首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Females ofTechnomyrmex albipes consist of winged queens, intercastes and workers. In established colonies, reproduction is performed by many intercastes (wingless females which have intermediate phenotypes between queen and worker characters). Dissection and morphological examination revealed that intercastes had a spermatheca, but workers did not. Intercastes can be divided into three classes: major intercastes with three ocelli, medium intercastes with one ocellus, and minor intercases without ocelli. Workers have no ocelli. The thoracic structure of intercastes gradually becomes more complex from minors to majors. The body size of intercastes gradually increases from minors to majors, and so does the number of overioles. The body size distributions of minor intercastes and workers overlap considerably, but the distributions of ovariole numbers overlap less. Winged queens had distinctly larger body sizes, more ovarioles and larger spermathecae than intercastes. Most intercastes were inseminated with developed ovaries and appeared to reproduce. The caste system and reproductive division of labour inT. albipes is compared to those of ant species in which permanently wingless females reproduce.  相似文献   

2.
Worker larvae at an age of 4½ days were fed one of several mixtures of reconstituted royal jelly adjusted to a refractive index of 1.3825 and supplemented with JH I, JH III or Anti-JH (precocene II). In addition, juvenile hormone was topically applied to larvae of the same age. It was readily apparent that caste induction is concentration-dependent and that 4?-day-old worker larvae can still develop into queens under laboratory conditions, providing that they have not stopped feeding or can be induced to commence feeding again. These findings are contrary to the general belief that queen induction is not possible after a socalled sensitive period of 3–3½ days. Queens resulted only from honey bee larvae exposed to royal jelly containing 1 μg of JH I. In addition, oral application at this concentration resulted in the only case in which the normal mean weights of worker honey bees were exceeded. All other concentrations of juvenile hormone were not sufficient to initiate queen induction, although its lower concentration may have influenced the production of intercastes.Precocene II did not play a role in queen induction and it also did not interfere with the growth of developing larvae or adults. In addition, the lack of malformations in honey bees treated with precocene II indicates that the use of such a compound as a control agent in insect populations will probably not be detrimental to honey bee larvae that are at least 4½ days old. However, large doses of precocene will quickly kill most 3½-day-old honey bee larvae.The evidence presented here clearly indicates that caste determination is regulated by the endocrine system in honey bee larvae. Food intake in honey bee larvae may well be regulated by the endocrine system. Thus, an apparently inhibited corpus allatum (C.A.) could be reactivated by food intake coupled with juvenile hormone. The food intake restriction that worker larvae normally encounter in the hive probably results in a cessation of C.A. activity. The increase in food intake by queen larvae, on the other hand, carries an increase in growth and accompanying morphological changes necessary for queen development. This concept may also explain the development of intercastes encountered in in vitro studies. Only those larvae that follow a normal food intake sequence, i.e. moderate during the first 3–4 days or so, will develop into queens. Conversely, those larvae that take in too much food during the early portion of development may achieve incomplete development of the neurosecretory system and, thus, develop into intercastes.  相似文献   

3.
Queen honeybees of Apis mellifera ligustica and Apis mellifera syriaca were raised to investigate physiological and reproductive characteristics and to determine the most suitable time for queen rearing under semi‐arid conditions in Jordan. The queen rearing season as well as the origin of the queens affected the queens’ weight, acceptance, preoviposition period, volume of the spermatheca, and quantity and quality of sperm in the spermatheca. Italian bees were heavier than Syrian bees at emergence. The introduced queen acceptance rate appeared to be a genetic influence of the queen: A. m. ligustica virgin queens were accepted at a higher rate than were A. m. syriaca queens. There were large seasonal variations in the acceptance rate. Experimental bee colonies accepted their virgin queens during spring with good honey flows at a higher rate compared to the other rearing periods. The greatest mating success was achieved in May and the smallest was during July and August. The preoviposition period was shorter in the Syrian than in the Italian queens, and was longer during summer for both honeybee subspecies. The volume of the spermatheca was smaller in Syrian bees and the spermatheca had lower numbers of spermatozoa compared with Italian bees. Thus, under semi‐arid Mediterranean region conditions, it is highly recommended to raise virgin queens in the spring months only to obtain their highest quality.  相似文献   

