首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lymph node (LN) cells of Fas-mutant mice lpr/lpr (lpr) and lpr cg /lpr cg (lpr cg ) express an increased level of Fas ligand (FasL) (CD95L). We examined the antitumor potential of cell-bound FasL on these LN cells against Fas+ tumor cells. Fas+ F6b and Fas N1d cells were produced from murine hepatoma MH134 (Fas) by gene transfection. lpr and lpr cg LN cells inhibited growth of F6b but not N1d cells in vitro. Neither gld/gld lpr/lpr (gld/lpr) LN cells, which lack both FasL and Fas, nor wild-type LN cells showed growth-inhibitory activities against F6b and N1d cells. The effector cells and molecule were CD4CD8 T cells and FasL, respectively. The tumor neutralization test and adoptive transfer demonstrated that lpr and lpr cg , but not gld/lpr, LN cells retarded the growth of F6b cells. Although anti-Fas antibody and FasL cause severe liver failure, wild-type mice injected with lpr LN cells appeared clinically normal. Adoptive transfer of lpr LN cells to F6b-bearing mice exerted the same antitumor activity in wild-type and gld/lpr recipient mice, indicating the applicability of cell-bound FasL for Fas-mediated target therapy of cancer. These results suggest that antitumor activity was dependent on the Fas-FasL system and that lymphoid cells overexpressing FasL can be powerful antitumor effector cells against Fas+ tumor cells. Received: 16 March 1998 / Accepted: 28 July 1998  相似文献   

2.
J. Wischhusen  F. Padilla 《IRBM》2019,40(1):10-15

Background

Ultrasound-targeted microbubble destruction (UTMD) is a type of ultrasound therapy, in which low frequency moderate power ultrasound is combined with microbubbles to trigger cavitation. Cavitation is the process of oscillation of gas bubbles causing biophysical effects such as pushing and pulling or shock waves that permeabilize biological barriers. In vivo, cavitation results in tissue permeabilization and is used to enable local delivery of nanomedicine. While cavitation can occur in biological liquids when high pressure ultrasound is applied, the use of microbubbles as cavitation nuclei in UTMD largely facilitates the induction of cavitation. UTMD is intensively studied for drug delivery into tumor tissue, but also for the activation of anti-tumor immune responses. The first clinical studies of UTMD-mediated chemotherapy delivery confirmed safety and efficacy of this approach.

Aim

The present review summarizes ultrasound settings, cavitation approaches, biophysical mechanisms of drug delivery, drug carriers, and pre-clinical and clinical applications of UTMD for drug delivery into tumors.  相似文献   

3.

Background

Magnetic nanoparticles (NPs) loaded with antitumor drugs in combination with an external magnetic field (EMF)-guided delivery can improve the efficacy of treatment and may decrease serious side effects. The purpose of this study was 1) to investigate application of PEG modified GMNPs (PGMNPs) as a drug carrier of the chemotherapy compound doxorubicin (DOX) in vitro; 2) to evaluate the therapeutic efficiency of DOX-conjugated PGMNPs (DOX-PGMNPs) using an EMF-guided delivery in vivo.

Methods

First, DOX-PGMNPs were synthesized and the cytotoxicity of DOX-PGMNPs was assessed in vitro. Second, upon intravenous administration of DOX-PMGPNs to H22 hepatoma cell tumor-bearing mice, the DOX biodistribution in different organs (tissues) was measured. The antitumor activity was evaluated using different treatment strategies such as DOX-PMGPNs or DOX-PMGPNs with an EMF-guided delivery (DOX-PGMNPs-M).

Results

The relative tumor volumes in DOX-PGMNPs-M, DOX-PGMNPs, and DOX groups were 5.46±1.48, 9.22±1.51, and 14.8±1.64, respectively (each p<0.05), following treatment for 33 days. The life span of tumor-bearing mice treated with DOX-PGMNPs-M, DOX-PGMNPs, and DOX were 74.8±9.95, 66.1±13.5, and 31.3±3.31 days, respectively (each p<0.05).

