首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shortening the dry period (DP) has been proposed as a strategy to improve energy balance (EB) in cows in early lactation. This study evaluated the effects of shortening the DP on milk yield (MY), EB and residual feed intake (RFI) in two breeds; Swedish Red (SR) and Swedish Holstein (SH). Cows were blocked by breed and parity and then randomly assigned to one of two treatments; short DP of 4 weeks (4W, n=43) or conventional DP of 8 weeks (8W, n=34). Cows were kept and fed under the same conditions, except for the 4 weeks when the 4W group were still lactating prepartum and thus kept with the lactating cows. Milk yield and BW were recorded and body condition score (BCS) was rated from 10 weeks prepartum to 12 weeks postpartum. Dry matter intake (DMI) was recorded for lactating cows postpartum. Milk yield was reduced by 6.75 kg/day during the first 12 weeks postpartum (P<0.001) for the 4W cows compared with 8W cows, but there was no significant difference in total MY (3724 kg compared with 3684 kg, P=0.7) when the milk produced prepartum was included. Protein content was higher in 4W cows (3.42%) than in 8W cows (3.27%) (P<0.001) postpartum. In the 8W group, cows lost more BCS after calving (P<0.05). Cows of SR breed had higher BCS than cows of SH breed (SR=3.7, SH=3.2, P<0.001), but no differences in BW were found between breed and treatment. Energy balance was improved for cows in the 4W group (P<0.001), while feed efficiency, expressed as RFI, was reduced for 4W cows than for 8W cows (5.91 compared with −5.39, P<0.01). Shortening the DP resulted in improved EB postpartum with no difference between the breeds and no milk losses when including the milk produced prepartum.  相似文献   

2.
3.
The endocannabinoid system (ECS) controls feed intake and energy balance in nonruminants. Recent studies suggested that dietary management alters the expression of members of the ECS in the liver and endometrium of dairy cows. The aim of this study was to determine the relationship between body condition score (BCS) loss and the mRNA abundance of genes related to fatty acid metabolism and the ECS in the subcutaneous adipose tissue (AT) of dairy cows. The BCS was determined in multiparous (3.2 ± 0.5 lactations) Holstein cows at −21 and 42 days relative to calving (designated as d = 0). Cows were grouped into three categories according to BCS loss between both assessments as follows: (1) lost ≤0.25 unit (n = 8, low BCS loss (LBL)), (2) lost between 0.5 and 0.75 units (n = 8, moderate BCS loss (MBL)) and (3) lost ≥1 unit (n = 8, high BCS loss (HBL)). Concentrations of haptoglobin and non-esterified fatty acids (NEFAs) were determined in plasma. Real-time PCR was used to determine mRNA abundance of key genes related to fatty acid metabolism, inflammation and ECS in AT. Milk yield (kg/day) between week 2 and 6 post-calving was greater in the LBL group (49.4 ± 0.75) compared to MBL (47.9 ± 0.56) and HBL (47.4 ± 0.62) groups (P < 0.05). The overall mean plasma haptoglobin and NEFA concentrations were greater in MBL and HBL groups compared with the LBL group (P < 0.05). The mRNA abundance of TNF-α, Interleukin-6 (IL-6) and IL-1β was greatest at 21 and 42 days post-calving in HBL, intermediate in MBL and lowest in LBL groups, respectively. Cows in the HBL group had the greatest AT gene expression for carnitine palmitoyltransferase 1A, hormone sensitive lipase and adipose triglyceride lipase at 21 and 42 days post-calving (P < 0.05). Overall, mRNA abundance for very long chain acyl-CoA dehydrogenase and peroxisome proliferator-activated receptor gamma, which are related to NEFA oxidation, were greater in MBL and HBL groups compared to the LBL group at 42 days post-calving. However, mRNA abundance of fatty acid amide hydrolase was lower at 21 and 42 days post-calving in HBL cows than in LBL cows (P < 0.05). In summary, results showed a positive association between increased degree of BCS loss, inflammation and activation of the ECS network in AT of dairy cows. Findings suggest that the ECS might play an important role in fatty acid metabolism, development of inflammation and cow’s adaptation to onset of lactation.  相似文献   

