首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Top-down proteomics is emerging as a viable method for the routine identification of hundreds to thousands of proteins. In this work we report the largest top-down study to date, with the identification of 1,220 proteins from the transformed human cell line H1299 at a false discovery rate of 1%. Multiple separation strategies were utilized, including the focused isolation of mitochondria, resulting in significantly improved proteome coverage relative to previous work. In all, 347 mitochondrial proteins were identified, including ∼50% of the mitochondrial proteome below 30 kDa and over 75% of the subunits constituting the large complexes of oxidative phosphorylation. Three hundred of the identified proteins were found to be integral membrane proteins containing between 1 and 12 transmembrane helices, requiring no specific enrichment or modified LC-MS parameters. Over 5,000 proteoforms were observed, many harboring post-translational modifications, including over a dozen proteins containing lipid anchors (some previously unknown) and many others with phosphorylation and methylation modifications. Comparison between untreated and senescent H1299 cells revealed several changes to the proteome, including the hyperphosphorylation of HMGA2. This work illustrates the burgeoning ability of top-down proteomics to characterize large numbers of intact proteoforms in a high-throughput fashion.Although traditional bottom-up approaches to mass-spectrometry-based proteomics are capable of identifying thousands of protein groups from a complex mixture, proteolytic digestion can result in the loss of information pertaining to post-translational modifications and sequence variants (1, 2). The recent implementation of top-down proteomics in a high-throughput format using either Fourier transform ion cyclotron resonance (35) or Orbitrap instruments (6, 7) has shown an increasing scale of applicability while preserving information on combinatorial modifications and highly related sequence variants. For example, the identification of over 500 bacterial proteins helped researchers find covalent switches on cysteines (7), and over 1,000 proteins were identified from human cells (3). Such advances have driven the detection of whole protein forms, now simply called proteoforms (8), with several laboratories now seeking to tie these to specific functions in cell and disease biology (911).The term “proteoform” denotes a specific primary structure of an intact protein molecule that arises from a specific gene and refers to a precise combination of genetic variation, splice variants, and post-translational modifications. Whereas special attention is required in order to accomplish gene- and variant-specific identifications via the bottom-up approach, top-down proteomics routinely links proteins to specific genes without the problem of protein inference. However, the fully automated characterization of whole proteoforms still represents a significant challenge in the field. Another major challenge is to extend the top-down approach to the study of whole integral membrane proteins, whose hydrophobicity can often limit their analysis via LC-MS (5, 1216). Though integral membrane proteins are often difficult to solubilize, the long stretches of sequence information provided from fragmentation of their transmembrane domains in the gas phase can actually aid in their identification (5, 13).In parallel to the early days of bottom-up proteomics a decade ago (1721), in this work we brought the latest methods for top-down proteomics into combination with subcellular fractionation and cellular treatments to expand coverage of the human proteome. We utilized multiple dimensions of separation and an Orbitrap Elite mass spectrometer to achieve large-scale interrogation of intact proteins derived from H1299 cells. For this focus issue on post-translational modifications, we report this summary of findings from the largest implementation of top-down proteomics to date, which resulted in the identification of 1,220 proteins and thousands more proteoforms. We also applied the platform to H1299 cells induced into senescence by treatment with the DNA-damaging agent camptothecin.  相似文献   

2.
