首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

H5N1 influenza vaccines, including live intranasal, appear to be relatively less immunogenic compared to seasonal analogs. The main influenza virus surface glycoprotein hemagglutinin (HA) of highly pathogenic avian influenza viruses (HPAIV) was shown to be more susceptible to acidic pH treatment than that of human or low pathogenic avian influenza viruses. The acidification machinery of the human nasal passageway in response to different irritation factors starts to release protons acidifying the mucosal surface (down to pH of 5.2). We hypothesized that the sensitivity of H5 HA to the acidic environment might be the reason for the low infectivity and immunogenicity of intranasal H5N1 vaccines for mammals.

Methodology/Principal Findings

We demonstrate that original human influenza viruses infect primary human nasal epithelial cells at acidic pH (down to 5.4), whereas H5N1 HPAIVs lose infectivity at pH≤5.6. The HA of A/Vietnam/1203/04 was modified by introducing the single substitution HA2 58K→I, decreasing the pH of the HA conformational change. The H5N1 reassortants containing the indicated mutation displayed an increased resistance to acidic pH and high temperature treatment compared to those lacking modification. The mutation ensured a higher viral uptake as shown by immunohistochemistry in the respiratory tract of mice and 25 times lower mouse infectious dose50. Moreover, the reassortants keeping 58K→I mutation designed as a live attenuated vaccine candidate lacking an NS1 gene induced superior systemic and local antibody response after the intranasal immunization of mice.

Conclusion/Significance

Our finding suggests that an efficient intranasal vaccination with a live attenuated H5N1 virus may require a certain level of pH and temperature stability of HA in order to achieve an optimal virus uptake by the nasal epithelial cells and induce a sufficient immune response. The pH of the activation of the H5 HA protein may play a substantial role in the infectivity of HPAIVs for mammals.  相似文献   

2.
If highly pathogenic H5N1 influenza viruses acquire affinity for human rather than avian respiratory epithelium, will their susceptibility to neuraminidase (NA) inhibitors (the likely first line of defense against an influenza pandemic) change as well? Adequate pandemic preparedness requires that this question be answered. We generated and tested 31 recombinants of A/Vietnam/1203/04 (H5N1) influenza virus carrying single, double, or triple mutations located within or near the receptor binding site in the hemagglutinin (HA) glycoprotein that alter H5 HA binding affinity or specificity. To gain insight into how combinations of HA and NA mutations can affect the sensitivity of H5N1 virus to NA inhibitors, we also rescued viruses carrying the HA changes together with the H274Y NA substitution, which was reported to confer resistance to the NA inhibitor oseltamivir. Twenty viruses were genetically stable. The triple N158S/Q226L/N248D HA mutation (which eliminates a glycosylation site at position 158) caused a switch from avian to human receptor specificity. In cultures of differentiated human airway epithelial (NHBE) cells, which provide an ex vivo model that recapitulates the receptors in the human respiratory tract, none of the HA-mutant recombinants showed reduced susceptibility to antiviral drugs (oseltamivir or zanamivir). This finding was consistent with the results of NA enzyme inhibition assay, which appears to predict influenza virus susceptibility in vivo. Therefore, acquisition of human-like receptor specificity does not affect susceptibility to NA inhibitors. Sequence analysis of the NA gene alone, rather than analysis of both the NA and HA genes, and phenotypic assays in NHBE cells are likely to adequately identify drug-resistant H5N1 variants isolated from humans during an outbreak.  相似文献   