Conclusion

This simple and adaptive nanoparticle design may accommodate chemotherapy for drug delivery optimization and in vivo drug-target definition in system biology profiling, increasing the margin of safety in treatment of cancers in the near future.  相似文献   

4.
Liposomes have been employed as drug delivery systems to target solid tumors through exploitation of the enhanced permeability and retention (EPR) effect resulting in significant reductions in systemic toxicity. Nonetheless, insufficient release of encapsulated drug from liposomes has limited their clinical efficacy. Temperature-sensitive liposomes have been engineered to provide site-specific release of drug in order to overcome the problem of limited tumor drug bioavailability. Our lab has designed and developed a heat-activated thermosensitive liposome formulation of cisplatin (CDDP), known as HTLC, to provide triggered release of CDDP at solid tumors. Heat-activated delivery in vivo was achieved in murine models using a custom-built laser-based heating apparatus that provides a conformal heating pattern at the tumor site as confirmed by MR thermometry (MRT). A fiber optic temperature monitoring device was used to measure the temperature in real-time during the entire heating period with online adjustment of heat delivery by alternating the laser power. Drug delivery was optimized under magnetic resonance (MR) image guidance by co-encapsulation of an MR contrast agent (i.e., gadoteridol) along with CDDP into the thermosensitive liposomes as a means to validate the heating protocol and to assess tumor accumulation. The heating protocol consisted of a preheating period of 5 min prior to administration of HTLC and 20 min heating post-injection. This heating protocol resulted in effective release of the encapsulated agents with the highest MR signal change observed in the heated tumor in comparison to the unheated tumor and muscle. This study demonstrated the successful application of the laser-based heating apparatus for preclinical thermosensitive liposome development and the importance of MR-guided validation of the heating protocol for optimization of drug delivery.  相似文献   

5.
Multidrug resistance (MDR) is a significant challenge to effective cancer chemotherapy treatment. However, the development of a drug delivery system that allows for the sustained release of combined drugs with improved vesicle stability could overcome MDR in cancer cells. To achieve this, we have demonstrated codelivery of doxorubicin (Dox) and paclitaxel (PTX) via a crosslinked multilamellar vesicle (cMLV). This combinatorial delivery system achieves enhanced drug accumulation and retention, in turn resulting in improved cytotoxicity against tumor cells, including drug-resistant cells. Moreover, this delivery approach significantly overcomes MDR by reducing the expression of P-glycoprotein (P-gp) in cancer cells, thus improving antitumor activity in vivo. Thus, by enhancing drug delivery to tumors and lowering the apoptotic threshold of individual drugs, this combinatorial delivery system represents a potentially promising multimodal therapeutic strategy to overcome MDR in cancer therapy.  相似文献   

6.
The drug retention and circulation lifetime properties of liposomal nanoparticles (LN) containing dihydrosphingomyelin (DHSM) have been investigated. It is shown that replacement of egg sphingomyelin (ESM) by DHSM in sphingomyelin/cholesterol (Chol) (55/45; mol/mol) LN results in substantially improved drug retention properties both in vitro and in vivo. In the case of liposomal formulations of vincristine, for example, the half-times for drug release (T1/2) were approximately 3-fold longer for DHSM/Chol LN as compared to ESM/Chol LN, both in vitro and in vivo. Further increases in T1/2 could be achieved by increasing the drug-to-lipid ratio of the liposomal vincristine formulations. In addition, DHSM/Chol LN also exhibit improved circulation lifetimes in vivo as compared to ESM/Chol LN. For example, the half-time for LN clearance (Tc1/2) at a low lipid dose (15 μmol lipid/kg, corresponding to 8 mg lipid/kg body weight) in mice was 3.8 h for ESM/Chol LN compared to 6 h for DHSM/Chol LN. In addition, it is also shown that DHSM/Chol LN exhibit much longer half-times for vincristine release as compared to LN with the “Stealth” lipid composition. It is anticipated that DHSM/Chol LN will prove useful as drug delivery vehicles due to their excellent drug retention and circulation lifetime properties.  相似文献   