4.
We hypothesised that hydrogenated fat (HF)-spray-coated β-carotene (βC) supplement could be used to increase plasma βC concentration and conception rates after embryo transfer (ET) in Hanwoo beef cows. In Experiment 1, 12 multiparous Hanwoo cows were fed one of four experimental diets in a triplicate 4 × 4 Latin square design for a 28-day period. Treatments included no βC addition (control), HF-uncoated βC (HFuβC), HF-spray-coated βC (HFβC), and HF-spray-coated βC and vitamin A (HFβCA). The cows under βC-supplemented treatments were fed 400 mg/day of βC, and a daily intake for vitamin A of HFβCA treatment was 30 000 IU/day as retinyl acetate. Blood was collected on days 0, 26, 27, and 28 to analyse βC and other metabolite concentrations. In Experiment 2, 199 Hanwoo cows with low fertility were randomly assigned to either control (n = 99) or HFβC treatments (n = 100) based on the results of Experiment 1. The oestrus of the cows was synchronised for ET. The HFβC group was fed from 4 weeks before to 4 weeks after ET with a daily intake of 400 mg βC. Pregnancy for conception rates was diagnosed on day 60 after ET, and blood was collected for βC concentrations on the day before ET. Supplementing βC resulted in a high plasma βC concentration (P < 0.001). Supplementing HFβC or HFβCA resulted in higher βC concentrations than HFuβC (P < 0.001); however, there was no difference between HFβC and HFβCA groups. Plasma retinol concentration was lower in the HFβCA treatment than in the control and HFβC groups (P < 0.05). Blood metabolites were unaffected by the treatments. The retinol:βC ratio was lower in the βC-supplemented treatments than in the controls, and was lower in HFβC and HFβCA than in HFuβC groups (P < 0.001). Plasma βC concentration was positively correlated with plasma high-density lipoprotein, low-density lipoprotein, and total cholesterol (P < 0.05). Plasma retinol concentration was negatively associated with plasma protein (P < 0.01), but positively associated with plasma creatinine (P < 0.001) and urea (P < 0.01). Supplementing HFβC to low-fertility cows resulted in higher plasma βC concentration (P < 0.001) and conception rates (P = 0.024) than those in the controls. In conclusion, HFβC had a better bioavailability than HFuβC, and an increase in conception rates by supplementing HFβC may be beneficial for producing more calves given the low pregnancy rates of bovine ET in Korea.  相似文献   

5.
This study investigated the relationships of thyroid hormones, serum energy metabolites, reproductive parameters, milk yield and body condition score with the different patterns of postpartum luteal activity in the postpartum period. A total of 75 multiparous healthy (free of detectable reproductive disorders) Holstein dairy cows (mean peak milk yield = 56.5 ± 7.0 kg/day) were used in this study. Transrectal ultrasound scanning and blood sample collection were performed twice weekly. Serum concentrations of progesterone (P4) were measured twice weekly and beta-hydroxybutyrate (BHBA), non-esterified fatty acids, thyroxine (T4), 3,30,5-tri-iodothyronine (T3), free thyroxine (fT4) and free 3,30,5-tri-iodothyronine (fT3) were measured every 2 weeks from the 1st to the 8th week postpartum. On the basis of the serum P4 profile of the cows, 25 (33.4%) had normal luteal activity (NLA), whereas 30 (40%), 10 (13.3%), 6 (8%) and 4 (5.3%) had prolonged luteal phase (PLP), delayed first ovulation (DOV), anovulation (AOV) and short luteal phase, respectively. Serum T4 concentrations in PLP cows were higher than that in NLA cows at the 3rd week postpartum and did not change during the period of study, whereas in the NLA cows the concentrations increased (P < 0.05). Further, the least square (LS) mean of serum fT4 concentrations in the DOV and AOV cows were significantly lower than in the NLA cows during the study period (P < 0.05). In addition, the AOV cows had higher LS mean serum BHBA and T4 concentrations than the NLA cows in early weeks postpartum (P < 0.05). In conclusion, the serum thyroid hormones’ profile differs in high-producing dairy cows showing PLP, AOV and DOV in comparison with the postpartum NLA cows.  相似文献   

6.
This study evaluated the effects of supplemental low- and high-purity glycerine on silage intake, milk yield and composition, plasma metabolites and body condition score (BCS) in dairy cows. A total of 42 cows of the Swedish Red Breed, housed in individual tie stalls, were fed 0.25 kg of low- or high-purity glycerine on top of concentrate, twice daily, during the first 4 weeks of lactation. One-third of the cows acted as controls, receiving no glycerine. Silage was fed for ad libitum intake and concentrate was fed at restricted level of intake, about 6 kg/day for primiparous cows and 7 kg/day for multiparous cows. Feed refusals were weighed daily. Cows were milked twice daily, milk yield was recorded on four occasions per week and milk samples were collected simultaneously. Blood samples were drawn from the coccygeal vessel once a week. Low- and high-purity glycerine had no effect on silage or total dry matter intake (P = 0.38 and P = 0.75, respectively) or on BCS (P = 0.45). Cows fed high-purity glycerine tended to have higher milk yield than control cows (P = 0.06). Milk composition tended to differ among treatments. No main effects of treatment on concentration of glycerine (P = 0.44), glucose (P = 0.78), insulin (P = 0.33), non-esterified fatty acids (P = 0.33) and β-hydroxybutyrate (P = 0.15) in plasma. These data indicate that high-purity glycerine has the potential to increase milk yield, as well as enhance the milk protein concentration and milk fat + protein yield.  相似文献   