3.
A novel H1N1 influenza virus emerged in 2009 (pH1N1) to become the first influenza pandemic of the 21st century. This virus is now cocirculating with highly pathogenic H5N1 avian influenza viruses in many parts of the world, raising concerns that a reassortment event may lead to highly pathogenic influenza strains with the capacity to infect humans more readily and cause severe disease. To investigate the virulence of pH1N1-H5N1 reassortant viruses, we created pH1N1 (A/California/04/2009) viruses expressing individual genes from an avian H5N1 influenza strain (A/Hong Kong/483/1997). Using several in vitro models of virus replication, we observed increased replication for a reassortant CA/09 virus expressing the hemagglutinin (HA) gene of HK/483 (CA/09-483HA) relative to that of either parental CA/09 virus or reassortant CA/09 expressing other HK/483 genes. This increased replication correlated with enhanced pathogenicity in infected mice similar to that of the parental HK/483 strain. The serial passage of the CA/09 parental virus and the CA/09-483HA virus through primary human lung epithelial cells resulted in increased pathogenicity, suggesting that these viruses easily adapt to humans and become more virulent. In contrast, serial passage attenuated the parental HK/483 virus in vitro and resulted in slightly reduced morbidity in vivo, suggesting that sustained replication in humans attenuates H5N1 avian influenza viruses. Taken together, these data suggest that reassortment between cocirculating human pH1N1 and avian H5N1 influenza strains will result in a virus with the potential for increased pathogenicity in mammals.  相似文献   

4.
Rapid evolution of H5N1 influenza viruses in chickens in Hong Kong   总被引:12,自引:0,他引:12       下载免费PDF全文
The H5N1 avian influenza virus that killed 6 of 18 persons infected in Hong Kong in 1997 was transmitted directly from poultry to humans. Viral isolates from this outbreak may provide molecular clues to zoonotic transfer. Here we demonstrate that the H5N1 viruses circulating in poultry comprised two distinguishable phylogenetic lineages in all genes that were in very rapid evolution. When introduced into new hosts, influenza viruses usually undergo rapid alteration of their surface glycoproteins, especially in the hemagglutinin (HA). Surprisingly, these H5N1 isolates had a large proportion of amino acid changes in all gene products except in the HA. These viruses maybe reassortants each of whose HA gene is well adapted to domestic poultry while the rest of the genome arises from a different source. The consensus amino acid sequences of "internal" virion proteins reveal amino acids previously found in human strains. These human-specific amino acids may be important factors in zoonotic transmission.  相似文献   

5.
Wang S  Hackett A  Jia N  Zhang C  Zhang L  Parker C  Zhou A  Li J  Cao WC  Huang Z  Li Y  Lu S 《PloS one》2011,6(12):e28757
Highly pathogenic avian influenza A (HPAI) H5N1 viruses are circulating among poultry populations in parts of Asia, Africa, and the Middle East, and have caused human infections with a high mortality rate. H5 subtype hemagglutinin (HA) has evolved into phylogenetically distinct clades and subclades based on viruses isolated from various avian species. Since 1997, humans have been infected by HPAI H5N1 viruses from several clades. It is, therefore, important to develop strategies to produce protective antibody responses against H5N1 viruses from multiple clades or antigenic groups. In the current study, we optimized the signal peptide design of DNA vaccines expressing HA antigens from H5N1 viruses. Cross reactivity analysis using sera from immunized rabbits showed that antibody responses elicited by a polyvalent formulation, including HA antigens from different clades, was able to elicit broad protective antibody responses against multiple key representative H5N1 viruses across different clades. Data presented in this report support the development of a polyvalent DNA vaccine strategy against the threat of a potential H5N1 influenza pandemic.  相似文献   

