首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of tissue and cuts growth depending on the sex could be used to improve performance and efficiency. Computed tomography (CT) is a non-invasive technology that enables the study of the body composition of live animals during growth. The aims of the present study were (1) to evaluate variation in the body composition of four sex types (SEX) of pigs (castrated males (CM), immunocastrated males (IM), entire males (EM) and females (FE)) at the live weight of 30, 70, 100 and 120 kg, assessed using CT; (2) to model the growth of the main tissues and cuts; and (3) to predict the mature BW (MBW) of the four SEX and establish the relationships between the growth models and the MBW. There were significant phenotypic differences in the allometric growth of fat and lean among SEX. For the lean tissue, FE and EM showed higher values of the b coefficient than CM and IM (1.07 and 1.07 v. 1.00 and 1.02, respectively) all of them close to unity, indicating a proportional growth rate similar to live weight and that this tissue developed faster in FE and EM than in CM and IM. However, these differences were not related to differences in estimated MBW. There were significant differences in estimated MBW among SEX, being higher in IM and EM than in CM and FE (303 and 247 v. 219 and 216 kg), however, the MBW may have been overestimated, especially for the IM. The poorer accuracy of the MBW estimate for the IM could be due to a maximum live weight of 120 kg in the experiment, or to the fact that this particular SEX presented two clear behaviours, being more similar to EM from birth to the second injection of the vaccine (130 days) and comparable with CM from that point to the final BW.  相似文献   

2.
Carcass data were collected from 24 kids (average live weight of 12.5±5.5 kg; range 4.5 to 22.4 kg) of Jarmelista Portuguese native breed, to evaluate bioelectrical impedance analysis (BIA) as a technique for prediction of light kid carcass and muscle chemical composition. Resistance (Rs, Ω) and reactance (Xc, Ω), were measured in the cold carcasses with a single frequency bioelectrical impedance analyzer and, together with impedance (Z, Ω), two electrical volume measurements (VolA and VolB, cm2/Ω), carcass cold weight (CCW), carcass compactness and several carcass linear measurements were fitted as independent variables to predict carcass composition by stepwise regression analysis. The amount of variation explained by VolA and VolB only reached a significant level (P<0.01 and P<0.05, respectively) for muscle weight, moisture, protein and fat-free soft tissue content, even so with low accuracy, with VolA providing the best results (0.326⩽R2⩽0.366). Quite differently, individual BIA parameters (Rs, Xc and Z) explained a very large amount of variation in dissectible carcass fat weight (0.814⩽R2⩽0.862; P<0.01). These individual BIA parameters also explained a large amount of variation in subcutaneous and intermuscular fat weights (respectively 0.749⩽R2⩽0.793 and 0.718⩽R2⩽0.760; P<0.01), and in muscle chemical fat weight (0.663⩽R2⩽0.684; P<0.01). Still significant but much lower was the variation in muscle, moisture, protein and fat-free soft tissue weights (0.344⩽R2⩽0.393; P<0.01) explained by BIA parameters. Still, the best models for estimation of muscle, moisture, protein and fat-free soft tissue weights included Rs in addition to CCW, and accounted for 97.1% to 99.8% (P<0.01) of the variation observed, with CCW by itself accounting for 97.0% to 99.6% (P<0.01) of that variation. Resistance was the only independent variable selected for the best model predicting subcutaneous fat weight. It was also selected for the best models predicting carcass fat weight (combined with carcass length, CL; R2=0.943; P<0.01) and intermuscular fat weight (combined with CCW; R2=0.945; P<0.01). The best model predicting muscle chemical fat weight combined CCW and Z, explaining 85.6% (P<0.01) of the variation observed. These results indicate BIA as a useful tool for prediction of light kids’ carcass composition.  相似文献   