Allergenic proteins such as grass pollen and house dust mite (HDM) proteins are known to trigger hypersensitivity reactions of the immune system, leading to what is commonly known as allergy. Key allergenic proteins including sequence variants have been identified but characterization of their post-translational modifications (PTMs) is still limited.Here, we present a detailed PTM1 characterization of a series of the main and clinically relevant allergens used in allergy tests and vaccines. We employ Orbitrap-based mass spectrometry with complementary fragmentation techniques (HCD/ETD) for site-specific PTM characterization by bottom-up analysis. In addition, top-down mass spectrometry is utilized for targeted analysis of individual proteins, revealing hitherto unknown PTMs of HDM allergens. We demonstrate the presence of lysine-linked polyhexose glycans and asparagine-linked N-acetylhexosamine glycans on HDM allergens. Moreover, we identified more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens, implicating important roles for carbohydrates in allergen recognition and response by the immune system. The new findings are important for understanding basic disease-causing mechanisms at the cellular level, which ultimately may pave the way for instigating novel approaches for targeted desensitization strategies and improved allergy vaccines.Allergic respiratory disease is a global health problem and current clinical guidelines recommend a combination of allergen avoidance, pharmacotherapy, and allergen specific immunotherapy for treatment (14). At present allergy testing and vaccines are based on isolated crude antigen preparations from natural sources (i.e. HDM, pollens, etc.), but a move toward recombinant allergen design is ongoing (5, 6). This could have important functional implications because the production host will determine the repertoire of post-translational modifications (PTMs) and in particular glycan modifications presented on allergens.The carbohydrate structures found on allergens are in most cases not found in mammals and therefore frequently lead to the induction IgE antibodies named Cross-reactive Carbohydrate Determinants (CCD) (711). Moreover, glycans may directly be involved in and promote uptake and target allergens to carbohydrate lectin receptors on antigen presenting cells (APC) (1214). Therefore, a full structural characterization of the glycans on the natural allergens is a prerequisite for understanding both antibody reactivity and lectin receptor mediated allergen recognition and modulation of the immune response (15, 16). Furthermore, a detailed characterization of PTMs of allergens is important for standardization of allergen products for diagnostic purposes as well as for vaccine use (17, 18). Although many major allergens and their etiology have been characterized in some detail, structural information on for example their immunological important PTM status is still incomplete (1921).Mass spectrometry-based technologies offer sensitive and accurate analyses for identification and characterization of proteins. The common proteomics workflow typically adopts the bottom-up approach, i.e. in vitro proteolytic digestion of proteins followed by nanoflow-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) for protein identification and PTM characterization. Electron- or collision-driven fragmentation techniques, e.g. electron transfer dissociation (ETD) (22) or higher energy collisional dissociation (HCD) (23) have enabled accurate identification of peptides of purified proteins, e.g. allergens (21, 24), or complex biological samples (2527) with concurrent characterization of their PTMs. One advantage of bottom-up mass spectrometry is the ability to resolve modified peptides within a narrow chromatographic time frame thereby enabling in-depth characterization of site-specific features, e.g. glycoforms, on peptides. This peptide-level information is subsequently used to generate a protein-level view on the PTM status for a given protein. Importantly, the PTM connectivity of the protein (28) is lost upon proteolytic digestion, and alternative approaches are often required for comprehensive characterization of all proteoforms (29). Top-down mass spectrometry has emerged as an alternative approach to bottom-up proteomics, offering complementary MS and MS/MS information that may be used for protein identification and characterization (30, 31). With top-down MS, intact proteins are typically analyzed by high-resolution FTMS and characterized at the MS/MS level by CID, HCD, ECD, or ETD. This technique provides instant protein-level information on analytes, e.g. sequence variants, amino acid substitutions, PTMs, etc., which can be verified at the MS/MS level by different fragmentation modes. The combination of bottom-up and top-down mass spectrometry is therefore a powerful tool for the identification and characterization of proteins. Here, we combine top-down and bottom-up mass spectrometry for comprehensive characterization of seven major allergens as a first step toward unraveling the molecular mode of action of allergens with complex PTMs. By these methods, we demonstrate hitherto unknown PTMs of HDM allergens and identify more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens. The new findings implicate important roles for carbohydrates in allergen recognition and response by the immune system.  相似文献   

3.
