首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To better understand the principles underlying the substrate specificity of A-type phospholipases (PLAs), a high throughput mass spectrometric assay was employed to study the effect of acyl chain length and unsaturation of phospholipids on their rate of hydrolysis by three different secretory PLAs in micelles and vesicle bilayers. With micelles, each enzyme responded differently to substrate acyl chain unsaturation and double bond position, probably reflecting differences in the accommodative properties of their substrate binding sites. Experiments with saturated acyl positional isomers indicated that the length of the sn2 chain was more critical than that of the sn1 chain, suggesting tighter association of the former with the enzyme. Only the first 9–10 carbons of the sn2 acyl chain seem to interact intimately with the active site. Strikingly, no discrimination between positional isomers was observed with vesicles, and the rate of hydrolysis decreased far more with increasing chain length than with micelles, suggesting that translocation of the phospholipid substrate to the active site is rate-limiting with bilayers. Supporting this conclusion, acyl chain structure affected hydrolysis and spontaneous intervesicle transfer, which correlates with lipid efflux propensity, analogously. We conclude that substrate efflux propensity plays a more important role in the specificity of secretory PLA2s than commonly thought and could also be a key attribute in phospholipid homeostasis in which (unknown) PLA2s are key players.  相似文献   

2.
The bilayer phase transitions of six kinds of mixed-chain phosphatidylcholines (PCs) with an unsaturated acyl chain in the sn-1 or sn-2 position, 1-oleoyl-2-stearoyl- (OSPC), 1-stearoyl-2-oleoyl- (SOPC), 1-oleoyl-2-palmitoyl- (OPPC), 1-palmitoyl-2-oleoyl- (POPC), 1-oleoyl-2-myristoyl- (OMPC) and 1-myristoyl-2-oleoyl-sn-glycero-3-phosphocholine (MOPC), were observed by means of differential scanning calorimetry (DSC) and high-pressure light transmittance measurements. Bilayer membranes of SOPC, POPC and MOPC with an unsaturated acyl chain in the sn-2 position exhibited only one phase transition, which was identified as the main transition between the lamellar gel (Lβ) and liquid crystalline (Lα) phases. On the other hand, the bilayer membranes of OSPC, OPPC and OMPC with an unsaturated acyl chain in the sn-1 position exhibited not only the main transition but also a transition from the lamellar crystal (Lc) to the Lβ (or Lα) phase. The stability of their gel phases was markedly affected by pressure and chain length of the saturated acyl chain in the sn-2 position. Considering the effective chain lengths of unsaturated mixed-chain PCs, the difference in the effective chain length between the sn-1 and sn-2 acyl chains was proven to be closely related to the temperature difference of the main transition. That is, a mismatch of the effective chain length promotes a temperature difference of the main transition between the positional isomers. Anomalously small volume changes of the Lc/Lα transition for the OPPC and OMPC bilayers were found despite their large enthalpy changes. This behavior is attributable to the existence of a cis double bond and to significant inequivalence between the sn-1 and sn-2 acyl chains, which brings about a small volume change for chain melting due to loose chain packing, corresponding to a large partial molar volume, even in the Lc phase. Further, the bilayer behavior of unsaturated mixed-chain PCs containing an unsaturated acyl chain in the sn-1 or sn-2 position was well explained by the chemical-potential diagram of a lipid in each phase.  相似文献   

3.
Phospholipase A2 (PLA2) enzymes catalyze the hydrolysis of ester bonds at sn-2 positions of glycerophospholipids (PL), producing free fatty acids and lysophospholipids. In mammals, the PLA2 superfamily comprises more than 30 known enzymes, including various structurally and biochemically different enzymes with diverse biological functions. Some of the enzymes are involved in the production of lipid mediators, including eicosanoids and lysophospholipid-related lipid mediators. Among them, cytosolic PLA2α (cPLA2α), a member of cPLA2 family, is one of the most important intracellular PLA2s. Upon cell activation, cPLA2α is activated and involved in eicosanoid production under various physiological and pathological conditions. PLA2s also play a role in membrane PL remodeling by coupling with re-acylation processes mediated by lysophospholipid acyltransferases (LPLATs) to generate sn-1/sn-2 fatty acid asymmetry of PLs. This review summarizes the biochemical and in vivo roles of cPLA2 enzymes and LPLATs, including results from animal and human studies.This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.  相似文献   