6.
Pigs are important natural hosts of influenza A viruses, and due to their susceptibility to swine, avian, and human viruses, they may serve as intermediate hosts supporting adaptation and genetic reassortment. Cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is essential for viral infectivity. Most influenza viruses, including human and swine viruses, are activated at a monobasic HA cleavage site, and we previously identified TMPRSS2 and HAT to be relevant proteases present in human airways. We investigated the proteolytic activation of influenza viruses in primary porcine tracheal and bronchial epithelial cells (PTEC and PBEC, respectively). Human H1N1 and H3N2 viruses replicated efficiently in PTECs and PBECs, and viruses containing cleaved HA were released from infected cells. Moreover, the cells supported the proteolytic activation of HA at the stage of entry. We found that swine proteases homologous to TMPRSS2 and HAT, designated swTMPRSS2 and swAT, respectively, were expressed in several parts of the porcine respiratory tract. Both proteases cloned from primary PBECs were shown to activate HA with a monobasic cleavage site upon coexpression and support multicycle replication of influenza viruses. swAT was predominantly localized at the plasma membrane, where it was present as an active protease that mediated activation of incoming virus. In contrast, swTMPRSS2 accumulated in the trans-Golgi network, suggesting that it cleaves HA in this compartment. In conclusion, our data show that HA activation in porcine airways may occur by similar proteases and at similar stages of the viral life cycle as in human airways.  相似文献   

7.
Wan H  Perez DR 《Journal of virology》2007,81(10):5181-5191
Influenza A viruses of the H9N2 subtype are endemic in poultry in many Eurasian countries and have occasionally caused clinical respiratory diseases in humans. While some avian H9N2 viruses have glutamine (Q) at amino acid position 226 of the hemagglutinin (HA) receptor-binding site, an increasing number of isolates have leucine (L) at this position, which has been associated with the establishment of stable lineages of the H2 and H3 subtypes of viruses in humans. Little is known about the importance of this molecular trait in the infection of H9N2 viruses in humans. We show here that during the course of a single cycle of infection in human airway epithelial (HAE) cells cultured in vitro, the L-226-containing H9N2 viruses displayed human virus-like cell tropisms (preferentially infecting nonciliated cells) different from the tropisms showed by Q-226-containing H9N2 isolates (which infect both ciliated and nonciliated cells at ratios of 1:1 to 3:2) or other waterfowl viruses (which preferentially infect ciliated cells). During multiple cycles of replication in HAE cultures, L-226-containing H9N2 isolates grew consistently more efficiently and reached approximately 100-fold-higher peak titers than those containing Q-226, although peak titers were significantly lower than those induced by human H3N2 viruses. Our results suggest that the variation in residue 226 in the HA affects both cell tropism and replication of H9N2 viruses in HAE cells and may have implications for the abilities of these viruses to infect humans.  相似文献   

8.

Background

Prior to 2007, highly pathogenic avian influenza (HPAI) H5N1 viruses isolated from poultry and humans in Vietnam were consistently reported to be clade 1 viruses, susceptible to oseltamivir but resistant to amantadine. Here we describe the re-emergence of human HPAI H5N1 virus infections in Vietnam in 2007 and the characteristics of the isolated viruses.

Methods and Findings

Respiratory specimens from patients suspected to be infected with avian influenza in 2007 were screened by influenza and H5 subtype specific polymerase chain reaction. Isolated H5N1 strains were further characterized by genome sequencing and drug susceptibility testing. Eleven poultry outbreak isolates from 2007 were included in the sequence analysis. Eight patients, all of them from northern Vietnam, were diagnosed with H5N1 in 2007 and five of them died. Phylogenetic analysis of H5N1 viruses isolated from humans and poultry in 2007 showed that clade 2.3.4 H5N1 viruses replaced clade 1 viruses in northern Vietnam. Four human H5N1 strains had eight-fold reduced in-vitro susceptibility to oseltamivir as compared to clade 1 viruses. In two poultry isolates the I117V mutation was found in the neuraminidase gene, which is associated with reduced susceptibility to oseltamivir. No mutations in the M2 gene conferring amantadine resistance were found.