3.
In order to accurately estimate body composition at slaughter and to meet specific market targets, the influence of age at time of castration (surgical or immunological) on body composition and boar taint indicators must be determined for male pigs. In all, 48 males were randomly assigned to one of four management regimens: (1) entire male pigs (EM), (2) EM surgically castrated at ~40 kg BW and 10 weeks of age (late castrates; LC), (3) conventional, early surgical castrates (within 4 days of birth; EC) and (4) EM immunized with a gonadotropin-releasing hormone (GnRH) analog (primary dose at 30 kg BW and 8 weeks of age; booster dose at 70 kg and 14 weeks of age; IM). Pigs were fed corn and soybean meal-based diets that were not limiting in essential nutrients. Back fat was sampled on days −3, 8, 18 and 42, relative to administering the booster dose of GnRH analog at day 0, to determine androstenone concentrations (n=8 or 9/group). Fat androstenone concentrations in IM were lower than EM between days 8 and 42 after administering the booster dose (173 v. 863 ng/g, respectively; P<0.01), and were not different from surgically castrated males (EC and LC) after day 18. Slaughter occurred at ~115 kg BW, 42 days (6 weeks) after administering the booster dose for IM, and 10 and 20 weeks after surgical castration for LC and EC, respectively (n=8 or 9/group). At slaughter, live BW, liver weight as a percent of live BW, dissectible bone as a percent of cold carcass side, body protein and water contents and whole-body protein deposition decreased with time after surgical castration (linear; P<0.05), whereas dressing percentage, dissectible fat, probe fat depth and body fat content increased with time after surgical castration (linear; P<0.05). The IM had intermediate dressing percentage and dissected fat to EM and EC, whereas liver weight as a percent of live BW and body protein and lipid contents were not different from EM. Whole-body lipid deposition tended to be greater in IM than in EM between 14 and 20 weeks of age (373 v. 286 g/d; P=0.051). In conclusion, castration of male pigs after 6 weeks of age has a lasting effect on physical and chemical body composition. The relationship between time after castration and body composition may be developed to predict carcass composition and can be used to determine the ideal immunization schedule aimed at specific markets in the future.  相似文献   

4.
The optimized use of dietary nutrients and the accurate knowledge of the growth dynamics of body components is important for efficient pig production. This study aimed at evaluating the growth of carcass components and organs of Swiss Large White pigs from birth to 140 kg BW depending on the CP and amino acid (AA) supply. A total of 66 entire males (EM), 58 castrates (CA) and 66 female (FE) pigs were used. From 20 kg BW onwards, they had either ad libitum access to a control (C) or a diet (LP) with 20% lower CP, lysine, methionine + cystine, threonine and tryptophan content compared to C. The weight of organs, primal cuts and external fat were recorded in eight EM and eight FE; at 10 kg BW, on two EM, CA and FE each, and at 20 kg BW, on eight pigs from each sex. From 40 to 140 kg BW at 20 kg intervals, measurements were recorded on four pigs per sex and dietary treatment. The weight of each component was related to empty body (EB) using allometric regressions. Kidneys were heavier (P<0.05) in C- than LP-pigs and in EM than CA and FE. Above 21 kg EB weight, growth rate of LP-FE overpassed (P<0.05) the one of C-pigs. Consequently, LP-FE had heavier (P<0.05) lean cuts than C-pigs in the finisher period. However, LP-CA and LP-EM displayed lower (P<0.05) weights and growth rates of the lean cuts than C-CA and C-EM. Shoulder and loin weights and growth rates were reduced (P<0.05) in LP-pigs when compared to C-pigs. Growth rates of the ham were greater (P<0.05) in LP-FE than C-FE, whereas in LP-EM and LP-CA they were lower (P<0.05) than their C-counterparts. Total amounts of subcutaneous fat, backfat, ham fat and shoulder fat were lower (P<0.05) in C- than LP-pigs. The total amount of subcutaneous fat, backfat and shoulder fat of C-CA was, regardless of diet, greater (P<0.05) than of C-FE. In the LP group, this difference was even more pronounced. The amount of deposited ham fat was greater (P<0.05) in LP-CA than LP-FE, but not in C-CA v. C-FE. Differences in kidney weights suggested a greater nitrogen clearance required in C-pigs. Overall, dietary restriction and sex did not affect all body parts to the same extent. This study further suggests the possibility to reduce the CP and AA supply in FE without compromising the yield of primal lean cuts or increasing the amount of subcutaneous fat.  相似文献   

