首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MicroRNAs (miRNAs) bind to Argonaute proteins, and together they form the RISC complex and regulate target mRNA translation and/or stability. Identification of mRNA targets is key to deciphering the physiological functions and mode of action of miRNAs. In mammals, miRNAs are generally poorly homologous to their target sequence, and target identification cannot be based solely on bioinformatics. Here, we describe a biochemical approach, based on tandem affinity purification, in which mRNA/miRNA complexes are sequentially pulled down, first via the Argonaute moiety and then via the miRNA. Our ‘TAP-Tar’ procedure allows the specific pull down of mRNA targets of miRNA. It is useful for validation of targets predicted in silico, and, potentially, for discovery of previously uncharacterized targets.  相似文献   

4.
5.

Background

MicroRNAs (miRNAs) are a class of noncoding small RNAs (sRNAs) that are 20–24 nucleotides (nt) in length. Extensive studies have indicated that miRNAs play versatile roles in plants, functioning in processes such as growth, development and stress responses. Chilling is a common abiotic stress that seriously affects plants growth and development. Recently, chilling-responsive miRNAs have been detected in several plant species. However, little is known about the miRNAs in the model plant tomato. ‘LA1777’ (Solanum habrochaites) has been shown to survive chilling stress due to its various characteristics.

Results

Here, two small RNA libraries and two degradome libraries were produced from chilling-treated (CT) and non-chilling-treated (NT) leaves of S. habrochaites seedlings. Following high-throughput sequencing and filtering, 161 conserved and 236 novel miRNAs were identified in the two libraries. Of these miRNAs, 192 increased in the response to chilling stress while 205 decreased. Furthermore, the target genes of the miRNAs were predicted using a degradome sequencing approach. It was found that 62 target genes were cleaved by 42 conserved miRNAs, while nine target genes were cleaved by nine novel miRNAs. Additionally, nine miRNAs and six target genes were validated by quantitative real-time PCR (qRT-PCR). Target gene functional analysis showed that most target genes played positive roles in the chilling response, primarily by regulating the expression of anti-stress proteins, antioxidant enzyme and genes involved in cell wall formation.

Conclusions

Tomato is an important model plant for basic biological research. In this study, numerous conserved and novel miRNAs involved in the chilling response were identified using high-throughput sequencing, and the target genes were analyzed by degradome sequencing. The work helps identify chilling-responsive miRNAs in tomato and increases the number of identified miRNAs involved in chilling stress. Furthermore, the work provides a foundation for further study of the regulation of miRNAs in the plant response to chilling stress.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1130) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
8.
9.
Parallel analysis of RNA ends (PARE) is a technique utilizing high-throughput sequencing to profile uncapped, mRNA cleavage or decay products on a genome-wide basis. Tools currently available to validate miRNA targets using PARE data employ only annotated genes, whereas important targets may be found in unannotated genomic regions. To handle such cases and to scale to the growing availability of PARE data and genomes, we developed a new tool, ‘sPARTA’ (small RNA-PARE target analyzer) that utilizes a built-in, plant-focused target prediction module (aka ‘miRferno’). sPARTA not only exhibits an unprecedented gain in speed but also it shows greater predictive power by validating more targets, compared to a popular alternative. In addition, the novel ‘seed-free’ mode, optimized to find targets irrespective of complementarity in the seed-region, identifies novel intergenic targets. To fully capitalize on the novelty and strengths of sPARTA, we developed a web resource, ‘comPARE’, for plant miRNA target analysis; this facilitates the systematic identification and analysis of miRNA-target interactions across multiple species, integrated with visualization tools. This collation of high-throughput small RNA and PARE datasets from different genomes further facilitates re-evaluation of existing miRNA annotations, resulting in a ‘cleaner’ set of microRNAs.  相似文献   

10.
While in the last decade mRNA expression profiling was among the most popular research areas, over the past years the study of non-coding RNAs, especially microRNAs (miRNAs), has gained increasing interest. For almost 900 known human miRNAs hundreds of pretended targets are known. However, there is only limited knowledge about putative systemic effects of changes in the expression of miRNAs and their regulatory influence. We determined for each known miRNA the biochemical pathways in the KEGG and TRANSPATH database and the Gene Ontology categories that are enriched with respect to its target genes. We refer to these pathways and categories as target pathways of the corresponding miRNA. Investigating target pathways of miRNAs we found a strong relation to disease-related regulatory pathways, including mitogen-activated protein kinase (MAPK) signaling cascade, Transforming growth factor (TGF)-beta signaling pathway or the p53 network. Performing a sophisticated analysis of differentially expressed genes of 13 cancer data sets extracted from gene expression omnibus (GEO) showed that targets of specific miRNAs were significantly deregulated in these sets. The respective miRNA target analysis is also a novel part of our gene set analysis pipeline GeneTrail. Our study represents a comprehensive theoretical analysis of the relationship between miRNAs and their predicted target pathways. Our target pathways analysis provides a ‘miRNA-target pathway’ dictionary, which enables researchers to identify target pathways of differentially regulated miRNAs.  相似文献   

