首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of three flavonoids, 5,7,3',4'-tetrahydoxy-3-methoxy flavone (THMF), luteolin, and quercetin, on the stimulus-induced superoxide generation and tyrosyl phosphorylation of proteins in human neutrophils were investigated. When the cells were preincubated with these flavonoids, the superoxide generation induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) was significantly suppressed, showing a dependence on amounts of the flavonoid. The suppressing effect of the flavonoid was THMF > luteolin > quercetin. These flavonoids also suppressed the superoxide generation induced by phorbol 12-myristate 13-acetate. In this case also, THMF was more effective than luteolin and quercetin. On the other hand, the superoxide generation induced by arachidonic acid was markedly suppressed by quercetin. The suppressing effect was quercetin > THMF > luteolin. THMF, luteolin, and quercetin significantly suppressed tyrosyl phosphorylation of 80.1-, 58.0-, and 45.0-kDa proteins in fMLP-treated human neutrophils. The suppression depended on the concentration of the flavonoids, and the inhibition of tyrosyl phosphorylation was in parallel to that of the fMLP-induced superoxide generation, respectively. While luteolin and quercetin showed a weak hemolytic activity at 2.5 mM, THMF showed almost no hemolytic activity even at 5 mM, suggesting an advantage of THMF for its clinical use.  相似文献   

2.
The protective effects of nine flavonoids, including apigenin, eriodictyol, 3-hydroxyflavone, kaempherol, luteolin, quercetin, rutin, and taxifolin (Table 1), on the cytotoxicity of linoleic acid hydroperoxide (LOOH) toward rat pheochromocytoma PC12 cells were examined. The cytotoxicity was assessed by the trypan blue exclusion test and so-called MTT assay. When cells were preincubated with each flavonoid prior to LOOH exposure, quercetin, 3-hydroxyflavone, or luteolin decreased LOOH cytotoxicity toward undifferentiated cells, while only luteolin decreased efficiently LOOH cytotoxicity toward differentiated cells. On the other hand, when cells were coincubated with each flavonoid and LOOH, kaempherol, eriodictyol, quercetin, 3-hydroxyflavone, luteolin, or taxifolin decreased LOOH cytotoxicity toward undifferentiated and differentiated cells. On both preincubation prior to LOOH exposure and coincubation with LOOH, luteolin acted as the most efficiently protective agent against LOOH cytotoxicity. Further, these flavonoids showed protective effects on coincubation rather than preincubation. Flow cytometry using the fluorescence probe 2',7'-dichlorofluorescin diacetate revealed that LOOH increases the intracellular level of reactive oxygen species in undifferentiated cells in a dose-dependent manner, and that desferrioxamine mesylate suppresses the LOOH-induced increase in the level. These flavonoids suppress the LOOH-induced increase. Further, the protective effect of flavonoids on LOOH cytotoxicity correlates with the suppression of the LOOH-induced increase. These results suggest that such flavonoids are beneficial for neuronal cells under oxidative stress.  相似文献   

3.
Kim BG  Lee YJ  Lee S  Lim Y  Cheong Y  Ahn JH 《Journal of biotechnology》2008,138(3-4):107-111
O-Methylated flavonoids are biosynthesized by regioselective flavonoid O-methyltransferases (OMTs), which may account for the limited number of naturally occurring flavonoids in nature. It was previously shown that poplar POMT-7 regioselectively methylates the 7-hydroxyl group of flavones, whereas rice ROMT-9 regioselectively methylates the 3'-hydroxyl group of the substrate. We co-expressed both OMT genes (POMT-7 and ROMT-9) in E. coli and carried out biotransformation experiments of some flavonoids with the transformed E. coli strain. Contrast to the predicted regioselectivity of both POMT-7 and ROMT-9, unexpected methylation reaction products, i.e. 3',4'-O-methylated flavonoids, in addition to the predicted ones, were obtained with luteolin (5,7,3',4'-tetrahydroxyflavone) and quercetin (3,5,7,3',4'-pentahydroxyflavone) as substrates. Reactions using the 3'-O-methyl derivative of luteolin and quercetin by POMT-7 revealed that the enzyme has altered its regioselectivity from the 7- to the 4'-hydroxyl groups. These results are discussed in terms of molecular modeling of POMT-7 in relation to its methyl donor.  相似文献   

4.
In pollen, flavonoids are usually found as glycosides and in particular, flavonol 3-O-diglycosides. However, in members of the Myrtaceae, subfamily Leptospermoideae, the rare flavone aglycone tricetin, along with other flavonoid aglycones including 3-O-methyl quercetin and luteolin, have been found to comprise a significant portion of the constituent flavonoids.  相似文献   