7.
Multiparous Angus×Simmental cows (n=54, 5.22±2.51 years) with male progeny were fed one of two diets supplemented with either dried distillers grains with solubles (DDGS) or soybean meal (CON), from calving until day 129 postpartum (PP) to determine effects of excess protein and fat on cow performance, milk composition and calf growth. Diets were formulated to be isocaloric and consisted of rye hay and DDGS (19.4% CP; 8.76% fat), or corn silage, rye hay and soybean meal (11.7% CP; 2.06% fat). Cow–calf pairs were allotted by cow and calf age, BW and breed. Cow BW and body condition score (BCS; P⩾0.13) were similar throughout the experiment. A weigh-suckle-weigh was performed on day 64 and day 110±10 PP to determine milk production. Milk was collected on day 68 and day 116±10 PP for analysis of milk components. Milk production was unaffected (P⩾0.75) by dietary treatments. Milk urea nitrogen was increased at both time points in DDGS compared with CON cows (P<0.01). Protein was decreased (P=0.01) and fat was increased (P=0.01) in milk from DDGS compared with CON cows on day 68 PP. Compared to CON, DDGS decreased medium chain FA (P<0.01) and increased long chain FA (P<0.01) at both time points. Saturated FA content of milk was decreased (P<0.01) at both time-points in DDGS compared with CON cows, which resulted in an increase (P<0.01) in monounsaturated and polyunsaturated FA, including cis-9, trans-11 conjugated linoleic acid. Daily gain of the DDGS calves was increased (P=0.01) compared with CON calves, resulting in heavier BW on day 129 (P=0.01). Heavier BW of DDGS calves was maintained through weaning (P=0.01). Timed-artificial insemination (TAI) rates were greater for cows fed DDGS compared with cows fed CON (P<0.02), but dietary treatment had no effect on overall pregnancy rates (P=0.64). In summary, feeding DDGS to lactating beef cows did not change cow BW or BCS, but did improve TAI rates and altered milk composition compared with CON. As a result, male progeny from cows fed DDGS during lactation had greater average daily gain and were heavier at day 129 and at weaning compared with male progeny from cows fed a control diet.  相似文献   

8.
Conjugated linoleic acid (CLA) dietary supplementation reduces milk fat content and yield, but its effects on lipid metabolism and energy status remain controversial. The objective of this study was to investigate the effects of dietary CLA on adipose tissue (AT) mRNA abundance of genes related to lipid metabolism, plasma indicators of metabolic status, body condition score (BCS) and BW changes in dairy cows. Sixteen multiparous Holstein cows (3.2 ± 1.4 lactations, 615 ± 15 kg BW) were randomly assigned to treatments: 1) CLA; rumen-protected CLA (75 g/d) or 2) Control; equivalent amount of rumen inert fatty acid (FA) as the previous diet (78 g/d), from − 20.2 ± 3.2 (mean ± SEM) to 21 d relative to calving (d 0). Subcutaneous AT was biopsied from the tail-head region at d 21 to determine the mRNA abundance of genes related to lipid metabolism. Blood samples were collected at − 20.2 ± 3.2, 0, 7, 14 and 21 d relative to calving to determine plasma non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHBA), insulin and glucose. Conjugated linoleic acid decreased milk fat yield and milk fat content by 15 and 16%, respectively. Cows fed CLA had lower plasma NEFA and BHBA and greater glucose and insulin concentrations (P < 0.05). Mean BCS at 21 d postpartum was greater (P < 0.01; 2.89 vs 2.25), and BCS loss from the day of enrollment to 21 d postpartum was reduced (P < 0.01; − 0.13 vs − 0.64) in the CLA group. The expression of acylcoenzyme A oxidase, carnitine palmitoyltransferase 1A, hormone-sensitive lipase, β2 adrenergic receptor and acetyl-CoA carboxylase was downregulated by CLA supplementation, whereas the expression of sterol regulatory element binding protein, lipoprotein lipase and peroxisome proliferator-activated receptor gamma was upregulated (P < 0.01). In summary, CLA-supplemented cows showed signs of better metabolic status and less severe fat mobilization. Moreover, CLA increased mRNA abundance of genes related to lipogenesis and decreased mRNA abundance of genes related to FA oxidation and lipolysis in the AT of dairy cows during early lactation.  相似文献   