7.
To increase electrochemotherapy (ECT) applicability, the effectiveness of new drugs is being tested in combination with electroporation. Among them two ruthenium(III) compounds, (imH)[trans-RuCl4(im)(DMSO-S)] (NAMI-A) and Na[trans-RuCl4(ind)2] (KP1339), proved to possess increased antitumor effectiveness when combined with electroporation. The objective of our experimental work was to determine influence of electroporation on the cytotoxic and antitumor effect of a ruthenium(III) compound with hampered transmembrane transport, (imH)[trans-RuCl4(im)2] (KP418) in vitro and in vivo and to determine changes in metastatic potential of cells after ECT with KP418 in vitro. In addition, platinum compound cisplatin (CDDP) and ruthenium(III) compound NAMI-A were included in the experiments as reference compounds. Our results show that electroporation leads to increased cellular accumulation and cytotoxicity of KP418 in murine melanoma cell lines with low and high metastatic potential, B16-F1 and B16-F10, but not in murine fibrosarcoma cell line SA-1 in vitro which is probably due to variable effectiveness of ECT in different cell lines and tumors. Electroporation does not potentiate the cytotoxicity of KP418 as prominently as the cytotoxicity of CDDP. We also showed that the metastatic potential of cells which survived ECT with KP418 or NAMI-A does not change in vitro: resistance to detachment, invasiveness, and re-adhesion of cells after ECT is not affected. Experiments in murine tumor models B16-F1 and SA-1 showed that ECT with KP418 does not have any antitumor effect while ECT with CDDP induces significant dose-dependent tumor growth delay in the two tumor models used in vivo.  相似文献   

8.
Huang XX  Zhou CL  Wang H  Chen C  Yu SQ  Xu Q  Zhu YY  Ren Y 《AAPS PharmSciTech》2011,12(2):665-672
Hydroxypropyl-sulfobutyl-β-cyclodextrin (HP-SBE-β-CD) inclusion complex was developed and used as a drug delivery system for DTX (DTX/HP-SBE-β-CD). The objective of the present study was to evaluate and compare the biological properties of DTX/HP-SBE-Β-CD with Taxotere®. The pharmacokinetics, biodistribution, antitumor efficacy in vivo and in vitro, and safety evaluation of DTX/HP-SBE-β-CD were studied. The most significant finding was that it was possible to prepare a Polysorbate-80-free inclusion complex for DTX. Studies based on pharmacokinetics, biodistribution, and antitumor efficacy indicated that DTX/HP-SBE-β-CD had similar pharmacokinetic properties and antitumor efficacy both in vitro and in vivo as Taxotere®. Fortunately, this new drug delivery system attenuated the side effects when used in vivo. As a consequence, DTX/HP-SBE-β-CD may be a promising alternative to Taxotere® for cancer chemotherapy treatment with reduced side effects. The therapeutic potential against a variety of human tumors and low toxicity demonstrated in a stringent study clearly warrant clinical investigation of DTX/HP-SBE-β-CD for possible use against human tumors.Key words: antitumor efficacy, biodistribution, DTX/HP-SBE-β-CD, pharmacokinetics, safety evaluation  相似文献   

9.
Conventional chemotherapy is still frequently used. Programmed cell death 5 (PDCD5) enhances apoptosis of various tumor cells triggered by certain stimuli and is lowly expressed in leukemic cells from chronic myelogenous leukemia patients. Here, we describe for the first time that recombinant human PDCD5 protein (rhPDCD5) in combination with chemotherapy drugs has potent antitumor effects on chronic myelogenous leukemia K562 cells in vitro and in vivo. The antitumor efficacy of rhPDCD5 protein with chemotherapy drugs, idarubicin (IDR) or cytarabine (Ara-C), was examined in K562 cells in vitro and K562 xenograft tumor models in vivo. rhPDCD5 protein markedly increased the apoptosis rates and decreased the colony-forming capability of K562 cells after the combined treatment with IDR or Ara-C. rhPDCD5 protein by intraperitoneal administration dramatically improved the antitumor effects of IDR treatment in the K562 xenograft model. The tumor sizes and cell proliferation were significantly decreased; and TUNEL positive cells were significantly increased in the combined group with rhPDCD5 protein and IDR treatment compared with single IDR treatment groups. rhPDCD5 protein, in combination with IDR, has potent antitumor effects on chronic myelogenous leukemia K562 cells and may be a novel and promising agent for the treatment of chronic myelogenous leukemia.  相似文献   