Conclusion

In 2007, H5N1 clade 2.3.4 viruses replaced clade 1 viruses in northern Vietnam and were susceptible to amantadine but showed reduced susceptibility to oseltamivir. Combination antiviral therapy with oseltamivir and amantadine for human cases in Vietnam is recommended.  相似文献   

9.
Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10(5.3) and 10(7.5) 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.  相似文献   

10.
Since 1997, outbreaks of highly pathogenic (HP) H5N1 and circulation of H9N2 viruses among domestic poultry in Asia have posed a threat to public health. To better understand the extent of transmission of avian influenza viruses (AIV) to humans in Asia, we conducted a cross-sectional virologic study in live bird markets (LBM) in Hanoi, Vietnam, in October 2001. Specimens from 189 birds and 18 environmental samples were collected at 10 LBM. Four influenza A viruses of the H4N6 (n = 1), H5N2 (n = 1), and H9N3 (n = 2) subtypes were isolated from healthy ducks for an isolation frequency of over 30% from this species. Two H5N1 viruses were isolated from healthy geese. The hemagglutinin (HA) genes of these H5N1 viruses possessed multiple basic amino acid motifs at the cleavage site, were HP for experimentally infected chickens, and were thus characterized as HP AIV. These HA genes shared high amino acid identities with genes of other H5N1 viruses isolated in Asia during this period, but they were genetically distinct from those of H5N1 viruses isolated from poultry and humans in Vietnam during the early 2004 outbreaks. These viruses were not highly virulent for experimentally infected ducks, mice, or ferrets. These results establish that HP H5N1 viruses with properties similar to viruses isolated in Hong Kong and mainland China circulated in Vietnam as early as 2001, suggest a common source for H5N1 viruses circulating in these Asian countries, and provide a framework to better understand the recent widespread emergence of HP H5N1 viruses in Asia.  相似文献   

11.
H5N1 influenza viruses pose a pandemic threat but have not acquired the ability to support sustained transmission between mammals in nature. The restrictions to transmissibility of avian influenza viruses in mammals are multigenic, and overcoming them requires adaptations in hemagglutinin (HA) and PB2 genes. Here we propose that a further restriction to mammalian transmission of the majority of highly pathogenic avian influenza (HPAI) H5N1 viruses may be the short stalk length of the neuraminidase (NA) protein. This genetic feature is selected for when influenza viruses adapt to chickens. In our study, a recombinant virus with seven gene segments from a human isolate of the 2009 H1N1 pandemic combined with the NA gene from a typical chicken-adapted H5N1 virus with a short stalk did not support transmission by respiratory droplet between ferrets. This virus was also compromised in multicycle replication in cultures of human airway epithelial cells at 32°C. These defects correlated with a reduction in the ability of virus with a short-stalk NA to penetrate mucus and deaggregate virions. The deficiency in transmission and in cleavage of tethered substrates was overcome by increasing the stalk length of the NA protein. These observations suggest that H5N1 viruses that acquire a long-stalk NA through reassortment might be more likely to support transmission between humans. Phylogenetic analysis showed that reassortment with long-stalk NA occurred sporadically and as recently as 2011. However, all identified H5N1 viruses with a long-stalk NA lacked other mammalian adapting features and were thus several genetic steps away from becoming transmissible between humans.  相似文献   

12.
Highly pathogenic avian influenza A virus subtype H5N1 is currently widespread in Asia, Europe, and Africa, with 60% mortality in humans. In particular, since 2009 Egypt has unexpectedly had the highest number of human cases of H5N1 virus infection, with more than 50% of the cases worldwide, but the basis for this high incidence has not been elucidated. A change in receptor binding affinity of the viral hemagglutinin (HA) from α2,3- to α2,6-linked sialic acid (SA) is thought to be necessary for H5N1 virus to become pandemic. In this study, we conducted a phylogenetic analysis of H5N1 viruses isolated between 2006 and 2009 in Egypt. The phylogenetic results showed that recent human isolates clustered disproportionally into several new H5 sublineages suggesting that their HAs have changed their receptor specificity. Using reverse genetics, we found that these H5 sublineages have acquired an enhanced binding affinity for α2,6 SA in combination with residual affinity for α2,3 SA, and identified the amino acid mutations that produced this new receptor specificity. Recombinant H5N1 viruses with a single mutation at HA residue 192 or a double mutation at HA residues 129 and 151 had increased attachment to and infectivity in the human lower respiratory tract but not in the larynx. These findings correlated with enhanced virulence of the mutant viruses in mice. Interestingly, these H5 viruses, with increased affinity to α2,6 SA, emerged during viral diversification in bird populations and subsequently spread to humans. Our findings suggested that emergence of new H5 sublineages with α2,6 SA specificity caused a subsequent increase in human H5N1 influenza virus infections in Egypt, and provided data for understanding the virus's pandemic potential.  相似文献   