9.
Expression of estrus near timed artificial insemination (TAI) is associated with greater fertility, and estrus detection could improve TAI fertility or direct TAI management, although accurate estrus detection can be difficult and time-consuming using traditional methods. The aim of this study is to evaluate influence of estrus on pregnancy (artificial insemination pregnancy rates (P/AI)) and to validate an alternative method to classify estrus/heat expression using tail chalking (HEATSC) in postpartum Bos indicus cows subjected to TAI in progesterone–estrogen-based protocols. In experiment 1 (Exp. 1), cows (5491) were subjected to visual observation of estrus after progesterone device removal, before TAI, and P/AI was evaluated according to estrus and body condition score (BCS). Cows received a progesterone device and 2 mg estradiol benzoate (EB). After 8 days, the device was removed and 150 μg of d-cloprostenol and 300 IU equine chorionic gonadotrophin was given. Later, animals in Exp. 1 received 1 mg EB and TAI 44 to 48 h. In the Exp. 2 – 3830 cows using similar protocol, received different ovulation inducers: 1 mg EB (n=1624) or 1 mg estradiol cypionate (EC; n=2206) on day 8 (D8). Cows were then marked with chalk, and HEATSC evaluated at TAI on D10 (HEATSC1 – no chalk removal=no estrus expression; HEATSC2 – partial chalk removal=low estrus expression; HEATSC3 – near complete/complete chalk removal=high estrus expression). In Exp. 1, cows showing estrus presented greater P/AI (48.4% v. 40.2%, P<0.05). In Exp. 2, P/AI (HEATSC1 – 40.0%; HEATSC2 – 49.7%; HEATSC3 – 60.9%; P<0.001), and larger follicle timed artificial insemination (LFTAI) (<0.001) varied according to HEATSC. There was no difference in P/AI (P=0.41) or LFTAI (P=0.33) according to ovulation inducer. Cows with greater BCS showed greater P/AI in both experiments (P<0.05). Estrus presence and greater HEATSC improved P/AI, and EC v. EB used promoted differential estrus manifestation (cows showing HEATSC2 and HEATSC3: 79.5% with EB v. 69.98% with EC use, P<0.001), however, with similar P/AI. The use of HEATSC in B. indicus cows subjected to TAI is useful to identify cows with greater estrus expression and consequently improved pregnancy rates in TAI, allowing the cows with low HEATSC to be targeted for additional treatments aimed at improving P/AI.  相似文献   

10.
In beef cows, reduced energy intake delays first ovulation postpartum and is associated with lesser insulin, IGF-I and leptin concentrations. However, the close relationship among these hormones mask their individual roles in the reinitiation of ovarian activity. A β-adrenergic receptor agonist (βAR) was used to increase body condition score (BCS) and yet reduce body fat and leptin serum concentration to determine the specific role of leptin in the postpartum ovarian activity. Beef cows (n=77) with BCS 3.1 ± 1.4 received 2 kg/day of feed containing 0 or 0.15 mg/kg of zilpaterol (a synthethic βAR), for 33 days. Estrus was induced with a progestin implant applied for 9 d and cows in estrus were bred by artificial insemination (AI). Zilpaterol administration increased (P<0.05) daily weight gain, muscle depth and BCS, with no changes in back fat depth, reducing fat to muscle ratio (P<0.05). At the time of AI, insulin (38%) and IGF-I (26%) concentrations were less in zilpaterol-treated cows (P<0.05), but leptin concentration was unaffected. Ovulation rate and animal with luteal activity after estrus induction were also reduced by 35% (P=0.05) and 56.5% (P=0.007), respectively, in zilpaterol-treated cows. Logistic regression estimates for BCS (P=0.016) and IGF-I concentration (P=0.03) were positively related with the occurrence of luteal activity. In addition, whilst back fat (P=0.009) had a positive effect on luteal activity, leptin concentration did not show a significant relationship. In conclusion, despite an increase in body weight and a positive change in BCS, the reduction in insulin and IGF-I concentrations, associated with βAR treatment, reduced the response to induction of estrus. However only IGF-I, but not leptin or insulin, significantly influenced the odds for the occurrence of luteal activity after estrous induction in cattle with poor BCS.  相似文献   