4.
The A-type phospholipases (PLAs) are key players in glycerophospholipid (GPL) homeostasis and in mammalian cells; Ca2+-independent PLA-β (iPLAβ) in particular has been implicated in this essential process. However, the regulation of this enzyme, which is necessary to avoid futile competition between synthesis and degradation, is not understood. Recently, we provided evidence that the efflux of the substrate molecules from the bilayer is the rate-limiting step in the hydrolysis of GPLs by some secretory (nonhomeostatic) PLAs. To study whether this is the case with iPLAβ as well, a mass spectrometric assay was employed to determine the rate of hydrolysis of multiple saturated and unsaturated GPL species in parallel using micelles or vesicle bilayers as the macrosubstrate. With micelles, the hydrolysis decreased with increasing acyl chain length independent of unsaturation, and modest discrimination between acyl positional isomers was observed, presumably due to the differences in the structure of the sn-1 and sn-2 acyl-binding sites of the protein. In striking contrast, no significant discrimination between positional isomers was observed with bilayers, and the rate of hydrolysis decreased with the acyl chain length logarithmically and far more than with micelles. These data provide compelling evidence that efflux of the substrate molecule from the bilayer, which also decreases monotonously with acyl chain length, is the rate-determining step in iPLAβ-mediated hydrolysis of GPLs in membranes. This finding is intriguing as it may help to understand how homeostatic PLAs are regulated and how degradation and biosynthesis are coordinated.  相似文献   

5.
Polyunsaturated phospholipids are common in biological membranes and affect the lateral structure of bilayers. We have examined how saturated sphingomyelin (SM; palmitoyl and stearoyl SM (PSM and SSM, respectively)) and phosphatidylcholine (PC; dipalmitoyl PC and 1-palmitoyl-2-stearoyl PC (DPPC and PSPC, respectively)) segregate laterally to form ordered gel phases in increasingly unsaturated PC bilayers (sn-1: 16:0 and sn-2: 18:1...22:6; or sn-1 and sn-2: 18:1…22:6). The formation of gel phases was determined from the lifetime analysis of trans-parinaric acid. Using calorimetry, we also determined gel phase formation by PSM and DPPC in unsaturated PC mixed bilayers. Comparing PSM with DPPC, we observed that PSM formed a gel phase with less order than DPPC at comparable bilayer concentrations. The same was true when SSM was compared with PSPC. Furthermore, we observed that at equal saturated phospholipid concentration, the gel phases formed were less ordered in unsaturated PCs having 16:0 in sn-1, as compared to PCs having unsaturated acyl chains in both sn-1 and sn-2. The gel phases formed by the saturated phospholipids in unsaturated PC bilayers did not appear to achieve properties similar to pure saturated phospholipid bilayers, suggesting that complete lateral phase separation did not occur. Based on scanning calorimetry analysis, the melting of the gel phases formed by PSM and DPPC in unsaturated PC mixed bilayers (at 45 mol % saturated phospholipid) had low cooperativity and hence most likely were of mixed composition, in good agreement with trans-parinaric acid lifetime data. We conclude that both interfacial properties of the saturated phospholipids and their chain length, as well as the presence of 16:0 in sn-1 of the unsaturated PCs and the total number of cis unsaturations and acyl chain length (18 to 22) of the unsaturated PCs, all affected the formation of gel phases enriched in saturated phospholipids, under the conditions used.  相似文献   