13.
Limited antiviral compounds are available for the control of influenza, and the emergence of resistant variants would further narrow the options for defense. The H275Y neuraminidase (NA) mutation, which confers resistance to oseltamivir carboxylate, has been identified among the seasonal H1N1 and 2009 pandemic influenza viruses; however, those H275Y resistant variants demonstrated distinct epidemiological outcomes in humans. Specifically, dominance of the H275Y variant over the oseltamivir-sensitive viruses was only reported for a seasonal H1N1 variant during 2008-2009. Here, we systematically analyze the effect of the H275Y NA mutation on viral fitness and transmissibility of A(H1N1)pdm09 and seasonal H1N1 influenza viruses. The NA genes from A(H1N1)pdm09 A/California/04/09 (CA04), seasonal H1N1 A/New Caledonia/20/1999 (NewCal), and A/Brisbane/59/2007 (Brisbane) were individually introduced into the genetic background of CA04. The H275Y mutation led to reduced NA enzyme activity, an increased Km for 3′-sialylactose or 6′-sialylactose, and decreased infectivity in mucin-secreting human airway epithelial cells compared to the oseltamivir-sensitive wild-type counterparts. Attenuated pathogenicity in both RG-CA04NA-H275Y and RG-CA04 × BrisbaneNA-H275Y viruses was observed in ferrets compared to RG-CA04 virus, although the transmissibility was minimally affected. In parallel experiments using recombinant Brisbane viruses differing by hemagglutinin and NA, comparable direct contact and respiratory droplet transmissibilities were observed among RG-NewCalHA,NA, RG-NewCalHA,NA-H275Y, RG-BrisbaneHA,NA-H275Y, and RG-NewCalHA × BrisbaneNA-H275Y viruses. Our results demonstrate that, despite the H275Y mutation leading to a minor reduction in viral fitness, the transmission potentials of three different antigenic strains carrying this mutation were comparable in the naïve ferret model.  相似文献   

14.
The first pandemic of the 21(st) century, pandemic H1N1 2009 (pH1N1 2009), emerged from a swine-origin source. Although human infections with swine-origin influenza have been reported previously, none went on to cause a pandemic or indeed any sustained human transmission. In previous pandemics, specific residues in the receptor binding site of the haemagglutinin (HA) protein of influenza have been associated with the ability of the virus to transmit between humans. In the present study we investigated the effect of residue 227 in HA on cell tropism and transmission of pH1N1 2009. In pH1N1 2009 and recent seasonal H1N1 viruses this residue is glutamic acid, whereas in swine influenza it is alanine. Using human airway epithelium, we show a differential cell tropism of pH1N1 2009 compared to pH1N1 2009 E227A and swine influenza suggesting this residue may alter the sialic acid conformer binding preference of the HA. Furthermore, both pH1N1 2009 E227A and swine influenza multi-cycle viral growth was found to be attenuated in comparison to pH1N1 2009 in human airway epithelium. However this altered tropism and viral growth in human airway epithelium did not abrogate respiratory droplet transmission of pH1N1 2009 E227A in ferrets. Thus, acquisition of E at residue 227 was not solely responsible for the ability of pH1N1 2009 to transmit between humans.  相似文献   