11.
The aim of this study was to determine the effect of butaphosphan and cyanocobalamin (BTPC) supplementation on plasma metabolites and milk production in postpartum dairy cows. A total of fifty-two Holstein cows were randomly assigned to receive either: (1) 10 ml of saline (NaCl 0.9%, control group); (2) 1000 mg of butaphosphan and 0.5 mg of cyanocobalamin (BTPC1 group); and (3) 2000 mg of butaphosphan and 1.0 mg of cyanocobalamin (BTPC2 group). All cows received injections every 5 days from calving to 20 days in milk (DIM). Blood samples were collected every 15 days from calving until 75 DIM to determine serum concentration of glucose, non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHB), cholesterol, urea, calcium (Ca), phosphorus (P), magnesium (Mg), aminotransferase aspartate (AST) and γ-glutamyltransferase (GGT). The body condition score (BCS) and milk production were evaluated from calving until 90 DIM. Increasing doses of BTPC caused a linear reduction in plasma concentrations of NEFA and cholesterol. Supplementation of BTPC also reduced concentrations of BHB but it did not differ between the two treatment doses. Milk yield and milk protein had a linear increase with increasing doses of BTPC. A quadratic effect was detected for milk fat and total milk solids according to treatment dose, and BTPC1 had the lowest mean values. Concentrations of glucose, urea, P, Mg, AST, GGT, milk lactose and BCS were not affected by treatment. These results indicate that injections of BTPC during the early postpartum period can reduce NEFA and BHB concentrations and increase milk production in Holstein cows.  相似文献   

12.
Strong genetic selection on production traits is considered to be responsible for the declined ability of dairy cows to ensure reproduction. The present study aimed to quantify the effect of genetic characteristics (breeds and genetic merit for production traits) and feeding systems (FS) on the ability of dairy cows to be inseminated. An experiment was conducted during 9 years on Normande and Holstein cows assigned to contrasted pasture-based FS. Diets were based on maize silage in winter and grazing plus concentrate in spring in the High FS; and on grass silage in winter and grazing with no concentrate during spring in the low FS. Within breed, cows were classified into two genetic groups with similar estimated breeding values (EBV) for milk solids: cows with high EBV for milk yield were included in a Milk-Group and those with high EBV for fat and protein contents were included in a Content-Group. Holstein produced more milk throughout lactation than Normande cows (+2294 kg in the High FS and +1280 kg in the Low FS, P<0.001) and lost more body condition to nadir (−1.00 point in the High FS and −0.80 kg in the Low FS, P<0.001). They also showed a poorer ability to be inseminated because of both a delayed commencement of luteal activity (CLA) and delayed first service (more days from start of the breeding season to first service, DAI1). Cows in the Milk-Group produced more milk than cows in the Content-Group, but milk solids production was similar. Cows in the Content-Group had earlier CLA than cows in the Milk-Group (P<0.01). Genetic group neither affected ovulation detection rate nor DAI1. Within breed and FS, cows with high genetic merit for milk yield had later CLA and DAI1. Cows in the High FS produced more milk and lost less condition to nadir than cows in the Low FS. FS did not affect dairy cows’ ability to be inseminated. However, cows with higher milk protein content, and presumably better energy balance, had earlier CLA (P<0.01) and DAI1 (P<0.10). In addition, higher milk yield was associated with poorer ovulation detection rate and oestrus intensity (P<0.05). The study showed that at similar EBV level for milk solids, selection for increased milk fat and protein content resulted in improved cyclicity and similar oestrous expression and submission rates compared with selection for increased milk yield.  相似文献   

13.
The purpose of this study was to evaluate the effects of supplementation of the by-product, brewers' grains and the bean curd pomance, on the performance of lactating cows and their ruminal characteristics. Through this, we wanted to increase resource utilization and to eliminate pollution from these by-products. Thirty-two Holstein lactating cows were allocated randomly into four dietary treatment groups. The experimental diets were formulated to be isoenergetic and isonitrogenous according to National Research Council (1989), and containing 35% corn silage, 20% alfalfa hay and 45% concentrates on DM basis. The dietary treatments consisted of the inclusion of different by-products sources. These included soybean bean (as the control), brewers' grains, bean curd pomance, and the mixed by-products (containing the same amount of brewers' grains and bean curd pomance). The experimental feeding lasted for eight weeks after one week of adaptation. In addition, four rumen cannulated Holstein cows were used in a 4×4 Latin square with 10-day period for collecting rumen samples. Results showed that cows that were fed the bean curd pomance diet produced significantly more milk than those that were fed the brewers' grains diet or the mixed by-product diet. The cows on the control diet produced significantly less milk than the other treatment groups (P<0.05). Both the control and brewers' grains groups consumed more feed than those in the bean curd pomance and mixed by-products diet groups (P<0.05). The cows that were fed the mixed by-products diet produced a significantly lower percentage of milk fat, total solids, milk protein and milk lactose than the others (P<0.05). The milk lactose percentage was significantly higher for cows that were fed the bean curd pomance than those fed the brewers' grains diet (P<0.05). Cows that were fed the bean curd pomance produced significantly more milk fat, total solids, milk protein and milk lactose than the others (P<0.05). Cows that were fed the mixed by-products diet produced significantly lower amount of milk fat, total solids and milk protein than the control and brewers' grains group (P<0.05). These diets did not significantly influence the body weight of the cows. It, however, significantly influenced the ruminal characteristics (P<0.05).  相似文献   