10.
Effective cancer chemotherapy treatment requires both therapy delivery and retention by malignant cells. Cancer cell overexpression of the multidrug transmembrane transporter gene ABCB1 (MDR1, multi-drug resistance protein 1) thwarts therapy retention, leading to a drug-resistant phenotype. We explored the phenotypic impact of ABCB1 overexpression in normal human mammary epithelial cells (HMECs) via acute adenoviral delivery and in breast cancer cell lines with stable integration of inducible ABCB1 expression. One hundred sixty-two genes were differentially expressed between ABCB1-expressing and GFP-expressing HMECs, including the gene encoding the cyclooxygenase-2 protein, PTGS2. Several breast cancer cell lines with inducible ABCB1 expression demonstrated sensitivity to the 5-lipoxygenase, cyclooxygenase-1/2 inhibitor tepoxalin in two-dimensional drug response assays, and combination treatment of tepoxalin either with chemotherapies or with histone deacetylase (HDAC) inhibitors improved therapeutic efficacy in these lines. Moreover, selection for the ABCB1-expressing cell population was reduced in three-dimensional co-cultures of ABCB1-expressing and GFP-expressing cells when chemotherapy was given in combination with tepoxalin. Further study is warranted to ascertain the clinical potential of tepoxalin, an FDA-approved therapeutic for use in domesticated mammals, to restore chemosensitivity and improve drug response in patients with ABCB1-overexpressing drug-resistant breast cancers.  相似文献   

11.
Context: Strategy of dual therapy has been proposed to minimize the amount of each drug and to achieve the synergistic effect for cancer therapies.

Objective: The aim of this study was to develop an effective drug delivery system for the simultaneous topical delivery of two anti-tumor agents, cisplatin and imiquimod.

Material and methods: The preformulation studies were carried out in terms of tests for identification, solubility profile, determination of partition coefficient and simultaneous estimation of both drugs by UV–Visible spectrophotometer and High Performance Liquid Chromatography (HPLC). Drug–drug and drug-excipients interactions were examined by thin layer chromatography, infrared spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Provesicular drug delivery system (protransfersome gel formulation) have been prepared and characterized by in vitro and in vivo parameters.

Results: The mean size, poly dispersity index (PDI) and zeta potential of transfersomal vesicles formed by protransfersome hydration were 429.5?nm, 0.631 and ?68.1 Mv, respectively. The prepared formulation showed toxicity on cutaneous squamous cell carcinoma cell line (A-431) at 200?µg (cisplatin) and 1?mg (imiquimod) concentration of drug in combination against control. The cisplatin- and imiquimod-loaded provesicular dual–drug delivery system achieved an optimal antitumor effect, increase in lifespan, antiviral, and toxicity reduction, revealing the advantage of site specific drug delivery and the modified combination therapy.

Discussion: Cisplatin delivery through protransfersome gel in combination with imiquimod may potentiate the activity against solid tumors of epidermal origin.

Conclusion: Data revealed that combination therapy considerably enhances antitumor efficacy of the drug for skin-cited malignancies.  相似文献   

12.
Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that “prime” solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.KEY WORDS: controlled release, drug combination, drug delivery, drug solubilization, polymeric micelles  相似文献   

13.
Doxorubicin (Dox) treatment is limited by severe toxicity and frequent episodes of treatment failure. To minimize adverse events and improve drug delivery efficiently and specifically in cancer cells, encapsulation of Dox with naturally obtained galactoxyloglucan polysaccharide (PST001), isolated from Tamarindus indica was attempted. Thus formed PST-Dox nanoparticles induced apoptosis and exhibited significant cytotoxicity in murine ascites cell lines, Dalton’s lymphoma ascites and Ehrlich’s ascites carcinoma. The mechanism contributing to the augmented cytotoxicity of nanoconjugates at lower doses was validated by measuring the Dox intracellular uptake in human colon, leukemic and breast cancer cell lines. PST-Dox nanoparticles showed rapid internalization of Dox into cancer cells within a short period of incubation. Further, in vivo efficacy was tested in comparison to the parent counterparts - PST001 and Dox, in ascites and solid tumor syngraft mice models. Treatment of ascites tumors with PST-Dox nanoparticles significantly reduced the tumor volume, viable tumor cell count, and increased survival and percentage life span in the early, established and prophylactic phases of the disease. Administration of nanoparticles through intratumoral route delivered more robust antitumor response than the intraperitoneal route in solid malignancies. Thus, the results indicate that PST-Dox nanoparticles have greater potential compared to the Dox as targeted drug delivery nanocarriers for loco regional cancer chemotherapy applications.  相似文献   