A complete understanding of the biological functions of large signaling peptides (>4 kDa) requires comprehensive characterization of their amino acid sequences and post-translational modifications, which presents significant analytical challenges. In the past decade, there has been great success with mass spectrometry-based de novo sequencing of small neuropeptides. However, these approaches are less applicable to larger neuropeptides because of the inefficient fragmentation of peptides larger than 4 kDa and their lower endogenous abundance. The conventional proteomics approach focuses on large-scale determination of protein identities via database searching, lacking the ability for in-depth elucidation of individual amino acid residues. Here, we present a multifaceted MS approach for identification and characterization of large crustacean hyperglycemic hormone (CHH)-family neuropeptides, a class of peptide hormones that play central roles in the regulation of many important physiological processes of crustaceans. Six crustacean CHH-family neuropeptides (8–9.5 kDa), including two novel peptides with extensive disulfide linkages and PTMs, were fully sequenced without reference to genomic databases. High-definition de novo sequencing was achieved by a combination of bottom-up, off-line top-down, and on-line top-down tandem MS methods. Statistical evaluation indicated that these methods provided complementary information for sequence interpretation and increased the local identification confidence of each amino acid. Further investigations by MALDI imaging MS mapped the spatial distribution and colocalization patterns of various CHH-family neuropeptides in the neuroendocrine organs, revealing that two CHH-subfamilies are involved in distinct signaling pathways.Neuropeptides and hormones comprise a diverse class of signaling molecules involved in numerous essential physiological processes, including analgesia, reward, food intake, learning and memory (1). Disorders of the neurosecretory and neuroendocrine systems influence many pathological processes. For example, obesity results from failure of energy homeostasis in association with endocrine alterations (2, 3). Previous work from our lab used crustaceans as model organisms found that multiple neuropeptides were implicated in control of food intake, including RFamides, tachykinin related peptides, RYamides, and pyrokinins (46).Crustacean hyperglycemic hormone (CHH)1 family neuropeptides play a central role in energy homeostasis of crustaceans (717). Hyperglycemic response of the CHHs was first reported after injection of crude eyestalk extract in crustaceans. Based on their preprohormone organization, the CHH family can be grouped into two sub-families: subfamily-I containing CHH, and subfamily-II containing molt-inhibiting hormone (MIH) and mandibular organ-inhibiting hormone (MOIH). The preprohormones of the subfamily-I have a CHH precursor related peptide (CPRP) that is cleaved off during processing; and preprohormones of the subfamily-II lack the CPRP (9). Uncovering their physiological functions will provide new insights into neuroendocrine regulation of energy homeostasis.Characterization of CHH-family neuropeptides is challenging. They are comprised of more than 70 amino acids and often contain multiple post-translational modifications (PTMs) and complex disulfide bridge connections (7). In addition, physiological concentrations of these peptide hormones are typically below picomolar level, and most crustacean species do not have available genome and proteome databases to assist MS-based sequencing.MS-based neuropeptidomics provides a powerful tool for rapid discovery and analysis of a large number of endogenous peptides from the brain and the central nervous system. Our group and others have greatly expanded the peptidomes of many model organisms (3, 1833). For example, we have discovered more than 200 neuropeptides with several neuropeptide families consisting of as many as 20–40 members in a simple crustacean model system (5, 6, 2531, 34). However, a majority of these neuropeptides are small peptides with 5–15 amino acid residues long, leaving a gap of identifying larger signaling peptides from organisms without sequenced genome. The observed lack of larger size peptide hormones can be attributed to the lack of effective de novo sequencing strategies for neuropeptides larger than 4 kDa, which are inherently more difficult to fragment using conventional techniques (3437). Although classical proteomics studies examine larger proteins, these tools are limited to identification based on database searching with one or more peptides matching without complete amino acid sequence coverage (36, 38).Large populations of neuropeptides from 4–10 kDa exist in the nervous systems of both vertebrates and invertebrates (9, 39, 40). Understanding their functional roles requires sufficient molecular knowledge and a unique analytical approach. Therefore, developing effective and reliable methods for de novo sequencing of large neuropeptides at the individual amino acid residue level is an urgent gap to fill in neurobiology. In this study, we present a multifaceted MS strategy aimed at high-definition de novo sequencing and comprehensive characterization of the CHH-family neuropeptides in crustacean central nervous system. The high-definition de novo sequencing was achieved by a combination of three methods: (1) enzymatic digestion and LC-tandem mass spectrometry (MS/MS) bottom-up analysis to generate detailed sequences of proteolytic peptides; (2) off-line LC fractionation and subsequent top-down MS/MS to obtain high-quality fragmentation maps of intact peptides; and (3) on-line LC coupled to top-down MS/MS to allow rapid sequence analysis of low abundance peptides. Combining the three methods overcomes the limitations of each, and thus offers complementary and high-confidence determination of amino acid residues. We report the complete sequence analysis of six CHH-family neuropeptides including the discovery of two novel peptides. With the accurate molecular information, MALDI imaging and ion mobility MS were conducted for the first time to explore their anatomical distribution and biochemical properties.  相似文献   

4.