5.
The polymorphisms of LEPR and MC4R genes are involved in appetite control mechanisms and indirectly associated with level of fat content in pig carcasses. Therefore, the aim of our study was to determine if both polymorphisms have an effect on components of colostrum and milk of sows. In our study we used gilts of two Polish breeds: Polish Landrace and Polish Large White, which belong to dam-line in Polish breeding. Colostrum and milk of sows were collected in 7, 14 and 21 day of lactation to assay solids, total protein, fat and lactose. The obtained results showed, that the observed mutation (G/A 1426 MC4R) had a significant effect mainly on the fat and solids content of colostrum. Animals with the MC4R AA genotype had 2.13 and 1.91 % (P ≤ 0.01) lower fat content of colostrum compared to sows with the MC4R GG genotype and heterozygous MC4R AG. The presence of the MC4R A allele in the animals’ genotype contributed to a decrease in fat and solids content of colostrum. The LEPR/HpaII mutation was found to have a considerable effect on the level of most colostrum components (fat, protein and solids) in both pig breeds. Significant decrease in the value of the colostrum components (except lactose) was observed only for animals with the allele LEPR B. The results obtained suggest that these genes might be used in selection of dam-line pigs as genetic markers of milk quality.  相似文献   

6.
The objective of this study was to explore whether the C and N content can be used to estimate the fat content of animal carcasses. Considering the mean C and N contents of body fat and body protein, the fat content (EE) [%] can be predicted from C and N values [%] according to the generally valid equation EE=1.3038·C – 4.237·N. The application of this equation to estimate the total fat content of all animal carcasses results in significant differences in fat content between predicted and measured values. Therefore, we derived specific equations for rats, pigs, cattle, sheep, broilers and mice to predict the fat content by dual linear regression analysis (y=EE [% DM], x1=C [% DM], x2=N [% DM]) based on measured fat, C, and N contents of animal body samples. The specific equations for different animals showed residual standard deviations of 1.55, 1.63, 1.12, 1.35, 1.85 and 0.92% fat for rats, pigs, cattle, sheep, broilers and mice, respectively.  相似文献   

7.
In immunocastrated (IC) pigs, revaccination (V2) increases lipid deposition (LD) because of increased voluntary feed intake; but little is known on associated effect of diet composition on partitioning of nutrients in IC pigs. Digestibility measurements, N and energy balances in respiration chambers were performed in two subsequent stages in four replicates of two male littermates to determine the changes between 85 (stage 1) and 135 (stage 2) kg live weight due to combined effect of IC, growth and increased feed intake (IC/growth). During stage 1, pigs received a standard low-fat diet (LF diet; 2.5% dry matter (DM) of fat fed at 2.27 MJ metabolizable energy (ME)/kg BW0.60 per day), whereas during stage 2, feed intake was increased to 2.47 MJ ME/kg BW0.60 per day and one littermate was fed LF diet whereas the second received a fat-enriched diet (HF diet; 8.9% DM of fat) to determine the effect of increased dietary fat content on energy utilization in IC pigs. Results from N balance and measurements of gas exchanges were used to calculate respiratory quotient (RQ), heat production (HP), nutrient contribution to fat retention, components of HP, protein deposition (PD) and LD. Nutrients and energy apparent digestibility coefficients, methane losses and N retention (P<0.05) increased with IC/growth. Despite higher ME intake, total HP remained similar (1365 kJ/kg of BW0.60 per day; P=0.47) with IC/growth. Consequently, total retained energy (RE) increased with IC/growth (from 916 to 1078 kJ/kg of BW0.60 per day; P<0.01) with a higher fat retention (625 to 807 kJ/kg BW0.60 per day; P<0.01), originating mainly from carbohydrates associated with a higher lipogenesis (536 to 746 kJ/kg BW0.60 per day; P<0.01) and RQ (1.095 to 1.145; P<0.01). Both PD (from 178 to 217 g/day; P=0.02) and LD (from 227 to 384 g/day; P<0.01) increased due to IC/growth. Feeding HF diet after IC was associated with increased crude fat digestibility (P<0.01) and increased RE as fat (807 to 914 kJ/kg BW0.60 per day; P=0.03), originating mainly from dietary fat (P<0.01) and resulting in increased LD (384 to 435 g/day; P<0.01) and lower RQ (from 1.145 to 1.073; P<0.01). Altogether, present results indicate that increased fatness of IC pigs is a result of increased daily LD caused by higher energy intake and lower basal metabolic rate. In addition, LD is further enhanced by dietary energy enrichment with fat after V2.  相似文献   