5.
A survey of the flavonoids of some 92 species of Australian Cyperus, mainly of subtropical or tropical origin, has confirmed a correlation previously reported in this family between flavonoid pattern and plant geography. The pattern found was similar to that of African and South American Cyperaceae, particularly in the occurrence of the rare marker substance, luteolin 5-methyl ether. Tricin and luteolin are relatively common, in glycosidic form, in the leaves while the flavonol quercetin is infrequent. When present, quercetin occurs either in glycosidic form or free as a methyl ether. The 3-monomethyl and 3, 7-dimethyl ethers of kaempferol and quercetin and the 3, 7, ?-trimethyl ether of quercetin are reported for the first time from the Cyperaceae. The flavonoid pattern of inflorescences is distinct from that of the leaves in that tricin is not detectable and that luteolin 5-methyl ether appears to be replaced by 7, 3′, 4′-trihydroxyflavone. In addition, the aurone aureusidin is more commonly present than in the leaves and is occasionally accompanied by two further aurones. The glycoxanthones mangiferin and isomangiferin occur rarely in all three species examined in the section Haspani, i.e. in C. haspan, C. prolifer and C. tenuispica. In general, however, the flavonoid data do not offer any markers which separate off different sections within the genus; there are, however, some significant correlations between the frequency of the flavonoid classes and subgeneric groupings.  相似文献   

6.
Four flavonoids, baicilein, luteolin, naringenin, and quercetin were investigated for their ability to suppress the Fenton reaction characteristic of the iron-ATP complex. Absorption spectroscopy indicates that under the conditions of 18.75% aqueous methanol, 0.0625 mM HEPES pH 7.4 buffer and 1.5:1 quercetin/iron-ATP ratio a mix ligand complex formed. All four flavonoids were found to interfere with the voltammetric catalytic wave associated with the iron-ATP complex in the presence of H2O2. Quercetin and luteolin were able to completely suppress the catalytic wave of the iron-ATP/H2O2 system when a minimum ratio of 1.5:1 of the flavonoid to iron-ATP was reached. At this ratio, the ability of the studied series of flavonoids to suppress the Fenton reaction characteristic of iron-ATP follows as quercetin luteolin > naringenin baicilein. Both quercetin and luteolin contain catechol on the B ring, which may enhance the iron chelation of these species over baicilein and naringenin. The common structural feature of all of these flavonoids is the 4-keto, 5-hydroxy region, which may also contribute to the chelation of iron.  相似文献   

7.
8.
GSH was readily depleted by a flavonoid, H(2)O(2), and peroxidase mixture but the products formed were dependent on the redox potential of the flavonoid. Catalytic amounts of apigenin and naringenin but not kaempferol (flavonoids that contain a phenol B ring) when oxidized by H(2)O(2) and peroxidase co-oxidized GSH to GSSG via a thiyl radical which could be trapped by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) to form a DMPO-glutathionyl radical adduct detected by ESR spectroscopy. On the other hand, quercetin and luteolin (flavonoids that contain a catechol B ring) or kaempferol depleted GSH stoichiometrically without forming a thiyl radical or GSSG. Quercetin, luteolin, and kaempferol formed mono-GSH and bis-GSH conjugates, whereas apigenin and naringenin did not form GSH conjugates. MS/MS electrospray spectroscopy showed that mono-GSH conjugates for quercetin and luteolin had peaks at m/z 608 [M + H](+) and m/z 592 [M + H](+) in the positive-ion mode, respectively. (1)H NMR spectroscopy showed that the GSH was bound to the quercetin A ring. Spectral studies indicated that at a physiological pH the luteolin-SG conjugate was formed from a product with a UV maximum absorbance at 260 nm that was reducible by potassium borohydride. The quercetin-SG conjugate or kaempferol-SG conjugate on the other hand was formed from a product with a UV maximum absorbance at 335 nm that was not reducible by potassium borohydride. These results suggest that GSH was oxidized by apigenin/naringenin phenoxyl radicals, whereas GSH conjugate formation involved the o-quinone metabolite of luteolin or the quinoid (quinone methide) product of quercetin/kaempferol.  相似文献   