14.
In a previous report, we showed that the circadian rhythm of cisplatin (cis-diamminedichloroplatinum, CDDP) toxicity in healthy mice was modified by buthionine sulfoximine (BSO), a specific inhibitor of glutathione (GSH) synthesis. In the present study, the effects of BSO on the rhythms of CDDP toxicity and antitumor efficacy were investigated in mice bearing a transplantable pancreatic adenocarcinoma (PO3). B6D2F1 mice were inoculated widi two 4 mm3 tumor fragments, one in each flank, then were synchronized with an alternation of 12h of light (L) and 12h of darkness (D) (LD 12: 12). Three weeks later, a single dose of CDDP (12 mg/kg iv) was injected at 3h, 7h, 11h, 15h, 19h, or 23h after light onset (HALO) with or without prior BSO (450 mg/kg ip 4h earlier). The antitumor activity of CDDP as assessed by tumor weight change and tumor growth delay was weak in this tumor model irrespective of prior BSO administration or CDDP dosing time. Nevertheless, toxic effects of CDDP as gauged by body weight loss or survival varied significantly according to CDDP dosing time. Body weight loss was least in mice receiving CDDP alone at the mid-to-late active span. Survival rate was 97% in mice treated with CDDP alone and 47% in those receiving prior BSO (χ2 = 23.6, p <. 0001). BSO pretreatment further shifted the period of survival or body weight change from 24h to (10 + 24)h, an effect similar to that earlier reported in healthy mice. Thus, PO3 tumor at a measurable stage altered neither the circadian rhythm in CDDP toxicity nor the ultradian rhythm in the toxicity of BSO-CDDP combination. The results suggest that rhythms in target tissues for drug actions can be manipulated with biochemical modulators, thus partly escaping central clock control.  相似文献   

15.
Liposomes possess good biocompatibility and excellent tumor-targeting capacity. However, the rapid premature release of lipophilic drugs from the lipid bilayer of liposomes has negative effect on the tumor-targeted drug delivery of liposomes. In this study, a lipophilic antitumor drug—chlorambucil (CHL)—was encapsulated into the aqueous interior of liposomes with the aid of albumin to obtain the CHL-loaded liposomes/albumin hybrid nanoparticles (CHL-Hybrids). The in vitro accumulative release rate of CHL from CHL-Hybrids was less than 50% within 48 h, while the accumulative CHL release was more than 80% for CHL-loaded liposomes (CHL-Lip). After intravenous injection into rats, the half-life (t 1/2β = 5.68 h) and maximum blood concentration (C max = 4.58 μg/mL) of CHL-Hybrids were respectively 1.1 times and 3.5 times higher than that of CHL-Lip. In addition, CHL-Hybrids had better tumor-targeting capacity for it significantly increased the drug accumulation in B16F10 tumors, which contributed to the significantly control of tumor growth compared with CHL-Lip. Furthermore, CHL-Hybrid-treated B16F10 melanoma-bearing mice displayed the longest median survival time of 30.0 days among all the treated groups. Our results illustrated that the proposed hybrids drug delivery system would be a promising strategy to maintain the controlled release of lipophilic antitumor drugs from liposomes and simultaneously facilitate the tumor-targeted drug delivery.  相似文献   

16.
Breast cancer is the second leading cause of cancer-related deaths in women. Ligand-modified liposomes are used for breast tumor-specific drug delivery to improve the efficacy and reduce the side effects of chemotherapy; however, only a few liposomes with high targeting efficiency have been developed because the mono-targeting, ligand-modified liposomes are generally unable to deliver an adequate therapeutic dose. In this study, we designed biotin-glucose branched ligand-modified, dual-targeting liposomes (Bio-Glu-Lip) and evaluated their potential as a targeted chemotherapy delivery system in vitro and in vivo. When compared with the non-targeting liposome (Lip), Bio-Lip, and Glu-Lip, Bio-Glu-Lip had the highest cell uptake in 4T1 cells (3.00-fold, 1.60-fold, and 1.95-fold higher, respectively) and in MCF-7 cells (2.63-fold, 1.63-fold, and 1.85-fold higher, respectively). The subsequent cytotoxicity and in vivo assays further supported the dual-targeting liposome is a promising drug delivery carrier for the treatment of breast cancer.  相似文献   