8.
Intramuscular fat (IMF) content depends on sex, genotype and diet and varies with pig growth. The aim of the present work was to determine the evolution of IMF by genotype-sex, muscle and muscle location, to determine relationships between IMF content of different muscles and to predict IMF in live pigs with computed tomography (CT). For this purpose, 155 pigs of seven combinations of genotype-sex were CT scanned and slaughtered at 70, 100 and 120 kg. From the carcasses, fat thickness was measured at several locations along the midline. Loin samples from three anatomical positions (between the eighth and ninth last ribs, between the third and fourth last ribs and between the third and fourth lumbar vertebrae) and three ham muscles (biceps femoris, semimembranosus and gluteus medius) were extracted, weighed and IMF was determined with near-IR equipment. From CT images, the distribution of volume by Hounsfield value (unit related with the density) was obtained for each muscle and anatomical location. Marbling was evaluated in the three loin locations. The effects of genotype-sex and live weight and their interaction were included in the statistical model. For prediction of IMF with CT images, partial least square regression was used. The results show differences in IMF content by genotype-sex and muscle. In general, the most cranial part of the loin presented higher IMF content, as well as the biceps femoris muscle of the ham. Depending on the genotype-sex, IMF content increased during all growth or increased until 100 kg and then became constant. Correlation coefficients between IMF content by muscle/location were between 0.74 and 0.83 within loin locations and between 0.53 and 0.70 for ham muscles. Correlation coefficients between marbling and IMF content evaluated at the same location varied between 0.51 and 0.66. Prediction of IMF content from CT images is not accurate enough (residual predictive deviation statistical values lower than 1.3). Muscle weight increase with animal growth and allometric coefficients varied between 0.89 and 0.97 for the muscles evaluated. The conclusions of the present work are that IMF content differs between and within muscle, during growth and by genotype-sex and that prediction of IMF in CT images of live pigs is not accurate.  相似文献   

9.
In order to monitor Potentially Toxic Elements (PTEs) in anthropogenic soils on brown coal mining dumpsites, a large number of samples and cumbersome, time-consuming laboratory measurements are required. Due to its rapidity, convenience and accuracy, reflectance spectroscopy within the Visible-Near Infrared (Vis-NIR) region has been used to predict soil constituents. This study evaluated the suitability of Vis-NIR (350–2500 nm) reflectance spectroscopy for predicting PTEs concentration, using samples collected on large brown coal mining dumpsites in the Czech Republic. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR) with cross-validation were used to relate PTEs data to the reflectance spectral data by applying different preprocessing strategies. According to the criteria of minimal Root Mean Square Error of Prediction of Cross Validation (RMSEPcv) and maximal coefficient of determination (R2cv) and Residual Prediction Deviation (RPD), the SVMR models with the first derivative pretreatment provided the most accurate prediction for As (R2cv) = 0.89, RMSEPcv = 1.89, RPD = 2.63). Less accurate, but acceptable prediction for screening purposes for Cd and Cu (0.66 ˂ R2cv) ˂ 0.81, RMSEPcv = 0.0.8 and 4.08 respectively, 2.0 ˂ RPD ˂ 2.5) were obtained. The PLSR model for predicting Mn (R2cv) = 0.44, RMSEPcv = 116.43, RPD = 1.45) presented an inadequate model. Overall, SVMR models for the Vis-NIR spectra could be used indirectly for an accurate assessment of PTEs’ concentrations.  相似文献   