9.
Achyrocline satureioides (Lam) D.C (Compositae) is a native medicinal plant of South America traditionally utilized for its anti-inflammatory, sedative and anti-atherosclerotic properties among others. Neuroprotective effects have been reported in vivo and could be associated to its elevated content of flavonoid aglycones. In the present study we performed the isolation and structure elucidation of the major individual flavonoids of A. satureioides along with the in vitro characterization of their individual antioxidant and neuroprotective properties in order to see their putative relevance for treating neurodegeneration.Exact mass, HPLC-MS/MS and 1H NMR identified dicaffeoyl quinic acid isomers, quercetin, luteolin, isoquercitrin, and 3-O-methylquercetin as the mayor polyphenols. Flavonoids intrinsic redox properties were evaluated in the presence of the endogenous antioxidants GSH and Ascorbate. Density Functional Theory (DFT) molecular modeling and electron density studies showed a theoretical basis for their different redox properties. Finally, in vitro neuroprotective effect of each isolated flavonoid was evaluated against hydrogen peroxide-induced toxicity in a primary neuronal culture paradigm. Our results showed that quercetin was more efficacious than luteolin and isoquercitrin, while 3-O-methylquercetin was unable to afford neuroprotection significantly. This was in accordance with the susceptibility of each flavonoid to be oxidized and to react with GSH. Overall our results shed light on chemical and molecular mechanisms underlying bioactive actions of A. satureioides main flavonoids that could contribute to its neuroprotective effects and support the positive association between the consumption of A. satureioides as a natural dietary source of polyphenols, and beneficial health effect.  相似文献   

10.
Most flavonoids found in plants exist as glycosides, and glycosylation status has a wide range of effects on flavonoid solubility, stability, and bioavailability. Glycosylation of flavonoids is mediated by Family 1 glycosyltransferases (UGTs), which use UDP-sugars, such as UDP-glucose, as the glycosyl donor. AtGT-2, a UGT from Arabidopsis thaliana, was cloned and expressed in Escherichia coli as a gluthatione S-transferase fusion protein. Several compounds, including flavonoids, were tested as potential substrates. HPLC analysis of the reaction products indicated that AtGT-2 transfers a glucose molecule into several different kinds of flavonoids, eriodictyol being the most effective substrate, followed by luteolin, kaempferol, and quercetin. Based on comparison of HPLC retention times with authentic flavonoid 7-O-glucosides and nuclear magnetic resonance spectroscopy, the glycosylation position in the reacted flavonoids was determined to be the C-7 hydroxyl group. These results indicate that AtGT-2 encodes a flavonoid 7-O-glucosyltransferase.  相似文献   

11.
The MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay is widely accepted as a simple and reproducible method for determining cell proliferation or cytotoxicity in vitro. In this study, we show that the flavonoids quercetin, rutin and luteolin but not apigenin can reduce MTT in the absence of live cells in the following order: quercetin >> rutin > luteolin > apigenin. Moreover, this reduction can be influenced by medium type and serum. The final concentrations of the flavonoids used were 200, 100, 50, 25 and 12.5 μg/mL. MTT reduction in Dulbecco’s Modified Eagle’s Medium (DMEM) is statistically higher than those in RPMI 1640 and F12 media, which are generally similar. Particularly for luteolin, MTT reduction is considerably higher with serum than without serum. In the case of quercetin at 50 μg/mL, a serum concentration of even only 0.01% is sufficient to significantly enhance MTT reduction versus that at 0% (P < 0.05). Serum at concentrations ranging from 0% to 5% also dose-dependently affects the pattern of formazan crystal formation. In the presence of 0.156–5% serum, the formazan crystals gradually change from being small, numerous and scattered to being large, few and clumpy. The authors hypothesize that flavonoid structure, nutrient concentration in the culture medium as well as serum components directly affect MTT reduction by flavonoids in the absence of cells.  相似文献   

12.
Regioselectivity of 7-O-methyltransferase of poplar to flavones   总被引:1,自引:0,他引:1  
POMT-7, an O-methyltransferase from poplar (Populus deltoids) was used to modify a variety of flavonoid compounds. POMT-7 was able to transfer a methyl group to several flavonoids containing a C-7 hydroxyl group. However, POMT-7 showed a higher affinity toward flavonol and flavone such as apigenin, kaempferol, luteolin, and quercetin than flavanone and isoflavone. Based on comparison of HPLC retention times with authentic compounds and corresponding nuclear magnetic resonance spectroscopy data, the methylation position of the reaction products was determined to be at the hydroxyl group of C-7. Biotransformation kinetics indicated that the enzyme converted more than 80% of the apigenin, kaempferol, luteolin and quercetin substrates, which were added at concentration of 70 microM, into corresponding 7-methoxy compounds within 24 h.  相似文献   