6.
Cardiolipin, a major component of mitochondria, is critical for mitochondrial functioning including the regulation of cytochrome c release during apoptosis and proper electron transport. Mitochondrial cardiolipin with its unique bulky amphipathic structure is a potential substrate for phospholipase A2 (PLA2) in vivo. We have developed mass spectrometric methodology for analyzing PLA2 activity toward various cardiolipin forms and demonstrate that cardiolipin is a substrate for sPLA2, cPLA2 and iPLA2, but not for Lp-PLA2. Our results also show that none of these PLA2s have significant PLA1 activities toward dilyso-cardiolipin. To understand the mechanism of cardiolipin hydrolysis by PLA2, we also quantified the release of monolyso-cardiolipin and dilyso-cardiolipin in the PLA2 assays. The sPLA2s caused an accumulation of dilyso-cardiolipin, in contrast to iPLA2 which caused an accumulation of monolyso-cardiolipin. Moreover, cardiolipin inhibits iPLA2 and cPLA2, and activates sPLA2 at low mol fractions in mixed micelles of Triton X-100 with the substrate 1-palmitoyl-2-arachidonyl-sn-phosphtidylcholine. Thus, cardiolipin functions as both a substrate and a regulator of PLA2 activity and the ability to assay the various forms of PLA2 is important in understanding its function.  相似文献   

7.
N-Acyl-phosphatidylethanolamines (NAPEs) are known to be precursors of bioactive N-acylethanolamines (NAEs), including the endocannabinoid arachidonoylethanolamide (anandamide) and anti-inflammatory palmitoylethanolamide. In mammals, NAPEs are produced by N-acyltransferases, which transfer an acyl chain from the sn-1 position of glycerophospholipid to the amino group of phosphatidylethanolamine (PE). Recently, the ɛ isoform of cytosolic phospholipase A2 (cPLA2ɛ) was found to be Ca2+-dependent N-acyltransferase. However, it was poorly understood which types of phospholipids serve as substrates in living cells. In the present study, we established a human embryonic kidney 293 cell line, in which doxycycline potently induces human cPLA2ɛ, and used these cells to analyze endogenous substrates and products of cPLA2ɛ with liquid chromatography-tandem mass spectrometry. When treated with doxycycline and Ca2+ ionophore, the cells produced various species of diacyl- and alkenylacyl-types of NAPEs as well as NAEs in large quantities. Moreover, the levels of diacyl- and alkenylacyl-types of PEs and diacyl-phosphatidylcholines (PCs) decreased, while those of lysophosphatidylethanolamines and lysophosphatidylcholines increased. These results suggested that cPLA2ɛ Ca2+-dependently produces NAPEs by utilizing endogenous diacyl- and alkenylacyl-types of PEs as acyl acceptors and diacyl-type PCs and diacyl-type PEs as acyl donors.  相似文献   

8.
Phospholipases A2 in Ischemic and Toxic Brain Injury   总被引:3,自引:0,他引:3  
Phospholipases A2 (PLA2s) regulate hydrolysis of fatty acids, including arachidonic acid, from the sn-2 position of phospholipid membranes. PLA2 activity has been implicated in neurotoxicity and neurodegenerative processes secondary to ischemia and reperfusion and other oxidative stresses. The PLA2s constitute a superfamily whose members have diverse functions and patterns of expression. A large number of PLA2s have been identified within the central nervous systems of rodents and humans. We postulated that group IV large molecular weight, cytosolic phospholipase A2 (cPLA2) has a unique role in neurotoxicity associated with ischemic or toxin stress. We created mice deficient in cPLA2 and tested this hypothesis in two injury models, ischemia/reperfusion and MPTP neurotoxicity. In each model cPLA2 deficient mice are protected against neuronal injury when compared to their wild type littermate controls. These experiments support the hypothesis that cPLA2 is an important mediator of ischemic and oxidative injuries in the brain.  相似文献   