10.
Noninvasive prediction of vertebral body strength under compressive loading condition is a valuable tool for the assessment of clinical fractures. This paper presents an effective specimen-specific approach for noninvasive prediction of human vertebral strength using a nonlinear finite element (FE) model and an image based parameter based on the quantitative computed tomography (QCT). Nine thoracolumbar vertebrae excised from three cadavers with an average age of 42 years old were used as the samples. The samples were scanned using the QCT. Then, a segmentation technique was performed on each QCT sectional image. The segmented images were then converted into three-dimensional FE models for linear and nonlinear analyses. A new material model was implemented in our nonlinear model being more compatible with real mechanical behavior of trabecular bone. A new image based MOS (Mechanic of Solids) parameter named minimum sectional strength ((σuA)min) was used for the ultimate compressive strength prediction. Subsequently, the samples were destructively tested under uniaxial compression and their experimental ultimate compressive strengths were obtained. Results indicated that our new implemented FE model can predict ultimate compressive strength of human vertebra with a correlation coefficient (R2 = 0.94) better than usual linear and nonlinear FE models (R2 = 0.83 and 0.85 respectively). The image based parameter introduced in this study ((σuA)min) was also correlated well with the experimental results (R2 = 0.86). Although nonlinear FE method with new implemented material model predicts compressive strength better than the (σuA)min, this parameter is clinically more feasible due to its simplicity and lower computational costs. This can make future applications of the (σuA)min more justified for human vertebral body compressive strength prediction.  相似文献   

11.
The annual variability in growth and life history traits of brown trout (Salmo trutta L.) and Arctic charr (Salvelinus alpinus (L.)) in Lake Atnsjøen, a Norwegian subalpine lake, was studied over a period of 13 years (1985–1997). The extent to which life-history characteristics recorded on one occasion can be regarded as representative for the population was explored. We found inter-cohort variation in growth for both species; estimates of asymptotic length (L ) in ten cohorts ranged between 225–305 mm (CV = 10.5%) for brown trout and 273–301 mm (CV = 4.1%) for Arctic charr. However, this variation was much lower than inter-population variation for brown trout based on single samples from 169 populations (CV = 24.6%). In Lake Atnsjøen, annual growth increment correlated highly with the number of days warmer than 7?°C (R 2=0.60–0.89) for brown trout, and days warmer than 10?°C (R 2=0.40–0.58) for Arctic charr. Females of Arctic charr were younger at sexual maturity than males, while no such difference was found in brown trout. Generally speaking, early maturing individuals of both species grew faster, particularly from age-2 and onwards, than immature individuals. Early maturing individuals, however, were smaller at maturity than those maturing one year older. Age and size at maturity were significantly correlated with asymptotic lengths only in Arctic charr females.  相似文献   

12.
The technique of near and short wave near-infrared spectroscopy was assessed with respect to analysis of dry matter and lipid content of microalgae with potential for biodiesel production. Microalgal culture samples were filtered through GF/C filter papers and spectral measurements of wet and oven dried (60 °C overnight) filter papers over the ranges of 300–1,100 nm and 1,100–2,500 nm were recorded. Partial least square models on culture biomass and lipid content for combined species data were poor in terms of RMSECV, R CV and the ratio of RMSECV to SD. A single species model for C. vulgaris based on 1,100–2,500 nm spectra of dry filtrate supported a model with RMSECV, R CV and SDR values of 0.32 g L?1, 0.955 and 3.38 for biomass and 0.089 g L?1, 0.874 and 2.06 with lipid, respectively. However, the dry filtrate models on biomass and lipid content performed poorly in the prediction of samples drawn from an independent series of C. vulgaris cultured under N-, P- and Fe-limited growth trial. Thus, while the near-infrared spectroscopy technique has potential for assessment of dry matter and lipid content of microalgal cultures using a dried filtrate sample, further work is required to examine the limits to model robustness.  相似文献   