5.
Heart failure (HF) is a leading cause of morbidity and mortality worldwide and is most often precipitated by myocardial infarction. However, the molecular changes driving cardiac dysfunction immediately after myocardial infarction remain poorly understood. Myofilament proteins, responsible for cardiac contraction and relaxation, play critical roles in signal reception and transduction in HF. Post-translational modifications of myofilament proteins afford a mechanism for the beat-to-beat regulation of cardiac function. Thus it is of paramount importance to gain a comprehensive understanding of post-translational modifications of myofilament proteins involved in regulating early molecular events in the post-infarcted myocardium. We have developed a novel liquid chromatography–mass spectrometry-based top-down proteomics strategy to comprehensively assess the modifications of key cardiac proteins in the myofilament subproteome extracted from a minimal amount of myocardial tissue with high reproducibility and throughput. The entire procedure, including tissue homogenization, myofilament extraction, and on-line LC/MS, takes less than three hours. Notably, enabled by this novel top-down proteomics technology, we discovered a concerted significant reduction in the phosphorylation of three crucial cardiac proteins in acutely infarcted swine myocardium: cardiac troponin I and myosin regulatory light chain of the myofilaments and, unexpectedly, enigma homolog isoform 2 (ENH2) of the Z-disc. Furthermore, top-down MS allowed us to comprehensively sequence these proteins and pinpoint their phosphorylation sites. For the first time, we have characterized the sequence of ENH2 and identified it as a phosphoprotein. ENH2 is localized at the Z-disc, which has been increasingly recognized for its role as a nodal point in cardiac signaling. Thus our proteomics discovery opens up new avenues for the investigation of concerted signaling between myofilament and Z-disc in the early molecular events that contribute to cardiac dysfunction and progression to HF.Despite recent advances in the treatment of heart failure (HF),1 this devastating syndrome remains a leading cause of morbidity and mortality worldwide and imposes a significant economic burden, especially on developed countries (13). The most common cause of HF, myocardial infarction (MI), induces left ventricular (LV) remodeling characterized by chamber dilation and hypertrophy of the non-infarcted (remote) myocardium, which is ultimately maladaptive, leading to depressed global contractility and predisposing the heart to failure (4). Current treatments for HF have primarily focused on symptom management after the occurrence of irreversible remodeling and functional impairment, which only delays the syndrome (1). Understanding the molecular mechanisms driving cardiac dysfunction at the early stages could enable the development of therapeutic interventions to prevent the onset of HF. However, the molecular changes that occur immediately after MI but prior to the maladaptive remodeling remain poorly understood (5).Myofilaments are responsible for cardiac contraction and relaxation and play a central role in myocardial pathophysiology (6, 7). Moreover, recent evidence suggests that cardiac myofilaments have a critical role in signal reception and transduction in HF (8, 9). Myofilaments consist of thin filament proteins, which include actin, tropomyosin (Tm), and the troponin (Tn) complex (TnI, TnT, and TnC), and thick filament proteins including myosin (S-1 head domain, S-2 rod domain, essential light chain, and regulatory light chain (MLC2)), as well as a number of accessory proteins such as myosin binding protein C (6, 1012). In addition to these major myofilament proteins, a significant number of proteins have been identified in the cardiac myofilament subproteome (13). Cardiac contraction requires the integrated activity of highly coordinated protein–protein interactions among myofilament proteins in the sarcomere (6, 8, 9). Post-translational modifications (PTMs) and mutations of myofilament proteins can change these protein–protein interactions, thereby altering cardiac contractility. Thus, it is of paramount importance to gain a comprehensive understanding of the PTM changes of myofilament proteins in the regulation of early molecular events in contractile dysfunction immediately after acute myocardial infarction (AMI).Top-down mass spectrometry (MS) (12, 1422) has unique advantages for the comprehensive assessment of protein