sequence of the desired IT, bacterial expression can be limited and the yield after purification be unsatisfactory. Therefore, the expression of IT in eucaryotic cells could provide a promising alternative. For this purpose we genetically fused the anti-CD30 single-chain variable fragment (scFv) Ki4 to the N- and C-termini of recombinant angiogenin. Both IT possess leader sequences, which mediate their secretion into the cell culture supernatant. Using a bicistronic mRNA the IT were simultaneously expressed together with enhanced green fluorescent protein (EGFP). This allows direct monitoring of transfected cells. An additional plasmid encoded Zeocin resistance enhances the cultivation of transfected cells under selection pressure. Three days after transfection of 293T-cells, unpurified IT were analyzed by flow cytometry and competitive cell proliferation assays. This is the first report on the use of eucaryotic cells for the secretion of functionally active IT with a human effector domain.  相似文献   

15.
We previously demonstrated that cysteine-rich with EGF-like domains 2 (CRELD2), a novel ER stress-inducible factor, is a secretory glycoprotein; however, the stimuli that induce CRELD2 secretion have not yet been characterized. In this study, we found that the perturbation of intravesicular acidification of cytoplasmic organelles in HEK293 cells stably expressing wild-type (wt) CRELD2 induced its secretion. In particular, Concanamycin A (CMA) and Bafilomycin A1 (Baf), inhibitors of vacuolar ATPase (V-ATPase), increased the secretion of CRELD2 without relying on its C-terminal structure. The levels of secretion of EGFP-fused CRELD2 (SP-EGFP-CRELD2), which consists of EGFP following the putative signal peptide (SP) sequence of CRELD2, from COS7 cells transiently transfected with this construct were also increased after each of the treatments, but their intracellular localization was barely affected by CMA treatment. Transient overexpression of 78-kDa glucose-regulated protein (GRP78) and protein disulfide isomerase (PDI) also increased the secretion of CRELD2 from HEK293 cells expressing wt CRELD2, whereas the perturbation of intravesicular acidification did not alter the expression of GRP78 and PDI in the HEK293 cells. We further studied the roles of intracellular calcium ions and the Golgi apparatus in the secretion of CRELD2 from HEK293 cells in which intravesicular acidification was perturbed. The treatment with calcium ionophore increased the secretion of wt CRELD2, while that with BAPTA-AM, an intracellular calcium chelator, did not reduce the CMA-induced CRELD2 secretion. By contrast, treatment with brefeldin A (BFA), which inhibits the transportation of proteins from the ER to the Golgi apparatus, almost completely abolished the secretion of wt CRELD2 from the HEK293 cells. In conclusion, we demonstrated that the intravesicular acidification by V-ATPase regulates the secretion of CRELD2 without relying on the balance of intracellular calcium ions and the expression of ER chaperones such as GRP78 and PDI. These findings concerning the role of V-ATPases in modulating the secretion of CRELD2, a novel ER stress-inducible secretory factor, may provide new insights into the prevention and treatment of certain ER stress-related diseases.  相似文献   

16.
Insect Drosophila melanogaster S2 cells were developed as a plasmid-based and therefore nonlytic expression system for functional foreign proteins. Transfection is an important step to introduce foreign target DNA into cells and should be properly optimized to obtain maximum production yield. Single factor search (SFS) methodology is still generally used to determine optimal condition in a biological system. Although this method is relatively simple to perform, it has many disadvantages such as not considering interactions between several factors and not covering the entire region of the solution pool. Therefore, we approached this optimization problem statistically with response surface (RSM) and evolutionary operation (EVOP) methodologies and compared the transfection efficiencies with the traditional SFS method. We employed secreted green fluorescent protein (GFP) as a reporter for determination of optimal transfection condition and secreted human erythropoietin (hEPO) as a confirming foreign model protein. Consequently, we arrived at the best optimal transient transfection condition (1 microg of plasmid DNA, 5 microg of lipofectin, 2 x 10(6) cells of initial cell number, and 18 h of transfection duration time) through a systematic access in a series of SFS, RSM, and EVOP. The secreted hEPO yield using optimal transient transfection condition by EVOP methodology was enhanced by about 1.8-fold compared to that of traditional SFS. This optimized transient transfection condition can be used as a basis for optimal stable transfections. A linear relationship between secreted GFP fluorescence intensity and secreted hEPO concentration indicated that facile and noninvasive determination of optimal transfection conditions for expression and secretion of foreign proteins in S2 cell cultures was made possible by simple measurement of GFP fluorescence.  相似文献   