13.
Profitability of beef production can be increased by genetically improving carcass traits. To construct breeding value evaluations for carcass traits, breed-specific genetic parameters were estimated for carcass weight, carcass conformation and carcass fat in five beef cattle breeds in Finland (Hereford, Aberdeen Angus, Simmental, Charolais and Limousin). Conformation and fat were visually scored using the EUROP carcass classification. Each breed was separately analyzed using a multitrait animal model. A total of 6879–19 539 animals per breed had phenotypes. For the five breeds, heritabilities were moderate for carcass weight (h2=0.39 to 0.48, s.e.=0.02 to 0.04) and slightly lower for conformation (h2=0.30 to 0.44, s.e.=0.02 to 0.04) and carcass fat (h2=0.29 to 0.44, s.e.=0.02 to 0.04). The genetic correlation between carcass weight and conformation was favorable in all breeds (rG=0.37 to 0.53, s.e.=0.04 to 0.05), heavy carcasses being genetically more conformed. The phenotypic correlation between carcass weight and carcass fat was moderately positive in all breeds (rP=0.21 to 0.32), implying that increasing carcass weight was related to increasing fat levels. The respective genetic correlation was the strongest in Hereford (rG=0.28, s.e.=0.05) and Angus (rG=0.15, s.e.=0.05), the two small body-sized British breeds with the lowest conformation and the highest fat level. The correlation was weaker in the other breeds (rG=0.08 to 0.14). For Hereford, Angus and Simmental, more conformed carcasses were phenotypically fatter (rP=0.11 to 0.15), but the respective genetic correlations were close to zero (rG=0.05 to 0.04). In contrast, in the two large body-sized and muscular French breeds, the genetic correlation between conformation and fat was negative and the phenotypic correlation was close to zero or negative (Charolais: rG=0.18, s.e.=0.06, rP=0.02; Limousin: rG=0.56, s.e.=0.04, rP=0.13). The results indicate genetic variation for the genetic improvement of the carcass traits, favorable correlations for the simultaneous improvement of carcass weight and conformation in all breeds, and breed differences in the correlations of carcass fat.  相似文献   

14.
The potential of using radiography for measuring feed intake in southern rock lobster Jasus edwardsii (Hutton) was evaluated. Lobsters (14-40 g) readily consumed feeds containing radio-opaque marker (400—450 μm). Marker particles were clearly identified in the stomach 90 min after feeding enabling feed intake to be estimated. Initially low estimates (15±17%; mean±S.D.) of feed intake (expressed as percentage of gravimetric estimates) were recorded due to loss of markers prior to ingestion. Radiographic estimates improved (100±23%; mean±S.D.) when changes to pellet diameter (1.5 mm), moisture content (11%) and binding agent (alginate) were made. Thus, estimates were dependent on pellet diameter and resistance to fragmentation prior to ingestion. To test for the presence of feeding hierarchies in groups of lobsters an experiment was conducted to examine the effect of ration level (high ration: 2.0% BW day−1 and low ration: 0.2% BW day−1) on intra-individual (measured as coefficient of variation for feed intake: CVC) and inter-individual variation (measured as mean share of the group meal: MSM%). There was a significant (P<0.05) negative correlation between CVC and MSM% for the low ration treatments which indicated that small lobsters (CVC=114±19% and MSM%=22±10%: mean±S.D.) were less successful than large lobsters (CVC 44±11% and MSM%=41±13%: mean±S.D.) at obtaining feed. This may be indicative of the formation of feeding hierarchies.  相似文献   

15.
The objective of the study was to evaluate whether magnetic resonance imaging (MRI) offers the opportunity to reliably analyze body composition of pigs in vivo. Therefore, the relation between areas of loin eye muscle and its back fat based on MRI images were used to predict body composition values measured by dual energy X-ray absorptiometry (DXA). During the study, a total of 77 pigs were studied by MRI and DXA, with a BW ranging between 42 and 102 kg. The pigs originated from different extensive or conventional breeds or crossbreds such as Cerdo Iberico, Duroc, German Landrace, German Large White, Hampshire and Pietrain. A Siemens Magnetom Open was used for MRI in the thorax region between 13th and 14th vertebrae in order to measure the loin eye area (MRI-LA) and the above back fat area (MRI-FA) of both body sides, whereas a whole body scan was performed by DXA with a GE Lunar DPX-IQ in order to measure the amount and percentage of fat tissue (DXA-FM; DXA-%FM) and lean tissue mass (DXA-LM; DXA-%LM). A linear single regression analysis was performed to quantify the linear relationships between MRI- and DXA-derived traits. In addition, a stepwise regression procedure was carried out to calculate (multiple) regression equations between MRI and DXA variables (including BW). Single regression analyses showed high relationships between DXA-%FM and MRI-FA (R2 = 0.89, √MSE = 2.39%), DXA-FM and MRI-FA (R2 = 0.82, √MSE = 2757 g) and DXA-LM and MRI-LA (R2 = 0.82, √MSE = 4018 g). Only DXA-%LM and MRI-LA did not show any relationship (R2 = 0). As a result of the multiple regression analysis, DXA-LM and DXA-FM were both highly related to MRI-LA, MRI-FA and BW (R2 = 0.96; √MSE = 1784 g, and R2 = 0.95, √MSE = 1496 g). Therefore, it can be concluded that the use of MRI-derived images provides exact information about important ‘carcass-traits’ in pigs and may be used to reliably predict the body composition in vivo.  相似文献   