9.
The bilayer phase transitions of palmitoylstearoyl-phosphatidylcholine (PSPC), diheptadecanoyl-PC (C17PC) and stearoylpalmitoyl-PC (SPPC) which have the same total carbon numbers in the two acyl chains were observed by differential scanning calorimetry and high-pressure optical method. As the temperature increased, these bilayers exhibited four phases of the subgel (Lc), lamellar gel (Lβ′), ripple gel (Pβ′) and liquid crystal (Lα), in turn. The Lc phase was observed only in the first heating scan after cold storage. The temperatures of the phase transitions were almost linearly elevated by applying pressure. The temperature-pressure phase diagrams and the thermodynamic quantities associated with the phase transitions were compared among the lipid bilayers. For all the bilayers studied, the pressure-induced interdigitated gel (LβI) phase appeared above the critical interdigitation pressure (CIP) between the Lβ′ and Pβ′ phases. The CIPs for the PSPC, C17PC and SPPC bilayers were found to be 50.6, 79.1 and 93.0 MPa, respectively. Contribution of two acyl chains to thermodynamic properties for the phase transitions of asymmetric PSPC and SPPC bilayers was not even. The sn-2 acyl chain lengths of asymmetric PCs governed primarily the bilayer properties. The fluorescence spectra of Prodan in lipid bilayers showed the emission maxima characteristic of bilayer phases, which were dependent on the location of Prodan in the bilayers. Second derivative of fluorescent spectrum exhibited the original emission spectrum of Prodan to be composed of the distribution of Prodan into multiple locations in the lipid bilayer. The F497/F430 value, a ratio of second derivative of fluorescence intensity at 497 nm to that at 430 nm, is decisive evidence whether bilayer interdigitation will occur. With respect to the Lβ′/LβI phase transition in the SPPC bilayer, the emission maximum of Prodan exhibited the narrow-range red-shift from 441 to 449 nm, indicating that the LβI phase in the SPPC bilayer has a less polar “pocket” formed by a space between uneven terminal methyl ends of the sn-1 and sn-2 chains, in which the Prodan molecule remains stably.  相似文献   

10.
Shirai  Yoshinori  Ito  Masao 《Brain Cell Biology》2004,33(3):297-307
Phospholipase A2 (PLA2) is a family of enzymes playing diverse roles in lipid signaling in neurons and glia cells. In this study, we examined the expression of subtypes of PLA2 in the cerebellum using immunolabeling and in situ hybridization methods. Two Ca2+-dependent cytosolic subtypes (cPLA2α and cPLA2β), one Ca2+-independent cytosolic subtype (iPLA2), and two secretory subtypes (sPLA2IIA and sPLA2V) were detected in the cerebellum. cPLA2α is present in somata and dendrites of Purkinje cells, while sPLA2IIA is associated with the endoplasmic reticulum in perinuclear regions of Purkinje cell somata. iPLA2 is present in granule cells, stellate cells and also in the nucleus of Purkinje cells. In addition, cPLA2β is localized in granule cells, and sPLA2V in Bergmann glia cells. These results provide an important basis for identifying functional roles of PLA2s in the cerebellum.  相似文献   

11.
Ceramide and the metabolites including ceramide-1-phosphate (C1P) and sphingosine are reported to regulate the release of arachidonic acid (AA) and/or phospholipase A2 (PLA2) activity in many cell types including lymphocytes. Recent studies established that C1P, a product of ceramide kinase, interacts directly with Ca2+ binding regions in the C2 domain of α type cytosolic PLA2 (cPLA2α), leading to translocation of the enzyme from the cytosol to the perinuclear region in cells. However, a precise mechanism for C1P-induced activation of cPLA2α has not been well elucidated; such as the phosphorylation signal caused by the extracellular signal-regulated kinases (ERK1/2) pathway, a downstream of the protein kinase C activation with 4β-phorbol myristate acetate (PMA), is required or not. In the present study, we showed that the increase in intracellular ceramide levels (exogenously added cell permeable ceramides and an inhibition of ceramidase by (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol and the increase in C1P formation by transfection with the vector for human ceramide kinase significantly enhanced the Ca2+ ionophore (A23187) -induced release of AA via cPLA2α's activation in CHO cells. Ceramides did not show additional effects on the release from the cells treated with the inhibitor of ceramidase. Ceramides and C2-C1P neither had effect on the intracellular mobilization of Ca2+ nor the phosphorylation of cPLA2α in cells. A23187/PMA-induced release of AA was enhanced by ceramides and C2-C1P and by expression of ceramide kinase. Our findings suggest that C1P is a stimulatory factor on cPLA2α that is independent of the Ca2+ signal and the PKC-ERK-mediated phosphorylation signal.  相似文献   