4.
Reproduction in species of eusocial insects is monopolized by one or a few individuals, while the remaining colony tasks are performed by the worker caste. This reproductive division of labor is exemplified by honey bees (Apis mellifera L.), in which a single, polyandrous queen is the sole colony member that lays fertilized eggs. Previous work has revealed that the developmental fate of honey bee queens is highly plastic, with queens raised from younger worker larvae exhibiting higher measures in several aspects of reproductive potential compared to queens raised from older worker larvae. Here, we investigated the effects of queen reproductive potential (“quality”) on the growth and winter survival of newly established honey bee colonies. We did so by comparing the growth of colonies headed by “high-quality” queens (i.e., those raised from young worker larvae, which are more queen-like morphologically) to those headed by “low-quality” queens (i.e., those raised from older worker larvae, which are more worker-like morphologically). We confirmed that queens reared from young worker larvae were significantly larger in size than queens reared from old worker larvae. We also found a significant positive effect of queen grafting age on a colony’s production of worker comb, drone comb, and stored food (honey and pollen), although we did not find a statistically significant difference in the production of worker and drone brood, worker population, and colony weight. Our results provide evidence that in honey bees, queen developmental plasticity influences several important measures of colony fitness. Thus, the present study supports the idea that a honey bee colony can be viewed (at least in part) as the expanded phenotype of its queen, and thus selection acting predominantly at the colony level can be congruent with that at the individual level.  相似文献   

5.
6.
Summary Queen rearing is suppressed in honey bees (Apis mellifera L.) by pheromones, particularly the queen's mandibular gland pheromone. In this study we compared this pheromonally-based inhibition between temperate and tropically-evolved honey bees. Colonies of European and Africanized bees were exposed to synthetic queen mandibular gland pheromone (QMP) for ten days following removal of resident queens, and their queen rearing responses were examined. Queen rearing was suppressed similarly in both European and Africanized honey bees with the addition of synthetic QMP, indicating that QMP acts on workers of both races in a comparable fashion. QMP completely suppressed queen cell production for two days, but by day six, cells containing queen larvae were present in all treated colonies, indicating that other signals play a role in the suppression of queen rearing. In queenless control colonies not treated with QMP, Africanized bees reared 30% fewer queens than Europeans, possibly due to racial differences in response to feedback from developing queens and/or their cells. Queen development rate was faster in Africanized colonies, or they selected older larvae to initiate cells, as only 1 % of queen cells were unsealed after 10 days compared with 12% unsealed cells in European colonies.  相似文献   

7.
The vibration signal of the honey bee (Apis mellifera) may play a central role in the regulation of queen behavior during reproductive swarming and supersedure. We examined honey bee workers that performed vibration signals on queens and developing queen cells in three observation hives, each containing a population of marked bees of known age. In all three colonies, workers of all ages greater than 2 d old could perform vibration signals on queens and queen cells. However, most signals were performed by a small proportion of the bees of greater than 10 d of age. Relatively few workers less than 10 d old vibrated queens and queen cells, even though this age-group is typically associated with queen care. Thus, the regulation of queen behavior by the vibration signal may occur primarily through a relatively small subset of older workers that, under most circumstances, have only limited involvement with queens. It is unclear what triggers the vibrating of queens. Workers producing vibration signals did not differ from same-age non-vibrating controls in rate of locomotion in the hive or in task performance, and they rarely engaged in foraging, even though the majority of observed bees were of foraging age; vibrators also did not spend more time with queens and queen cells compared with controls. Vibration signals performed on queens and queen cells therefore do not appear to be influenced by task performance or increased contact with queens.  相似文献   

8.
Summary Many females morphologically intermediate between queens and workers were found in a northernmost population ofMyrmecina graminicola nipponica Wheeler. Dissection and morphological observation revealed that there were three categories of intercastes. Major intercastes were as large as queens in body size, with seven or more ovarioles, but had only one ocellus, unlike queens, which had three ocelli. Medium intercasts had an enlarged mesonotum, one or no ocellus and 2 to 12 ovarioles. Minor intercaste was very simlar to workers in external morphology, but had a spermatheca, unlike workers. Inseminated females constituted 75%, 40% and 28.6% in the major, medium and minor intercastes respectively. Many of the virgin medium and minor intercastes had a small disfunctional spermatheca.In queenright colonies, a single queen was inseminated and had an active ovary. In queenless colonies where the intercastes reproduced, however, some colonies were functionally monogynous, but the others polygynous. The ratio of polygynous colonies to monogynous colonies was lowest in July and highest in September, suggesting that polygyny results from newly inseminated intercastes remaining in their natal nests, although they leave those nests in the season of colonial budding. Queenless colonies containing inseminated intercastes exclusively produced intercastes, while queenright colonies almost exclusively produced queens.  相似文献   