16.
Male piglets are castrated to reduce boar taint and also to reduce aggressive and sexual behaviour. However, the procedure as traditionally performed is painful and negatively affects performance. Large-scale results about the consequences of implementing alternatives on farms are lacking. We, therefore, investigated the practical applicability of the following five alternatives that can be implemented in the short term: surgical castration (1) without pain relief (CONT, control group), (2) with analgesia (MET, Metacam, 0.2 ml, 10 to 15 min before castration), (3) with general anaesthesia (CO2, inhalation, 100% CO2, 25 s, 3 l/min), (4) vaccination against boar taint (IM, two injections with Improvac) and (5) production of entire males (EM). The study consisted of the following two trials: (1) an experimental farm trial with 18 animals/treatment and (2) a large field trial on 20 farms with ~120 male pigs/farm per treatment and all treatments performed on each farm. Performance results as well as data on carcass traits, boar taint (hot-iron method) and testes development and weight were collected in both trials. Neither castration nor administration of analgesia or anaesthesia had an effect on daily gain of the piglets in the farrowing crates (P>0.05). Farmer records indicated that mortality in the farrowing crates (1.1%), nursery pens (1.8%) and fattening stable (2.2%) was not influenced by MET or CO2 compared with EM, IM or CONT (P>0.05). No significant differences were found for daily gain (P>0.05) nor slaughter age (P>0.05). Immunocastrates and EM had a better gain-to-feed ratio (P<0.05) compared with the groups of barrows (CONT, MET and CO2). Lean meat percentage was higher for EM compared with the barrows, and intermediate for IM (P<0.05). Carcass yield was lowest for IM (P<0.05). The hot-iron method indicated that boar taint was eliminated in barrows and IM compared with EM (P<0.001). Average prevalence of strong boar taint was 3% for EM, but varied from 0% to 14% between farms. As the effect of treatment on performance as well as the level of boar taint of EM was farm dependent, farmers should be encouraged to pre-test the different alternatives in order to make a well-considered choice for the best practical and profitable alternative for their farm.  相似文献   

17.
A simple index that reflects the potential eating quality of beef carcasses is very important for producer feedback. The Meat Standards Australia (MSA) Index reflects variation in carcass quality due to factors that are influenced by producers (hot carcass weight, rib fat depth, hump height, marbling and ossification scores along with milk fed veal category, direct or saleyard consignment, hormonal growth promotant status and sex). In addition, processor impacts on meat quality are standardised so that the MSA Index could be compared across time, breed and geographical regions. Hence, the MSA Index was calculated using achilles hung carcasses, aged for 5 days postmortem. Muscle pH can be impacted by production, transport, lairage or processing factors, hence the MSA Index assumes a constant pH of 5.6 and loin temperature of 7oC for all carcasses. To quantify the cut weight distribution of the 39 MSA cuts in the carcass, 40 Angus steers were sourced from the low (n=13), high (n=15) and myostatin (n=12) muscling selection lines. The left side of each carcass was processed down to the 39 trimmed MSA cuts. There was no difference in MSA cut distribution between the low and high muscling lines (P>0.05), although there were differences with nine cuts from the myostatin line (P<0.05). There was no difference in the MSA Index calculated using actual muscle percentages and using the average from the low and high muscling lines (R2=0.99). Different cooking methods impacted via a constant offset between eating quality and carcass input traits (R2=1). The MSA Index calculated for the four most commercially important cuts was highly related to the index calculated using all 39 MSA cuts (R2=0.98), whilst the accuracy was lower for an index calculated using the striploin (R2=0.82). Therefore, the MSA Index was calculated as the sum of the 39 eating quality scores predicted at 5 days ageing, based on their most common cooking method, weighted by the proportions of the individual cut relative to total weight of all cuts. The MSA Index provides producers with a tool to assess the impact of management and genetic changes on the predicted eating quality of the carcass. The MSA Index could also be utilised for benchmarking and to track eating quality trends at farm, supply chain, regional, state or national levels.  相似文献   