17.
Mesoporous silica nanoparticles (MSNs) have been proposed as drug delivery devices for approximately 15 years. The history of in vitro studies has been promising, demonstrating that MSNs have the capability for stimulus-responsive controlled release, good cellular uptake, cell specific targeting, and the ability to carry a variety of cargoes from hydrophobic drug molecules to imaging agents. However, the translation of the in vitro findings to in vivo conditions has been slow. Herein, we review the current state-of-the-art in the use of MSN for systemic drug delivery in vivo and provide critical insight into the future of MSNs as systemic drug delivery devices and directions that should be undertaken to improve their practicality.  相似文献   

18.
Lymph node metastasis (LNM) in many solid cancers is a well-known prognostic factor; however, it has been debated whether regional LNM simply reflects tumor aggressiveness or is a source for further tumor dissemination. Similarly, the metastatic process in head and neck cancer (HNC) has not been fully evaluated. Thus, we aimed to investigate the relative significance of LNM in metastatic cascade of HNC using functional imaging of HNC patients and molecular imaging in in vivo models. First, we analyzed 18Fluorodeoxyglucose positron emission tomography (PET) parameters of 117 patients with oral cancer. The primary tumor and nodal PET parameters were measured separately, and survival analyses were conducted on the basis of clinical and PET variables to identify significant prognostic factors. In multivariate analyses, we found that only the metastatic node PET values were significant. Next, we compared the relative frequency of lung metastasis in primary ear tumors versus lymph node (LN) tumors, and we tested the rate of lung metastasis in another animal model, in which each animal had both primary and LN tumors that were expressing different colors. As a result, LN tumors showed higher frequencies of lung metastasis compared to orthotopic primary tumors. In color-matched comparisons, the relative contribution to lung metastasis was higher in LN tumors than in primary tumors, although both primary and LN tumors caused lung metastases. In summary, tumors growing in the LN microenvironment spread to systemic sites more commonly than primary tumors in HNC, suggesting that the adequate management of LNM can reduce further systemic metastasis.  相似文献   

19.
Cytolethal distending toxin (Cdt) is produced by Gram-negative bacteria of several species. It is composed of three subunits, CdtA, CdtB, and CdtC, with CdtB being the catalytic subunit. We fused CdtB from Haemophilus ducreyi to the N-terminal 255 amino acids of Bacillus anthracis toxin lethal factor (LFn) to design a novel, potentially potent antitumor drug. As a result of this fusion, CdtB was transported into the cytosol of targeted cells via the efficient delivery mechanism of anthrax toxin. The fusion protein efficiently killed various human tumor cell lines by first inducing a complete cell cycle arrest in the G2/M phase, followed by induction of apoptosis. The fusion protein showed very low toxicity in mouse experiments and impressive antitumor effects in a Lewis Lung carcinoma model, with a 90% cure rate. This study demonstrates that efficient drug delivery by a modified anthrax toxin system combined with the enzymatic activity of CdtB has great potential as anticancer treatment and should be considered for the development of novel anticancer drugs.  相似文献   

20.
《Translational oncology》2020,13(7):100769
OBJECTIVE: To improve conventional chemotherapeutic efficacy, it is significant to identify novel molecular markers for chemosensitivity as well as possible molecules accelerating cell-killing mechanisms. In this study, we attempted to elucidate how MK2206, an allosteric Akt inhibitor, enhances the cisplatin (CDDP)-induced cytotoxicity and apoptosis in testicular cancer. MATERIALS AND METHODS: We checked three testicular cancer cell lines for the expression of phospho(p)-Akt and its downstream molecules targets by Western blot. The potential antitumor effects were analyzed by MTT assay in vitro and by subcutaneous xenograft models in vivo. The cell invasion was analyzed by transwell invasion assay, and the activities of Akt signaling pathway and expression of apoptosis-related proteins were measured by Western blot. RESULTS: Our results indicated that there was overactivation of p-Akt and its downstream molecules in testicular cancer cell lines compared with normal testis epithelium cells. MK2206 (600 nM) inhibited cell invasion in TCAM-2 and P19 cell lines and significantly increased the susceptibility of testicular cancer to CDDP. Combined with CDDP, MK2206 potentiated CDDP-induced cytotoxicity and apoptosis, with repressed expression of p-Akt and its downstream targets. The subcutaneous xenograft models also showed that a combined CDDP/MK2206 therapy completely suppressed tumor growth without any side effects. CONCLUSION: These results suggested that the concomitant use of MK2206 could enhance the CDDP-induced cytotoxicity and apoptosis in testicular cancer with the suppressed expression of Akt pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号