9.
Summary In the polyandrous honey bee, Apis mellifera, workers can potentially increase their inclusive fitness by rearing full-sister queens. If the mother queen dies suddenly, workers feed a few larvae in worker cells with royal jelly and rear them into queens (emergency queen rearing). Using DNA microsatellite markers we determined the patriline of emergency queens reared in two colonies headed by naturally-mated queens before being made queenless. We found that some patrilines were reared more than others in one colony, but not in the other. These differences between colonies suggest that selective rearing is not always present and this might explain the mixed results of previous nepotism studies in the honey bee.Received 10 February 2003; revised 7 March 2003; accepted 17 March 2003.  相似文献   

10.
Honey bee population declines are of global concern. Numerous factors appear to cause these declines including parasites, pathogens, malnutrition and pesticides. Residues of the organophosphate acaricide coumaphos and the neonicotinoid insecticide imidacloprid, widely used to combat Varroa mites and for crop protection in agriculture, respectively, have been detected in wax, pollen and comb samples. Here, we assess the effects of these compounds at different doses on the viability of sperm stored in the honey bee queens’ spermatheca. Our results demonstrate that sub-lethal doses of imidacloprid (0.02 ppm) decreased sperm viability by 50%, 7 days after treatment. Sperm viability was a downward trend (about 33%) in queens treated with high doses of coumaphos (100 ppm), but there was not significant difference. The expression of genes that are involved in development, immune responses and detoxification in honey bee queens and workers exposed to chemicals was measured by qPCR analysis. The data showed that expression levels of specific genes were triggered 1 day after treatment. The expression levels of P450 subfamily genes, CYP306A1, CYP4G11 and CYP6AS14 were decreased in honey bee queens treated with low doses of coumaphos (5 ppm) and imidacloprid (0.02 ppm). Moreover, these two compounds suppressed the expression of genes related to antioxidation, immunity and development in queens at day 1. Up-regulation of antioxidants by these compounds in worker bees was observed at day 1. Coumaphos also caused a repression of CYP306A1 and CYP4G11 in workers. Antioxidants appear to prevent chemical damage to honey bees. We also found that DWV replication increased in workers treated with imidacloprid. This research clearly demonstrates that chemical exposure can affect sperm viability in queen honey bees.  相似文献   

11.
Synthetic juvenile hormone (methyl trans,trans,cis-10-epoxy-7-ethyl-3,11-dimethyl-2,6-tridecadienoate, 1 μg/μl acetone per animal) (JH) was topically applied to 2- to 3-day-old worker honeybee larvae in the hive. Eighty per cent of the hormone-treated larvae were removed from their brood cell before pupation. Only 1 out of 42 adults showed characteristics of an intercaste. Fifty per cent of the control larvae (1 μl acetone) developed to adults, all of which were workers.After topical application of JH and feeding on royal jelly under in vitro conditions, the rate of survival is high (up to 85 per cent adults), but up to 67 per cent of queens and 44 per cent of workers exhibit eye malformations with characteristics of somatic mutation. Formation of a more solid web by the spinning larvae, shortening of the diapause by 1 to 2 days, and unusual shapes of mandibles, legs, and abdomen are a consequence of hormone treatment. The effects are less marked after application of 0·1 instead of 1 μg hormone or after its addition to the food (2 μg/g royal jelly). Treatment of the 2- to 3-day-old worker larvae and subsequent rearing on royal jelly is followed by a shift in caste differentiation from queens and workers to intercastes. In no case, are more queens developed after juvenile hormone treatment.Queen bee determinator, partially purified from royal jelly, induces a concentration-dependent shift from workers to queen differentiation. A threefold increase in the natural determinator concentration of royal jelly results in an almost exclusive (98 per cent) queen formation from 2- to 3-day-old worker larvae. In contrast to this direct effect, the influence of JH is explained as an indirect morphogenetic effect not directly coupled with honeybee caste differentiation.  相似文献   