15.
The pandemic H1N1 virus of 2009 (2009 H1N1) produced a spectrum of disease ranging from mild illness to severe illness and death. Respiratory symptoms were frequently associated with virus infection, with relatively high rate of gastrointestinal symptoms reported. To better understand 2009 H1N1 virus pathogenesis in humans, we studied virus and host responses following infection of two cell types: polarized bronchial and pharyngeal epithelial cells, which exhibit many features of the human airway epithelium, and colon epithelial cells to serve as a human intestinal cell model. Selected 2009 H1N1 viruses were compared to both seasonal H1N1 and triple-reassortant swine H1N1 influenza viruses that have circulated among North American pigs since before the 2009 pandemic. All H1N1 viruses replicated productively in airway cells; however, in contrast to seasonal H1N1 virus infection, infection with the 2009 H1N1 and triple-reassortant swine H1N1 viruses resulted in an attenuated inflammatory response, a weaker interferon response, and reduced cell death. Additionally, the H1N1 viruses of swine origin replicated less efficiently at the temperature of the human proximal airways (33°C). We also observed that the 2009 H1N1 viruses replicated to significantly higher titers than seasonal H1N1 virus in polarized colon epithelial cells. These studies reveal that in comparison to seasonal influenza virus, H1N1 viruses of swine origin poorly activate multiple aspects of the human innate response, which may contribute to the virulence of these viruses. In addition, their less efficient replication at human upper airway temperatures has implications for the understanding of pandemic H1N1 virus adaptation to humans.  相似文献   

16.
The current pandemic influenza A (H1N1) virus has revealed a complicated reassortment of various influenza A viruses. The biological study of these viruses, especially of the viral envelope proteins hemagglutinin (HA) and neuraminidase (NA), is urgently needed for the control and prevention of H1N1 viruses. We have generated H1N1-2009 and H1N1-1918 pseudotyped particles (pp) with high infectivity. Combinations of HA1918 + NA2009 and HA2009 + NA1918 also formed infectious H1N1pps, among which the HA2009 + NA1918 combination resulted in the most highly infectious pp. Our study demonstrated that some reassortments of H1N1 viruses may hold the potential to produce higher infectivity than do their ancestors.  相似文献   

17.
Influenza A viruses are classified into 16 subtypes according to the serotypes of hemagglutinin (HA). It is generally thought that neutralizing antibodies (Abs) are not broadly cross-reactive among HA subtypes. We examined the repertoire of neutralizing Abs against influenza viruses in humans. B lymphocytes were collected from donors by apheresis, and Ab libraries were constructed by using phage-display technology. Anti-HA clones were isolated by screening with H3N2 viruses. Their binding activity was examined, and four kinds of Abs showing broad strain specificity were identified from one donor. Two of the Abs, F045-092 and F026-427, were extensively analyzed. They neutralized not only H3N2 but also H1N1, H2N2, and H5N1 viruses, although the activities were largely varied. Flow cytometry suggested that they have the ability to bind to HA and HA1 artificially expressed on the cell surface. They show hemagglutination inhibition activity and do not compete with C179, an Ab thought to bind to the stalk region. F045-092 competes with Abs that recognize sites A and B for binding to HA. Furthermore, the serine at residue 136 in site A could be a part of the epitope. Thus, it is likely that F045-092 and F026-427 bind to a conserved epitope in the head region formed by HA1. Interestingly, while the V(H)1-69 gene can encode MAbs against the HA stem that are group 1 specific, F045-092 and its relatives that recognize the head region also use V(H)1-69. The possible epitope recognized by these clones is discussed.  相似文献   