14.
Increasing the concentration of dietary lipid is a promising strategy for reducing methane (CH4) emissions from ruminants. This study investigated the effect of replacing grass silage with brewers’ grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. The experiment was a two×two factorial design comprising two breeds (LIMx, crossbred Limousin; and LUI, purebred Luing) and two diets consisting of (g/kg diet dry matter (DM)) barley straw (687) and grass silage (301, GS), or barley straw (763) and brewers’ grains (226, BG), which were offered ad libitum. Replacing GS with BG increased the acid-hydrolysed ether extract concentration from 21 to 37 g/kg diet DM. Cows (n=48) were group-housed in equal numbers of each breed across two pens and each diet was allocated to one pen. Before measurements of CH4, individual dry matter intake (DMI), weekly BW and weekly body condition score were measured for a minimum of 3 weeks, following a 4-week period to acclimatise to the diets. CH4 emissions were subsequently measured on one occasion from each cow using individual respiration chambers. Due to occasional equipment failures, CH4 measurements were run over 9 weeks giving 10 observations for each breed×treatment combination (total n=40). There were no differences between diets for daily DMI measured in the chambers (9.92 v. 9.86 kg/day for BG and GS, respectively; P>0.05). Cows offered the BG diet produced less daily CH4 than GS-fed cows (131 v. 156 g/day: P<0.01). When expressed either as g/kg DMI or kJ/MJ gross energy intake (GEI), BG-fed cows produced less CH4 than GS-fed cows (13.5 v. 16.4 g/kg DMI, P<0.05; 39.2 v. 48.6 kJ/MJ GEI, P<0.01). Breed did not affect daily DMI or CH4 expressed as g/day, g/kg DMI or kJ/MJ GEI (P>0.05). However, when expressed as a proportion of metabolic BW (BW0.75), LUI cows had greater DMI than LIMx cows (84.5 v. 75.7 g DMI/kg BW0.75, P<0.05) and produced more CH4 per kg BW0.75 than LIMx cows (1.30 v. 1.05 g CH4/kg BW0.75; P<0.01). Molar proportions of acetate were higher (P<0.001) and propionate and butyrate lower (P<0.01) in rumen fluid samples from BG-fed compared with GS-fed cows. This study demonstrated that replacing GS with BG in barley straw-based diets can effectively reduce CH4 emissions from beef cows, with no suppression of DMI.  相似文献   

15.
Three trials were conducted to examine the effect of GnRH injection on the reproductive performance of Friesian cows. In the first trial 100 μg gonadotrophin releasing hormone synthetic analogue (GnRH) was given at the time of A.I. to 32 cows while a control group received a saline placebo injection. Conception rate to first insemination was significantly higher in treated than control cows (81.3 v. 54.8%, P < 0.05).In the second trial, two groups of 19 cows each received either 100 μg GnRH or saline at 15 days postpartum. A total of 60 cows was used in the third trial in which GnRH was given at either 50 or 100 μg dose level on either days 7 or 15 postpartum while control cows were untreated. In both trials GnRH treatment reduced the intervals from calving to complete uterine involution, first ovulation and first detected oestrus. The effect was most pronounced when 100 μg GnRH was given on day 7 postpartum. Number of days open and number of services per conception were appreciably reduced when 100 μg GnRH was given at either 7 or 15 days postpartum with maximal effect when given 15 days after calving.  相似文献   