12.
13.
The struggle among social classes or castes is well known in humans. Here, we show that caste inequality similarly affects societies of ants, bees and wasps, where castes are morphologically distinct and workers have greatly reduced reproductive potential compared with queens. In social insects, an individual normally has no control over its own fate, whether queen or worker, as this is socially determined during rearing. Here, for the first time, we quantify a strategy for overcoming social control. In the stingless bee Schwarziana quadripunctata, some individuals reared in worker cells avoid a worker fate by developing into fully functional dwarf queens.  相似文献   

14.
The mushroom body (MB) is an area of the insect brain involved in learning, memory, and sensory integration. Here, we used the sweat bee Megalopta genalis (Halictidae) to test for differences between queens and workers in the volume of the MB calyces. We used confocal microscopy to measure the volume of the whole brain, MB calyces, optic lobes, and antennal lobes of queens and workers. Queens had larger brains, larger MB calyces, and a larger MB calyces:whole brain ratio than workers, suggesting an effect of social dominance in brain development. This could result from social interactions leading to smaller worker MBs, or larger queen MBs. It could also result from other factors, such as differences in age or sensory experience. To test these explanations, we next compared queens and workers to other groups. We compared newly emerged bees, bees reared in isolation for 10 days, bees initiating new observation nests, and bees initiating new natural nests collected from the field to queens and workers. Queens did not differ from these other groups. We suggest that the effects of queen dominance over workers, rather than differences in age, experience, or reproductive status, are responsible for the queen–worker differences we observed. Worker MB development may be affected by queen aggression directly and/or manipulation of larval nutrition, which is provisioned by the queen. We found no consistent differences in the size of antennal lobes or optic lobes associated with differences in age, experience, reproductive status, or social caste.  相似文献   

15.
Shi YY  Huang ZY  Zeng ZJ  Wang ZL  Wu XB  Yan WY 《PloS one》2011,6(4):e18808

Background

Young larvae of the honey bee (Apis mellifera) are totipotent; they can become either queens (reproductives) or workers (largely sterile helpers). DNA methylation has been shown to play an important role in this differentiation. In this study, we examine the contributions of diet and cell size to caste differentiation.

Methodology/Principal Findings

We measured the activity and gene expression of one key enzyme involved in methylation, Dnmt3; the rates of methylation in the gene dynactin p62; as well as morphological characteristics of adult bees developed either from larvae fed with worker jelly or royal jelly; and larvae raised in either queen or worker cells. We show that both diet type and cell size contributed to the queen-worker differentiation, and that the two factors affected different methylation sites inside the same gene dynactin p62.

Conclusions/Significance

We confirm previous findings that Dnmt3 plays a critical role in honey bee caste differentiation. Further, we show for the first time that cell size also plays a role in influencing larval development when diet is kept the same.  相似文献   

16.
Nosema ceranae, a microsporidian parasite originally described in the Asian honey bee Apis cerana, has recently been found to be cross-infective and to also parasitize the European honey bee Apis mellifera. Since this discovery, many studies have attempted to characterize the impact of this parasite in A. mellifera honey bees. Nosema species can infect all colony members, workers, drones and queens, but the pathological effects of this microsporidium has been mainly investigated in workers, despite the prime importance of the queen, who monopolizes the reproduction and regulates the cohesion of the society via pheromones. We therefore analyzed the impact of N. ceranae on queen physiology. We found that infection by N. ceranae did not affect the fat body content (an indicator of energy stores) but did alter the vitellogenin titer (an indicator of fertility and longevity), the total antioxidant capacity and the queen mandibular pheromones, which surprisingly were all significantly increased in Nosema-infected queens. Thus, such physiological changes may impact queen health, leading to changes in pheromone production, that could explain Nosema-induced supersedure (queen replacement).  相似文献   

17.
Modifications in endocrine programs are common mechanisms that generate alternative phenotypes. In order to understand how such changes may have evolved, we analyzed the pupal ecdysteroid titers in two closely related, highly social bees: the honey bee, Apis mellifera, and a stingless bee, Melipona quadrifasciata. In both species, the ecdysteroid titers in queens reached their peak levels earlier than in workers. Titer levels at peak maxima did not differ for the honey bee castes, but in Melipona they were twofold higher in queens than in workers. During the second half of pupal development, when the ecdysteroid titers decrease and the cuticle progressively melanizes, the titer in honey bee queens remained higher than in workers, while the reverse situation was observed in Melipona. Application of the juvenile hormone analog Pyriproxyfen® to spinning-stage larvae of Melipona induced queen development. Endocrinologically this was manifest in a queen-like profile of the pupal ecdysteroid titer. Comparing these data with previous results on preimaginal hormone titers in another stingless bee, we conclude that the timing and height of the pupal ecdysteroid peak may depend on the nature of the specific stimuli that initially trigger diverging queen/worker development. In contrast, the interspecific differences in the late pupal ecdysteroid titer profiles mainly seem to be related to caste-specific programs in tissue differentiation, including cuticle pigmentation.  相似文献   