modifications through the detection and quantification of all proteoforms (a unified term used to define all of the different molecular forms arising from PTMs, mutations or polymorphisms, and alternative splicing events (23)). Subsequently, the modification sites can be precisely localized via MS/MS including but not limited to collisionally activated dissociation (CAD) and electron capture dissociation (ECD) (12, 1422, 24, 25). We have successfully developed a novel liquid chromatography–mass spectrometry (LC/MS)-based top-down quantitative proteomics strategy to assess the concerted changes in myofilaments and their associated proteins in the myofilament subproteome. Specifically, we have rapidly separated and quantified intact proteins extracted from a minimal amount of myocardial tissue (∼500 μg of tissue per experiment) by means of LC/MS with high reproducibility and throughput. Notably, we discovered a concerted significant reduction in the phosphorylation of three crucial cardiac proteins in acutely infarcted myocardium using a clinically relevant swine AMI model (26): a thin filament regulatory protein, cardiac TnI (cTnI); a thick filament regulatory protein, MLC2; and, unexpectedly, a critical Z-disc protein, enigma homolog isoform 2 (ENH2). Subsequently, we unambiguously localized the phosphorylation sites of these three important proteins using ECD. Particularly, for the first time, we comprehensively sequenced swine ENH2 by means of top-down MS and identified it as a phosphoprotein with its phosphorylation site precisely pinpointed. ENH2 belongs to the PDZ-LIM protein family that co-localizes with α-actinin at the Z-disc (27, 28). Although traditionally viewed as a structural component in the sarcomere, the Z-disc is increasingly recognized for its prominent role as a nodal point for cardiac signaling (27, 29, 30). Thus, our proteomic discovery opens up new avenues for investigations of the concerted signaling between myofilament and Z-disc proteins in the early molecular events that may contribute to cardiac dysfunction and subsequent HF.  相似文献   

6.
Posttranslational modifications of proteins increase the complexity of the cellular proteome and enable rapid regulation of protein functions in response to environmental changes. Protein ubiquitylation is a central regulatory posttranslational modification that controls numerous biological processes including proteasomal degradation of proteins, DNA damage repair and innate immune responses. Here we combine high-resolution mass spectrometry with single-step immunoenrichment of di-glycine modified peptides for mapping of endogenous putative ubiquitylation sites in murine tissues. We identify more than 20,000 unique ubiquitylation sites on proteins involved in diverse biological processes. Our data reveals that ubiquitylation regulates core signaling pathways common for each of the studied tissues. In addition, we discover that ubiquitylation regulates tissue-specific signaling networks. Many tissue-specific ubiquitylation sites were obtained from brain highlighting the complexity and unique physiology of this organ. We further demonstrate that different di-glycine-lysine-specific monoclonal antibodies exhibit sequence preferences, and that their complementary use increases the depth of ubiquitylation site analysis, thereby providing a more unbiased view of protein ubiquitylation.Ubiquitin is a small 76-amino-acid protein that is conjugated to the ε-amino group of lysines in a highly orchestrated enzymatic cascade involving ubiquitin activating (E1), ubiquitin conjugating (E2), and ubiquitin ligase (E3) enzymes (1). Ubiquitylation is involved in the regulation of diverse cellular processes including protein degradation (2, 3, 4), DNA damage repair (5, 6), DNA replication (7), cell surface receptor endocytosis, and innate immune signaling (8, 9). Deregulation of protein ubiquitylation is implicated in the development of cancer and neurodegenerative diseases (10, 11). Inhibitors targeting the ubiquitin proteasome system are used in the treatment of hematologic malignancies such as multiple myeloma (12, 13).Recent developments in the mass spectrometry (MS)-based proteomics have greatly expedited proteome-wide analysis of posttranslational modifications (PTMs) (1417). Large-scale mapping of ubiquitylation sites by mass spectrometry is based on the identification of the di-glycine remnant that results from trypsin digestion of ubiquitylated proteins and remains attached to ubiquitylated lysines (18). Recently, two monoclonal