16.
Dietary melatonin supplementation during mid- to late-gestation increased umbilical artery blood flow and caused disproportionate fetal growth. This melatonin-induced increase in umbilical artery blood flow may alter nutrient availability to the fetus, which may lead to alterations in fetal size. The objectives of the current experiment were to determine amino acid (AA) and glucose concentrations as well as AA and glucose flux across the uteroplacenta using a mid- to late-gestation model of intrauterine growth restriction supplemented with dietary melatonin as a 2 × 2 factorial design. At day 50 of gestation, 32 ewes were supplemented with 5 mg of melatonin (MEL) or no melatonin (CON) and were allocated to receive 100% (adequate; ADQ) or 60% (restricted; RES) of nutrient requirements. On day 130 of gestation, uterine and umbilical blood flows were determined via Doppler ultrasonography during a non-survival surgery. Blood samples were collected under general anesthesia from the maternal saphenous artery, gravid uterine vein, umbilical artery, and umbilical vein for AA analysis and glucose. Total α-AA concentrations in maternal artery and gravid uterine vein were decreased (P < 0.05) in RES v. ADQ fed ewes. Maternal arterial − venous difference in total α-AA was increased (P ⩽ 0.01) in RES v. ADQ fed ewes, while total uterine α-AA flux was not different (P > 0.40) across all treatment groups. Fetal venous − arterial difference in total α-AA as well as uteroplacental flux of total α-AA were decreased (P < 0.05) in CON-RES v. CON-ADQ, and similar (P > 0.20) in MEL-RES v. CON-ADQ. Maternal concentrations and uterine flux of branched-chain AA (BCAA) were not different across all treatment groups; however, fetal uptake of BCAA was decreased (P < 0.05) in CON-RES v. CON-ADQ, and similar (P > 0.20) in MEL-RES v. CON-ADQ. Uterine uptake of glucose was not different (P ⩾ 0.08) across all treatment groups, while uteroplacental uptake of glucose was increased (P ⩽ 0.05) in RES v. ADQ ewes. In conclusion, maternal nutrient restriction increased maternal arterial − venous difference in total α-AA, while total uterine α-AA flux was unaffected by maternal nutrient restriction. Melatonin supplementation did not impact maternal serum concentrations or uterine flux of glucose or AA; however, melatonin did improve fetal BCAA uptake during maternal nutrient restriction.  相似文献   

17.
Vitamin B12 is synthesised in the rumen from cobalt (Co) and has a major role in metabolism in the peri-paturient period, although few studies have evaluated the effect of the dietary inclusion of Co, vitamin B12 or injecting vitamin B12 on the metabolism, health and performance of high yielding dairy cows. A total of 56 Holstein-Friesian dairy cows received one of four treatments from 8 weeks before calving to 8 weeks post-calving: C, no added Co; DC, additional 0.2 mg Co/kg dry matter (DM); DB, additional 0.68 mg vitamin B12/kg DM; IB, intra-muscular injection of vitamin B12 to supply 0.71 mg/cow per day prepartum and 1.42 mg/cow per day post-partum. The basal and lactation rations both contained 0.21 mg Co/kg DM. Cows were weighed and condition scored at drying off, 4 weeks before calving, within 24 h of calving and at 2, 4 and 8 weeks post-calving, with blood samples collected at drying off, 2 weeks pre-calving, calving and 2, 4 and 8 weeks post-calving. Liver biopsy samples were collected from all animals at drying off and 4 weeks post-calving. Live weight changed with time, but there was no effect of treatment (P>0.05), whereas cows receiving IB had the lowest mean body condition score and DB the highest (P<0.05). There was no effect of treatment on post-partum DM intake, milk yield or milk fat concentration (P>0.05) with mean values of 21.6 kg/day, 39.6 kg/day and 40.4 g/kg, respectively. Cows receiving IB had a higher plasma vitamin B12 concentration than those receiving any of the other treatments (P<0.001), but there was no effect (P>0.05) of treatment on homocysteine or succinate concentrations, although mean plasma methylmalonic acid concentrations were lower (P=0.019) for cows receiving IB than for Control cows. Plasma β-hydroxybutyrate concentrations increased sharply at calving followed by a decline, but there was no effect of treatment. Similarly, there was no effect (P>0.05) of treatment on plasma non-esterified fatty acids or glucose. Whole tract digestibility of DM and fibre measured at week 7 of lactation were similar between treatments, and there was little effect of treatment on the milk fatty acid profile except for C15:0, which was lower in cows receiving DC than IB (P<0.05). It is concluded that a basal dietary concentration of 0.21 mg Co/kg DM is sufficient to meet the requirements of high yielding dairy cows during the transition period, and there is little benefit from additional Co or vitamin B12.  相似文献   