17.
Large-scale transient transfection of mammalian cells is a recent and powerful technology for the fast production of milligram amounts of recombinant proteins (r-proteins). As many r-proteins used for therapeutic and structural studies are naturally secreted or engineered to be secreted, a cost-effective serum-free culture medium that allows their efficient expression and purification is required. In an attempt to design such a serum-free medium, the effect of nine protein hydrolysates on cell proliferation, transfection efficiency, and volumetric productivity was evaluated using green fluorescent protein (GFP) and human placental secreted alkaline phosphate (SEAP) as reporter genes. The suspension growing, serum-free adapted HEK293SF-3F6 cell line was stably transfected with an EBNA1-expression vector to increase protein expression when using EBV oriP bearing plasmids. Compared to our standard serum-free medium, concomitant addition of the gelatin peptone N3 and removal of BSA slightly enhanced transfection efficiency and significantly increased volumetric productivity fourfold. Using the optimized medium formulation, transfection efficiencies between 40-60% were routinely obtained and SEAP production reached 18 mg/L(-1). To date, we have successfully produced and purified over fifteen r-proteins from 1-14-L bioreactors using this serum-free system. As examples, we describe the scale-up of two secreted his-tagged r-proteins Tie-2 and Neuropilin-1 extracellular domains (ED) in bioreactors. Each protein was successfully purified to >95% purity following a single immobilized metal affinity chromatography (IMAC) step. In contrast, purification of Tie-2 and Neuropilin-1 produced in serum-containing medium was much less efficient. Thus, the use of our new serum-free EBNA1 cell line with peptone-enriched serum-free medium significantly improves protein expression compared to peptone-less medium, and significantly increases their purification efficiency compared to serum-containing medium. This eliminates labor-intensive and expensive chromatographic steps, and allows for the simple, reliable, and extremely fast production of milligram amounts of r-proteins within 5 days posttransfection.  相似文献   

18.
目的:观察脑信号蛋白Sema4C及其相互作用蛋白GIPC的亚细胞定位及两者的荧光共定位情况,为明确Sema4C和GIPC在亚细胞水平的相互作用提供佐证。方法:将Sema4C的基因编码区全长、胞外段和胞内段分别构建到pEGFPNl和pEGFPCI表达载体中,将GIPC编码区基因构建到pDsRed-C1表达载体中,分别转染HEK293细胞,观察亚细胞定位;将pEGFPNl-Sema4C和pDsRed-GIPC分别共转染HEl(293和COS7细胞,观察两者的荧光共定位情况。结果:酶切鉴定及测序结果表明重组载体构建正确,Sema4C蛋白全长和胞外段呈跨膜分布,而胞内段在全细胞中呈弥散样分布;GIPC在胞浆内呈斑块状聚集分布;pEGFPNl-Sema4C和pDsRed-GIPC存在荧光共定位区域。结论:Sema4C主要在胞膜和胞浆内表达,GIPC主要在胞浆内呈斑块样聚集分布;Sema4C和GIPC之间存在荧光共定位。  相似文献   

19.
左广锋  陈绍良  徐艳  肖杭 《生物磁学》2011,(6):1068-1071
目的:构建含有人HCN2基因的真核表达载体,并观察在人胚胎肾细胞(HEK293)中的表达情况。方法:对人HCN2基因全序列进行分析,进行oligo设计,通过PCR,扩增HCN2全长cDNA,通过双酶切(XhoI和BamHI)装入真核表达载体pIRES2-EGFP中,脂质体法转染入HEK293细胞中,利用真核表达载体中带有绿色荧光蛋白GFP报告基因,对转染效率进行监测,采用反转录-聚合酶链反应检测HCN2 mRNA表达,全细胞膜片钳技术检测HCN2通道电流。结果:测序及酶切结果表明HCN2基因正确,荧光显微镜下,转染细胞观察到绿色荧光,反转录-聚合酶链反应检测到HCN2 mRNA表达,膜片钳检测到hHCN2基因编码的通道电流。结论:成功地构建了HCN2真核表达载体并进行了起搏通道HCN2基因的异源性表达。  相似文献   

20.
Basic peptide system for efficient delivery of foreign genes   总被引:3,自引:0,他引:3  
Certain peptides containing high percentage of cationic amino acids are known to efficiently translocate through the cell membrane. This principle was previously exploited for delivery of variety proteins. We had observed that various basic peptides of earlier studies, though not specifically use for gene delivery, contain DNA or RNA binding domains. In the present study, we reported on arginine peptides, which form DNA complexes that efficiently transfect various cell lines. The transfection abilities of the peptides were observed by green fluorescent protein (GFP) and beta-galactosidase gene expression in 293T, HeLa, Jurkat, and COS-7 cells. We found superior transfection activity of arginine peptides compared with commercially available efficient transfection agents. The expression of marker genes induced by arginine peptides was partially inhibited in the presence of heparan sulfate, chondroitin sulfate B and C, or both heparinase III and chondroitinase ABC. The transfection proficiency of these peptides was affected by endosomotropic reagent as well as low temperature (4 degrees C). Finally, we have investigated the potential of arginine peptides as a delivery agent for gene therapy, by attempting to deliver herpes simplex virus thymidine kinase (HSV-TK) gene into tumor cells. HSV-TK transfected tumor cells exhibited sensitivity to the antiviral drug ganciclovir (GCV), leading to cell death. Taken together, these data demonstrate that arginine peptide is proficient for transfection, indicating its potentially benefit to studies in gene therapy and gene delivery in a range of model organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号