18.
Summary The term ergatogyne is used in ants to describe permanently-wingless female adults which are morphologically intermediate between workers and winged queens. This definition is ambiguous because there are two distinct categories of ergatogynes: ergatoid queens and intercastes. Both have an external appearance (ocelli and alitrunk structure) which combines traditional queen and worker characters, and thus can be confused if they both function as reproductives — however intercastes in most species cannot reproduce.Ergatoid queens have replaced winged queens in a substantial number of species. They are sometimes externally similar to conspecific workers, especially in various ponerine species which exhibit limited size dimorphism between castes. Ergatoid queens retain the specialized attributes of a reproductive caste, including larger ovaries, and they are always the functional egg-layers in a colony. In contrast, conspecific intercastes represent various graded stages in a series connecting workers and winged queens, and they occur together with the queens. These hybrid phenotypes result from deviations from the normal pattern of caste differentiation during larval development. Intercastes generally lack a spermatheca and have no reproductive function; however they can mate in a few leptothoracine ants, and then reproduce instead of winged queens in a proportion of colonies.  相似文献   

19.
Fungi in the genus Ascosphaera (Ascomycota: Eurotiomycetes: Ascosphaerales) cause chalkbrood disease in larvae of bees. Here, we report the first-ever detection of the fungus in adult bumble bees that were raised in captivity for studies on colony development. Wild queens of Bombus griseocollis, B. nevadensis and B. vosnesenskii were collected and maintained for establishment of nests. Queens that died during rearing or that did not lay eggs within one month of capture were dissected, and tissues were examined microscopically for the presence of pathogens. Filamentous fungi that were detected were plated on artificial media containing broad spectrum antibiotics for isolation and identification. Based on morphological characters, the fungus was identified as Ascosphaera apis (Maasen ex Claussen) Olive and Spiltoir, a species that has been reported earlier only from larvae of the European honey bee, Apis mellifera, the Asian honey bee, Apis cerana, and the carpenter bee Xylocopa californica arizonensis. The identity of the fungus was confirmed using molecular markers and phylogenetic analysis. Ascosphaera apis was detected in queens of all three bumble bee species examined. Of 150 queens dissected, 12 (8%) contained vegetative and reproductive stages of the fungus. Both fungal stages were also detected in two workers collected from colonies with Ascosphaera-infected B. nevadensis queens. In this study, wild bees could have been infected prior to capture for rearing, or, the A. apis infection could have originated via contaminated European honey bee pollen fed to the bumble bees in captivity. Thus, the discovery of A. apis in adult bumble bees in the current study has important implications for commercial production of bumble bee colonies and highlights potential risks to native bees via pathogen spillover from infected bees and infected pollen.  相似文献   

20.
Ants have distinct morphological castes (queens and workers), but aberrant queen-worker “intercastes” occasionally occur, both in wild and laboratory conditions. Intercastes are rare, however, such novel phenotypes may have evolutionary significance. Their morphology is highly variable in any given species, providing valuable information about the integration of queen traits (e.g. ocelli, wings, complex segmentation of thorax, large gaster and ovaries, spermatheca). Generally, these traits are all diminished or absent in workers. We used multivariate morphometry to analyze an exceptionally large sample of 101 intercastes of Temnothorax nylanderi. We determined distributions and correlations of traits, and confirmed the mosaic nature of intercastes. Queen-specific traits are not expressed coherently in intercastes, but the possible patterns of trait combination are limited. A large number of small-sized intercastes had disproportionately larger head, ocelli and gaster but smaller thorax. In contrast, queen-like growth of thorax and rudimentary wings only occurred in large-sized intercastes. This is the most comprehensive analysis of intercaste variability, and suggests the existence of constraints on recombination of caste-specific modular traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号