18.
H2N2 influenza A viruses were the cause of the 1957-1958 pandemic. Historical evidence demonstrates they arose from avian virus ancestors, and while the H2N2 subtype has disappeared from humans, it persists in wild and domestic birds. Reemergence of H2N2 in humans is a significant threat due to the absence of humoral immunity in individuals under the age of 50. Thus, examination of these viruses, particularly those from the avian reservoir, must be addressed through surveillance, characterization, and antiviral testing. The data presented here are a risk assessment of 22 avian H2N2 viruses isolated from wild and domestic birds over 6 decades. Our data show that they have a low rate of genetic and antigenic evolution and remained similar to isolates circulating near the time of the pandemic. Most isolates replicated in mice and human bronchial epithelial cells, but replication in swine tissues was low or absent. Multiple isolates replicated in ferrets, and 3 viruses were transmitted to direct-contact cage mates. Markers of mammalian adaptation in hemagglutinin (HA) and PB2 proteins were absent from all isolates, and they retained a preference for avian-like α2,3-linked sialic acid receptors. Most isolates remained antigenically similar to pandemic A/Singapore/1/57 (H2N2) virus, suggesting they could be controlled by the pandemic vaccine candidate. All viruses were susceptible to neuraminidase inhibitors and adamantanes. Nonetheless, the sustained pathogenicity of avian H2N2 viruses in multiple mammalian models elevates their risk potential for human infections and stresses the need for continual surveillance as a component of prepandemic planning.  相似文献   

19.
The 2009 H1N1 pandemic (H1N1pdm) viruses have evolved to contain an E47K substitution in the HA2 subunit of the stalk region of the hemagglutinin (HA) protein. The biological significance of this single amino acid change was investigated by comparing A/California/7/2009 (HA2-E47) with a later strain, A/Brisbane/10/2010 (HA2-K47). The E47K change was found to reduce the threshold pH for membrane fusion from 5.4 to 5.0. An inter-monomer salt bridge between K47 in HA2 and E21 in HA1, a neighboring highly conserved residue, which stabilized the trimer structure, was found to be responsible for the reduced threshold pH for fusion. The higher structural and acid stability of the HA trimer caused by the E47K change also conferred higher viral thermal stability and infectivity in ferrets, suggesting a fitness advantage for the E47K evolutionary change in humans. Our study indicated that the pH of HA fusion activation is an important factor for influenza virus replication and host adaptation. The identification of this genetic signature in the HA stalk region that influences vaccine virus thermal stability also has significant implications for influenza vaccine production.  相似文献   

20.
Resistance mutations to the HIV-1 fusion inhibitor enfuvirtide emerge mainly within the drug's target region, HR1, and compensatory mutations have been described within HR2. The surrounding envelope (env) genetic context might also contribute to resistance, although to what extent and through which determinants remains elusive. To quantify the direct role of the env context in resistance to enfuvirtide and in viral infectivity, we compared enfuvirtide susceptibility and infectivity of recombinant viral pairs harboring the HR1-HR2 region or the full Env ectodomain of longitudinal env clones from 5 heavily treated patients failing enfuvirtide therapy. Prior to enfuvirtide treatment onset, no env carried known resistance mutations and full Env viruses were on average less susceptible than HR1-HR2 recombinants. All escape clones carried at least one of G36D, V38A, N42D and/or N43D/S in HR1, and accordingly, resistance increased 11- to 2800-fold relative to baseline. Resistance of full Env recombinant viruses was similar to resistance of their HR1-HR2 counterpart, indicating that HR1 and HR2 are the main contributors to resistance. Strictly X4 viruses were more resistant than strictly R5 viruses, while dual-tropic Envs featured similar resistance levels irrespective of the coreceptor expressed by the cell line used. Full Env recombinants from all patients gained infectivity under prolonged drug pressure; for HR1-HR2 viruses, infectivity remained steady for 3/5 patients, while for 2/5 patients, gains in infectivity paralleled those of the corresponding full Env recombinants, indicating that the env genetic context accounts mainly for infectivity adjustments. Phylogenetic analyses revealed that quasispecies selection is a step-wise process where selection of enfuvirtide resistance is a dominant factor early during therapy, while increased infectivity is the prominent driver under prolonged therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号