18.
The post-partum reproductive performance of suckled and non-suckled Afrikaner cows was compared in order to assess the importance of suckling in the resumption of post-partum ovarian function in this breed. Non-suckled cows were weaned at 3 days post partum whilst calves in the control group had continuous access to their dams. Commencement of ovarian activity was significantly (P < 0.01) earlier in non-suckled cows at 18.1 ± 5.2 (mean ± SD) days post partum than in suckled cows 53.2 ± 19.7 days. Conception rates were significantly higher (P = 0.01) in non-suckled cows (80%) than in suckled cows (50%). Mean intervals from parturition to conception were 45.8 ± 15.8 (mean ± SD) days in non-suckled cows as compared with 70.9 ± 17.9 days in suckled cows. The conception rate associated with each ovulation appears to be highest between 50 and 70 days post partum regardless of the degree of suckling stimulus. Four classes of ovarian activity were recorded from the progesterone profiles compiled. The incidence of short cycles was unaffected by the degree of suckling stimulus. Weaning may (P = 0.05) reduce the proportion of cows which exhibit regular cyclic ovarian activity without conceiving. Coitus during oestrus may (0.01 < P > 0.05) be more easily observed in non-suckled cows than in their suckled contemporaries. Suckling altered the diurnal distribution of coitus, with non-suckled cows showing the highest frequency for this component of oestrus before 09.00 h and after 15.00 h, whilst in suckled cows coitus appeared to be more evenly distributed throughout the day.  相似文献   

19.
Herbage allowance (HA) management during gestation–lactation cycle of cows grazing native grasslands improves pregnancy rates and calves’ weaning weight records. Those improvements were associated with greater herbage mass, and better body condition score (BCS) and metabolic status of the cows, which could affect grazing and maternal behaviour, particularly when temporary suckling restriction (TSR) and flushing (FL) is applied. The objective of this study was to evaluate the effect of HA during the gestation–lactation period on cows’ and calves’ liveweight (LW), BCS, milk yield, insulin, IGF-1 and leptin concentrations, as well as the proportion of diurnal grazing activities (grazing, ruminating, walking and idling), and maternal behaviour from −10 to 70 days relative to TSR (day 0 = initiation of TSR at 86 ± 10 days relative to calving). Thirty-three primiparous Hereford cows were allocated to HA treatments during gestation and lactation, which annually averaged 2.5 (low = LHA) and 4 kg DM/kg LW (high = HHA). The LW and BCS of cows did not differ during −10 to 50 days but were greater in HHA than LHA at the end of the study (P < 0.05). Concentrations of IGF-1 were greater in HHA compared to LHA, while insulin and leptin did not differ. Grazing was lower in HHA than LHA, and the opposite occurred with ruminating and idling (P < 0.05). Cow–calf physical distance was greater in LHA cows compared to HHA (P < 0.05) and increased greatly in the former group after FL, while this increase was lower and later in HHA cows. Milk yield was greater in HHA (P < 0.05), and calves’ weight did not differ between treatments from day −10 to 35, but was greater in HHA compared to LHA from 45 days until the end of the study. Thus, the HHA in a low herbage height and mass condition resulted in greater IGF-1 concentrations and milk yield, and induced changes in grazing and maternal behaviour that were associated with increased cows’ LW, BCS and calves’ weight at the end of the study.  相似文献   

20.
The objectives were to evaluate the pattern of re-insemination, pregnancy outcomes to re-insemination in estrus and at fixed time, and economic outcomes of lactating Holstein cows submitted to three resynchronization protocols. Cows were enrolled in the Experiment at 32 ± 3 d after pre-enrollment Artificial Insemination (AI), 7 d before pregnancy diagnosis, and randomly assigned to three resynchronization protocols. All cows diagnosed not pregnant at 39 ± 3 d after pre-enrollment AI were submitted to the Cosynch72 (Day 0 GnRH, Day 7 prostaglandin F, and Day 10 GnRH and fixed time AI). Cows assigned to the control treatment received no further treatment, cows assigned to the GGPG treatment received a GnRH injection on Day −7, and cows assigned to the CIDR treatment received a controlled internal drug release (CIDR) insert containing 1.38 g of progesterone from Days 0-7. Cows observed in estrus were re-inseminated on the same day. Pregnancy was diagnosed at 39 ± 3 and 67 ± 3 d after re-insemination. Costs of the resynchronization protocols were calculated for individual cows enrolled in the study and pregnancies generated were given a value of $275. The GGPG treatment resulted in the slowest (P ≤ 0.06) rate of re-insemination. Overall pregnancy per AI (P/AI) at 39 ± 3 (P = 0.50) and 67 ± 3 (P = 0.49) d after re-insemination were not affected by treatment. Although cost of the control protocol was (P < 0.01) the smallest, return per cow resynchronized was (P < 0.01) greater for GGPG and CIDR protocols. We concluded that presynchronizing the estrous cycle of cows with GnRH or treating cows with a CIDR insert during resynchronization altered the pattern of re-insemination and improved the economic return of resynchronized cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号