18.
Dual energy X-ray absorptiometry (DEXA) is an imaging modality that has been used to predict the computed tomography (CT)-determined carcass composition of multiple species, including sheep and pigs, with minimal inaccuracies, using medical grade DEXA scanners. An online DEXA scanner in an Australian abattoir has shown that a high level of precision can be achieved when predicting lamb carcass composition in real time. This study investigated the accuracy of that same online DEXA when predicting fat and lean percentages as determined by CT over a wide range of phenotypic and genotypic variables across 454 lambs over 6 kill groups and contrasted these results against the current Australian industry standard of grade-rule (GR) measurements to grade carcasses. Lamb carcasses were DEXA scanned and then CT scanned to determine CT Fat % and CT Lean %. All phenotypic traits and genotypic information, including Australian Sheep Breeding Values, were recorded for each carcass. Residuals of the DEXA predicted CT Fat % and Lean %, and the actual CT Fat % and Lean % were calculated and tested against all phenotypic and genotypic variables. Excellent overall precision was recorded when predicting CT Fat % (R2 = 0.91, RMSE = 1.19%). Small biases present for sire breed, sire type, dam breed, hot carcass weight and c-site eye muscle area could be explained by a regression paradox; however, biases among kill group (−0.73% to 1.01% for CT Fat %, −1.48% to 0.76% for CT Lean %) and the Merino sire type (0.36% for CT Fat %, −0.73% for CT Lean %) could not be explained by this effect. Over the large range of phenotypic and genotypic variation, there was excellent precision when predicting CT Fat % and CT Lean % by an online DEXA, with only minor biases, showing superiority to the existing Australian standard of GR measurements.  相似文献   

19.
胡天宇  周广胜  贾丙瑞 《生态学报》2012,32(22):6984-6990
随着森林防火预报精细化的需求,小时尺度可燃物湿度的准确模拟成为火险预报的关键。利用2010年8月连续无降雨天气条件下我国大兴安岭林区10h时滞可燃物湿度和相应气象因子的半小时动态观测资料,从可燃物的失水和吸水过程对目前广泛使用的Fosberg模型和Van Wagner模型进行评估,进而发展了准确模拟10h时滞可燃物失水和吸水过程的可燃物湿度模型。结果表明:Fosberg模型对10h时滞可燃物的失水过程模拟较好(R2=0.96,P<0.01),而Van Wagner模型对10h时滞可燃物的吸水过程模拟较好(R2=0.83,P<0.01),但均不能独立地准确模拟10h时滞可燃物的湿度变化。通过分析可燃物失水与吸水过程,考虑可燃物在静风条件下的水汽交换,优化了Van Wagner模型参数,建立了综合反映可燃物失水与吸水过程的10h时滞可燃物湿度模型。据比较,该模型可准确地模拟10h时滞可燃物的湿度变化(R2=0.88,P<0.01),可为精细化火险预报提供技术支撑。  相似文献   

20.
IntroductionPreviously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2 = 0.77, normalized root mean squared error (RMSE%) = 16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia.MethodsLocal stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin’s fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R2 and RMSE%.ResultsThe uniform anisotropic FE model explained 53–74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76–79% of the variance in stiffness with RMSE% being 11.2–11.5%.ConclusionsOf the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin’s fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号