13.
Antioxidative flavonoids, ubiquitously included in vegetables, fruits and teas, are expected to prevent degenerative diseases. It is unclear, however, whether flavonoids can enter the cellular nuclei and suppress the oxidative damage of DNA. Here, several flavonoids at the physiological concentration of 10 microM were dosed to 2.5x10(7) HepG2 cells. The nuclei were isolated and determined in the incorporated flavonoid levels, and simultaneously exposed to reactive oxygen generated from 25 mM of 2,2'-azobis(2-amidinopropane) dihydrochloride. Most of the tested flavonoids were incorporated into the cells in the range between 1000 and 1600 pmol/10(7) cells, and were in the nuclei at 250-450 pmol/10(7) cells at the maximum incorporation after 30min of cell incubation. In the cells, 23% of quercetin (3,5,7,3',4'-OH) and 8% of luteolin (5,7,3',4'-OH) were the original aglycone forms and the others were the methylated and gulucuronide/sulfate conjugates, while 72% of kaempferol (3,5,7,4'-OH) and 85% of apigenin (5,7,4'-OH) were aglycones and located in the nuclei at the similar ratio of metabolites. Quercetin and luteolin significantly suppressed the formation of 8-oxo-7,8-dihydrodeoxyguanosine by 25% and 15%, respectively, compared to those in 0-time incubated cells with the flavonoids. Under such conditions of low level and hydroxyl-masked in the nuclei, the limited flavonoids were bioavailable antioxidants to prevent genetic damage and they were B-ring catechols such as quercetin and luteolin.  相似文献   

14.
Ethanol extract of the aerial parts of Achyrocline satureioides (Lam.) DC. (Asteraceae) showed a significant, dose dependent, relaxant effect on the smooth muscle of corpus cavernosum strips, obtained from Guinea pig (65.5 +/- 4.1% of relaxation at the dose of 25.0 mg/ml). Bioassay guided fractionation of this extract furnished two flavonoids, quercetin and quercetin 3-methyl ether, with important vasorelaxing effects on the corpus cavernosum strips (79.8 +/- 8.4 and 66.0 +/- 4.8% of relaxation respectively at the dose of 0.075 mg/ml). Two methyl derivatives of quercetin obtained by synthesis, quercetin 3,7,3',4'-tetramethylether and quercetin 3,5,7,3',4'-pentamethylether, showed similar relaxant effects at the dose of 0.075 mg/ml (86.4 +/- 8.5 and 67.31 +/- 1.4% of relaxation respectively). The results show that the ethanol extract of A. satureioides and the assayed compounds exhibit significant vasorelaxing properties. Additionally, it is shown that the number of methyl groups in the quercetin nucleus has no significant influence on the effectiveness of these compounds.  相似文献   

15.
Specimens from natural populations of Muhlenbergia montana (Nutt.) Hitch. and related species were analysed for their flavonoid content. Twenty-four flavonoids from 14 species were separated and 22 of the compounds identified. Most were glycosylated derivatives of luteolin, apigenin and tricin. Two flavonols, quercetin 3-O-rutinoside and quercetin 3-O-glycoside, and two flavanones were also identified. Flavonoid patterns were distinct for all perennial species and identical for the two annual species examined. Phenetic analysis of the flavonoid characters does not support the inclusion of the annual species M. crispiseta and M. peruviana as part of the M. montana complex.  相似文献   

16.
Bulk electrolysis of the antioxidant flavonoids quercetin and kaempferol in acetonitrile both yield a single oxidation product in two-electron processes. The oxidation products are more polar than their parent compounds, with an increased molecular weight of 16 g/mol, and were identified as 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone and 2-(4-hydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone for quercetin and kaempferol, respectively. Two-electron oxidation of the parent flavonoid is suggested to yield a 3,4-flavandione with unchanged substitution pattern in the A- and B-ring, which may rearrange to form the substituted 3(2H)-benzofuranone through the chalcan-trione ring-chain tautomer. The acidity of the 3-OH group is suggested to determine the fate of the flavonoid phenoxyl radical, originally formed by one-electron oxidation, as no well-defined oxidation product of luteolin (lacking the 3-OH group) could be isolated despite rather similar half-peak potentials: EP/2 = 0.97 V, 0.98 V and 1.17 V vs. NHE for quercetin, kaempferol and luteolin, respectively, as measured by cyclic voltammetry in acetonitrile.  相似文献   