antibodies were developed that specifically recognize di-glycine remnant modified peptides enabling their efficient enrichment from complex peptide mixtures (19, 20). These antibodies have been used to identify thousands of endogenous ubiquitylation sites in human cells, and to quantify site-specific changes in ubiquitylation in response to different cellular perturbations (2022). It should be noted that the di-glycine remnant is not specific for proteins modified by ubiquitin but also proteins modified by NEDD8 or ISG15 generate an identical di-glycine remnant on modified lysines making it impossible to distinguish between these modifications by mass spectrometry. However, expression of NEDD8 in mouse tissues was shown to be developmentally down-regulated (23), and ISG15 expression in bovine tissues is low in the absence of interferon stimulation (24). In cell culture experiments it was shown that a great majority of sites identified using di-glycine-lysine-specific antibodies stems from ubiquitylated peptides (20).The rates of cell proliferation and protein turnover in mammals vary dramatically between different tissues. Immortalized cell lines, often derived from cancer, are selected for high proliferation rates and fail to represent the complex conditions in tissues. Tissue proteomics can help to gain a more comprehensive understanding of physiological processes in multicellular organisms. Analysis of tissue proteome and PTMs can provide important insights into tissue-specific processes and signaling networks that regulate these processes (2532). In addition, development of mass spectrometric methods for analysis of PTMs in diseased tissues might lead to the identification of biomarkers.In this study, we combined high-resolution mass spectrometry with immunoenrichment of di-glycine modified peptides to investigate endogenous ubiquitylation sites in murine tissues. We identified more than 20,000 ubiquitylation sites from five different murine tissues and report the largest ubiquitylation dataset obtained from mammalian tissues to date. Furthermore, we compared the performance of the two monoclonal di-glycine-lysine-specific antibodies available for enrichment of ubiquitylated peptides, and reveal their relative preferences for different amino acids flanking ubiquitylation sites.  相似文献   

7.
8.
Quantitative proteome analyses suggest that the well-established stain colloidal Coomassie Blue, when used as an infrared dye, may provide sensitive, post-electrophoretic in-gel protein detection that can rival even Sypro Ruby. Considering the central role of two-dimensional gel electrophoresis in top-down proteomic analyses, a more cost effective alternative such as Coomassie Blue could prove an important tool in ongoing refinements of this important analytical technique. To date, no systematic characterization of Coomassie Blue infrared fluorescence detection relative to detection with SR has been reported. Here, seven commercial Coomassie stain reagents and seven stain formulations described in the literature were systematically compared. The selectivity, threshold sensitivity, inter-protein variability, and linear-dynamic range of Coomassie Blue infrared fluorescence detection were assessed in parallel with Sypro Ruby. Notably, several of the Coomassie stain formulations provided infrared fluorescence detection sensitivity to <1 ng of protein in-gel, slightly exceeding the performance of Sypro Ruby. The linear dynamic range of Coomassie Blue infrared fluorescence detection was found to significantly exceed that of Sypro Ruby. However, in two-dimensional gel analyses, because of a blunted fluorescence response, Sypro Ruby was able to detect a few additional protein spots, amounting to 0.6% of the detected proteome. Thus, although both detection methods have their advantages and disadvantages, differences between the two appear to be small. Coomassie Blue infrared fluorescence detection is thus a viable alternative for gel-based proteomics, offering detection comparable to Sypro Ruby, and more reliable quantitative assessments, but at a fraction of the cost.Gel electrophoresis is an accessible, widely applicable and mature protein resolving technology. As the original top-down approach to proteomic analyses, among its many attributes the high resolution achievable by two dimensional gel-electrophoresis (2DE)1 ensures that it remains an effective analytical technology despite the appearance of alternatives. However, in-gel detection remains a limiting factor for gel-based