12.
In platelets, group IVA cytosolic phospholipase A2 (cPLA2α) has been implicated as a key regulator in the hydrolysis of platelet membrane phospholipids, leading to pro-thrombotic thromboxane A2 and anti-thrombotic 12-(S)-hydroxyeicosatetranoic acid production. However, studies using cPLA2α-deficient mice have indicated that other PLA2(s) may also be involved in the hydrolysis of platelet glycerophospholipids. In this study, we found that group VIB Ca2+-independent PLA2 (iPLA2γ)-deficient platelets showed decreases in adenosine diphosphate (ADP)-dependent aggregation and ADP- or collagen-dependent thromboxane A2 production. Electrospray ionization mass spectrometry analysis of platelet phospholipids revealed that fatty acyl compositions of ethanolamine plasmalogen and phosphatidylglycerol were altered in platelets from iPLA2γ-null mice. Furthermore, mice lacking iPLA2γ displayed prolonged bleeding times and were protected against pulmonary thromboembolism. These results suggest that iPLA2γ is an additional, long-sought-after PLA2 that hydrolyzes platelet membranes and facilitates platelet aggregation in response to ADP.  相似文献   

13.
Naegleria fowleri, a free-living amoeba, is the causative agent of primary amoebic meningoencephalitis. Previous reports have demonstrated that N. fowleri expresses one or more forms of phospholipase A2 (PLA2) and that a secreted form of this enzyme is involved in pathogenesis. However, the molecular nature of these phospholipases remains largely unknown. This study was initiated to determine whether N. fowleri expresses analogs of the well-characterized PLA2s that are expressed by mammalian macrophages. Amoeba cell homogenates contain a PLA2 activity that hydrolyzes the substrate that is preferred by the 85 kDa calcium-dependent cytosolic PLA2, cPLA2. However, unlike the cPLA2 enzyme in macrophages, this activity is largely calcium-independent, is constitutively associated with membranes and shows only a modest preference for phospholipids that contain arachidonate. The amoeba PLA2 activity is sensitive to inhibitors that block the activities of cPLA2-α and the 80 kDa calcium-independent PLA2, iPLA2, that are expressed by mammalian cells. One of these compounds, methylarachidonyl fluorophosphonate, partially inhibits the constitutive release of [3H]arachidonic acid from pre-labeled amoebae. Together, these data suggest that N. fowleri expresses a constitutively active calcium-independent PLA2 that may play a role in the basal phospholipid metabolism of these cells.  相似文献   

14.
Glycerophospholipids are major components of cell membranes and have enormous variation in the composition of fatty acyl chains esterified on the sn-1 and sn-2 position as well as the polar head groups on the sn-3 position of the glycerol backbone. Phospholipase A2 (PLA2) enzymes constitute a superfamily of enzymes which play a critical role in metabolism and signal transduction by hydrolyzing the sn-2 acyl chains of glycerophospholipids. In human cell membranes, in addition to the conventional diester phospholipids, a significant amount is the sn-1 ether-linked phospholipids which play a critical role in numerous biological activities. However, precisely how PLA2s distinguish the sn-1 acyl chain linkage is not understood. In the present study, we expanded the technique of lipidomics to determine the unique in vitro specificity of three major human PLA2s, including Group IVA cytosolic cPLA2, Group VIA calcium-independent iPLA2, and Group V secreted sPLA2 toward the linkage at the sn-1 position. Interestingly, cPLA2 prefers sn-1 vinyl ether phospholipids known as plasmalogens over conventional ester phospholipids and the sn-1 alkyl ether phospholipids. iPLA2 showed similar activity toward vinyl ether and ester phospholipids at the sn-1 position. Surprisingly, sPLA2 preferred ester phospholipids over alkyl and vinyl ether phospholipids. By taking advantage of molecular dynamics simulations, we found that Trp30 in the sPLA2 active site dominates its specificity for diester phospholipids.  相似文献   