11.
12.
13.
Chilling (0–18°C) and freezing (<0°C) are two distinct types of cold stresses. Epigenetic regulation can play an important role in plant adaptation to abiotic stresses. However, it is not yet clear whether and how epigenetic modification (i.e., DNA methylation) mediates the adaptation to cold stresses in nature (e.g., in alpine regions). Especially, whether the adaptation to chilling and freezing is involved in differential epigenetic regulations in plants is largely unknown. Chorispora bungeana is an alpine subnival plant that is distributed in the freeze-thaw tundra in Asia, where chilling and freezing frequently fluctuate daily (24 h). To disentangle how C. bungeana copes with these intricate cold stresses through epigenetic modifications, plants of C. bungeana were treated at 4°C (chilling) and -4°C (freezing) over five periods of time (0–24 h). Methylation-sensitive amplified fragment-length polymorphism markers were used to investigate the variation in DNA methylation of C. bungeana in response to chilling and freezing. It was found that the alterations in DNA methylation of C. bungeana largely occurred over the period of chilling and freezing. Moreover, chilling and freezing appeared to gradually induce distinct DNA methylation variations, as the treatment went on (e.g., after 12 h). Forty-three cold-induced polymorphic fragments were randomly selected and further analyzed, and three of the cloned fragments were homologous to genes encoding alcohol dehydrogenase, UDP-glucosyltransferase and polygalacturonase-inhibiting protein. These candidate genes verified the existence of different expressive patterns between chilling and freezing. Our results showed that C. bungeana responded to cold stresses rapidly through the alterations of DNA methylation, and that chilling and freezing induced different DNA methylation changes. Therefore, we conclude that epigenetic modifications can potentially serve as a rapid and flexible mechanism for C. bungeana to adapt to the intricate cold stresses in the alpine areas.  相似文献   

14.
15.
3’ uridylation is increasingly recognized as a conserved RNA modification process associated with RNA turnover in eukaryotes. 2’-O-methylation on the 3’ terminal ribose protects micro(mi)RNAs from 3’ truncation and 3’ uridylation in Arabidopsis. Previously, we identified HESO1 as the nucleotidyl transferase that uridylates most unmethylated miRNAs in vivo, but substantial 3’ tailing of miRNAs still remains in heso1 loss-of-function mutants. In this study, we found that among nine other potential nucleotidyl transferases, UTP:RNA URIDYLYLTRANSFERASE 1 (URT1) is the single most predominant nucleotidyl transferase that tails miRNAs. URT1 and HESO1 prefer substrates with different 3’ end nucleotides in vitro and act cooperatively to tail different forms of the same miRNAs in vivo. Moreover, both HESO1 and URT1 exhibit nucleotidyl transferase activity on AGO1-bound miRNAs. Although these enzymes are able to add long tails to AGO1-bound miRNAs, the tailed miRNAs remain associated with AGO1. Moreover, tailing of AGO1-bound miRNA165/6 drastically reduces the slicing activity of AGO1-miR165/6, suggesting that tailing reduces miRNA activity. However, monouridylation of miR171a by URT1 endows the miRNA the ability to trigger the biogenesis of secondary siRNAs. Therefore, 3’ tailing could affect the activities of miRNAs in addition to leading to miRNA degradation.  相似文献   

16.
17.
18.
19.
MicroRNAs (miRNAs) play an important role in responding to biotic and abiotic stresses in plants. Jujube witches’-broom a phytoplasma disease of Ziziphus jujuba is prevalent in China and is a serious problem to the industry. However, the molecular mechanism of the disease is poorly understood. In this study, genome-wide identification and analysis of microRNAs in response to witches’-broom was performed. A total of 85 conserved miRNA unique sequences belonging to 32 miRNA families and 24 novel miRNA unique sequences, including their complementary miRNA* strands were identified from small RNA libraries derived from a uninfected and witches’-broom infected Z. jujuba plant. Differentially expressed miRNAs associated with Jujube witches’-broom disease were investigated between the two libraries, and 12 up-regulated miRNAs and 10 down- regulated miRNAs identified with more than 2 fold changes. Additionally, 40 target genes of 85 conserved miRNAs and 49 target genes of 24 novel miRNAs were predicted and their putative functions assigned. Using the modified 5’-RACE method, we confirmed that SPL and MYB were cleaved by miR156 and miR159, respectively. Our results provide insight into the molecular mechanisms of witches’-broom disease in Z. jujuba.  相似文献   

20.
Although Dicer is essential for general microRNA (miRNA) biogenesis, vertebrate mir-451 is Dicer independent. Instead, its short pre-miRNA hairpin is ‘sliced’ by Ago2, then 3′-resected into mature miRNAs. Here, we show that Drosophila cells and animals generate functional small RNAs from mir-451-type precursors. However, their bulk maturation arrests as Ago-cleaved pre-miRNAs, which mostly associate with the RNAi effector AGO2. Routing of pre-mir-451 hairpins to the miRNA effector AGO1 was inhibited by Dicer-1 and its partner Loqs. Loss of these miRNA factors promoted association of pre-mir-451 with AGO1, which sliced them and permitted maturation into ∼23–26 nt products. The difference was due to the 3′ modification of single-stranded species in AGO2 by Hen1 methyltransferase, whose depletion permitted 3′ trimming of Ago-cleaved pre-miRNAs in AGO2. Surprisingly, Nibbler, a 3′–5′ exoribonuclease that trims ‘long’ mature miRNAs in AGO1, antagonized miR-451 processing. We used an in vitro reconstitution assay to identify a soluble, EDTA-sensitive activity that resects sliced pre-miRNAs in AGO1 complexes. Finally, we use deep sequencing to show that depletion of dicer-1 increases the diversity of small RNAs in AGO1, including some candidate mir-451-like loci. Altogether, we document unexpected aspects of miRNA biogenesis and Ago sorting, and provide insights into maturation of Argonaute-cleaved miRNA substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号