17.
Melittis melissophyllum L., a medicinal plant currently used in the folk medicine, was analyzed for the content of flavonoid compounds. The plants were collected in two locations in Poland in May and September. MeOH Extracts from the leaves and flowers (separately) were analyzed by HPLC‐DAD. Eight compounds were identified in all the samples and quantitatively analyzed as cinaroside (=luteolin 7‐O‐glucoside), rutin, myricetin, quercitrin, quercetin, luteolin, kaempferol, and apigenin. M. melissophyllum accumulated the highest total amounts of flavonoids in May (flowers: from 258 to 271 mg/100 g dry weight (dw); leaves: from 143 to 155 mg/100 g dw) and significantly lower ones in September (leaves: from 83 to 92 mg/100 g dw). The main compound was cinaroside (May: up to 249 mg/100 g dw; September: up to 43 mg/100 g dw). Advanced multivariate statistical techniques (cluster analysis (CA) and principal component analysis (PCA)) were used to characterize the sample populations and to analyze the data. We report, for the first time, the results of the quantitative analysis of M. melissophyllum flavonoids and seasonal changes in their accumulation. Our results show that the time of harvesting has a significant influence on the flavonoid content in M. melissophyllum, while the geographical location does not have such an effect.  相似文献   

18.
BACKGROUND: Plant-derived flavonoids, which occur abundantly in our daily dietary intake, possess antitumor, antibacterial, and free radical scavenging properties. They form active constituents of a number of herbal and traditional medicines. Several flavonoids have been shown to exert their action by interacting with DNA topoisomerases and promoting site-specific DNA cleavage. Therefore, flavonoids are potential candidates in drug design. We report here that, although the flavonoids luteolin and quercetin are potent antileishmanial agents, luteolin has great promise for acting as a lead compound in the chemotherapy of leishmaniasis, a major concern in developing countries. MATERIALS AND METHODS: Kinetoplast DNA (kDNA) minicircle cleavage in drug-treated parasites was measured by electrophoresis of the total cellular DNA, followed by Southern hybridization using 32P labeled kDNA as a probe. Cell cycle progression and apoptosis were measured by flow cytometry using propidium iodide and fluorescein isothiocyanate (FITC)-labeled Annexin V. RESULTS: Luteolin and quercetin inhibited the growth of Leishmania donovani promastigotes and amastigotes in vitro, inhibited DNA synthesis in promastigotes, and promoted topoisomerase-II-mediated linearization of kDNA minicircles. The IC50 values of luteolin and quercetin were 12.5 microM and 45.5 microM, respectively. These compounds arrest cell cycle progression in L. donovani promastigotes, leading to apoptosis. Luteolin has no effect on normal human T-cell blasts. Both luteolin and quercetin reduced splenic parasite burden in animal models. CONCLUSION: Luteolin and quercetin are effective antileishmanial agents. Quercetin has nonspecific effects on normal human T cells, but luteolin appears nontoxic. So, luteolin can be a strong candidate for antileishmanial drug design.  相似文献   

19.
Flavonoids are a large family of plant polyphenolic secondary metabolites. Although they are widespread throughout the plant kingdom, some flavonoid classes are specific for only a few plant species. Due to their presumed health benefits there is growing interest in the development of food crops with tailor-made levels and composition of flavonoids, designed to exert an optimal biological effect. In order to explore the possibilities of flavonoid engineering in tomato fruits, we have targeted this pathway towards classes of potentially healthy flavonoids which are novel for tomato. Using structural flavonoid genes (encoding stilbene synthase, chalcone synthase, chalcone reductase, chalcone isomerase and flavone synthase) from different plant sources, we were able to produce transgenic tomatoes accumulating new phytochemicals. Biochemical analysis showed that the fruit peel contained high levels of stilbenes (resveratrol and piceid), deoxychalcones (butein and isoliquiritigenin), flavones (luteolin-7-glucoside and luteolin aglycon) and flavonols (quercetin glycosides and kaempferol glycosides). Using an online high-performance liquid chromatography (HPLC) antioxidant detection system, we demonstrated that, due to the presence of the novel flavonoids, the transgenic tomato fruits displayed altered antioxidant profiles. In addition, total antioxidant capacity of tomato fruit peel with high levels of flavones and flavonols increased more than threefold. These results on genetic engineering of flavonoids in tomato fruit demonstrate the possibilities to change the levels and composition of health-related polyphenols in a crop plant and provide more insight in the genetic and biochemical regulation of the flavonoid pathway within this worldwide important vegetable.  相似文献   

20.
The flavonoids of the Tiarella trifoliata L. complex consists of kaempferol, quercetin and myricetin-3-O-mono-, di- and triglycosides, kaempferol and quercetin-7-O-monoglycosides, kaempferol-3,7-O-monoglycosides and luteolin. Infrapopulationa and interpopulational variations were seen in the distribution of several of these types of compounds. The flavonoid data do not support recognition of separate species for the three taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号