15.
16.
17.
The cDNA encoding of a phospholipase A2 inhibitor (PLIα) of the Chinese mamushi, Agkistrodon blomhoffii siniticus, was identified from a liver cDNA library by use of a probe prepared by polymerase chain reaction (PCR) on the basis of the amino acid sequence of PLIα. It encoded a polypeptide of 166 amino acid residues, including 19 residues of the signal sequence and 147 residues of the complete mature sequence of PLIα. The PLIα cDNA was subcloned into the expression vector pET-16b and used to transform Escherichia coli strain BL21(DE3)pLysS. The recombinant PLIα expressed as a fusion protein was solubilized and purified to homogeneity by use of a metal affinity resin. The purified PLIα fusion protein underwent folding to form a trimeric structure like the intact PLIα, and showed inhibitory activity against the group II acidic PLA2 from A. blomhoffii siniticus venom; although its binding constant (1/Ki) value was 30-fold lower than that of the natural PLIα. The elimination of the N-terminal additional peptide from the fusion protein resulted in a marked increase in the inhibition activity with a binding constant comparable to that of the natural PLIα against the acidic PLA2. Furthermore, the carbohydrate chains of the natural PLIα were found to play an important role in the inhibitory activity against the basic PLA2.  相似文献   

18.
Deuterium nuclear magnetic resonance (2H-NMR) was used to investigate the structure and dynamics of the sn-2 hydrocarbon chain of semi-synthetical choline and ethanolamine plasmalogens in bilayers containing 0, 30, and 50 mol% cholesterol. The deuterium NMR spectra of the choline plasmalogen yielded well-resolved quadrupolar splittings which could be assigned to the corresponding hydrocarbon chain deuterons. The sn-2 acyl chain was found to adopt a similar conformation as observed in the corresponding diacyl phospholipid, however, the flexibility at the level of the C-2 methylene segment of the plasmalogen was increased. Deuterium NMR spectra of bilayers composed of the ethanolamine plasmalogen yielded quadrupolar splittings of the C-2 segment much larger than those of the corresponding diacyl lipids, suggesting that the sn-2 chain is oriented perpendicular to the membrane surface at all segments. Cholesterol increased the ordering of the choline plasmalogen acyl chain to the same extent as in diacyl lipid bilayers. T1 relaxation time measurements demonstrated only minor dynamical differences between choline plasmalogen and diacyl lipids in model membranes.  相似文献   

19.
Constitutive phosphorylation of protein kinase B (AKT) is a common feature of cancer caused by genetic alteration in the phosphatase and tensin homolog (PTEN) gene and is associated with poor prognosis. This study determined the role of cytosolic phospholipase A2α (cPLA2α) in AKT, extracellular signal-regulated kinase (ERK) and androgen receptor (AR) signaling in PTEN-null/mutated prostate cancer cells. Doxycycline (Dox)-induced expression of cPLA2α led to an increase in pAKT, pGSK3β and cyclin D1 levels in LNCaP cells that possess a PTEN frame-shift mutation. In contrast, silencing cPLA2α expression with siRNA decreased pAKT, pGSK3β and cyclin D1 levels in both PC-3 (PTEN deletion) and LNCaP cells. Silencing of cPLA2α decreased pERK and AR protein levels. The inhibitory effect of cPLA2α siRNA on pAKT and AR protein levels was reduced by the addition of arachidonic acid (AA), whereas the stimulatory effect of AA on pAKT, pERK and AR levels was decreased by an inhibitor of 5-hydroxyeicosatetraenoic acid production. Pharmacological blockade of cPLA2α with Efipladib reduced pAKT and AR levels with a concomitant inhibition of PC-3 and LNCaP cell proliferation. These results demonstrate an important role for cPLA2α in sustaining AKT, ERK and AR signaling in PTEN-null/mutated prostate cancer cells and provide a potential molecular target for treating prostate cancer.  相似文献   

20.
Lipid rafts are microdomains rich in sphingomyelin (SM) and cholesterol (Chol). The essential question is why natural lipid rafts prefer SM rather than saturated diacyl glycerophosphocholine, although both form ordered membranes with Chol in model systems. Hence in this study, we synthesized site-specifically deuterated 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholines that match the acyl chain length of stearoyl-SM (SSM), and compared their deuterium quadrupole coupling profiles in detail. The results suggest a deeper distribution of Chol in the SSM membranes, a lower entropic penalty upon accommodation of Chol in SSM membranes, and a higher thermal stability of acyl-chain orders in the SSM-Chol bilayers than in the 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine-Chol system at various Chol concentrations. The entropy effect and thermal stability should render SM a more preferred raft constituent than saturated diacyl glycerophosphocholine. Our data also demonstrate that the selective and comprehensive deuteration strategy is indispensable for accurate comparison of order profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号