analyses; available technology generally permits the detection and quantification of only relatively abundant proteins (35). Many critical components in normal physiology and also disease may be several orders of magnitude less abundant and thus below the detection threshold of in-gel stains, or indeed most techniques. Pre- and post-fractionation technologies have been developed to address this central issue in proteomics but these are not without limitations (15). Thus improved detection methods for gel-based proteomics continue to be a high priority, and the literature is rich with different in-gel detection methods and innovative improvements (634). This history of iterative refinement presents a wealth of choices when selecting a detection strategy for a gel-based proteomic analysis (35).Perhaps the best known in-gel detection method is the ubiquitous Coomassie Blue (CB) stain; CB has served as a gel stain and protein quantification reagent for over 40 years. Though affordable, robust, easy to use, and compatible with mass spectrometry (MS), CB staining is relatively insensitive. In traditional organic solvent formulations, CB detects ∼ 10 ng of protein in-gel, and some reports suggest poorer sensitivity (27, 29, 36, 37). Sensitivity is hampered by relatively high background staining because of nonspecific retention of dye within the gel matrix (32, 36, 38, 39). The development of colloidal CB (CCB) formulations largely addressed these limitations (12); the concentration of soluble CB was carefully controlled by sequestering the majority of the dye into colloidal particles, mediated by pH, solvent, and the ionic strength of the solution. Minimizing soluble dye concentration and penetration of the gel matrix mitigated background staining, and the introduction of phosphoric acid into the staining reagent enhanced dye-protein interactions (8, 12, 40), contributing to an in-gel staining sensitivity of 5–10 ng protein, with some formulations reportedly yielding sensitivities of 0.1–1 ng (8, 12, 22, 39, 41, 42). Thus CCB achieved higher sensitivity than traditional CB staining, yet maintained all the advantages of the latter, including low cost and compatibility with existing densitometric detection instruments and MS. Although surpassed by newer methods, the practical advantages of CCB ensure that it remains one of the most common gel stains in use.Fluorescent stains have become the routine and sensitive alternative to visible dyes. Among these, the ruthenium-organometallic family of dyes have been widely applied and the most commercially well-known is Sypro Ruby (SR), which is purported to interact noncovalently with primary amines in proteins (15, 18, 19, 43). Chief among the attributes of these dyes is their high sensitivity. In-gel detection limits of < 1 ng for some proteins have been reported for SR (6, 9, 14, 44, 45). Moreover, SR staining has been reported to yield a greater linear dynamic range (LDR), and reduced interprotein variability (IPV) compared with CCB and silver stains (15, 19, 4649). SR is easy to use, fully MS compatible, and relatively forgiving of variations in initial conditions (6, 15). The chief consequence of these advances remains high cost; SR and related stains are notoriously expensive, and beyond the budget of many laboratories. Furthermore, despite some small cost advantage relative to SR, none of the available alternatives has been consistently and quantitatively demonstrated to substantially improve on the performance of SR under practical conditions (9, 50).Notably, there is evidence to suggest that CCB staining is not fundamentally insensitive, but rather that its sensitivity has been limited by traditional densitometric detection (50, 51). When excited in the near IR at ∼650 nm, protein-bound CB in-gel emits light in the range of 700–800 nm. Until recently, the lack of low-cost, widely available and sufficiently sensitive infrared (IR)-capable imaging instruments prevented mainstream adoption of in-gel CB infrared fluorescence detection (IRFD); advances in imaging technology are now making such instruments far more accessible. Initial reports suggested that IRFD of CB-stained gels provided greater sensitivity than traditional densitometric detection (50, 51). Using CB R250, in-gel IRFD was reported to detect as little as 2 ng of protein in-gel, with a LDR of about an order of magnitude (2 to 20 ng, or 10 to 100 ng in separate gels), beyond which the fluorescent response saturated into the μg range (51). Using the G250 dye variant, it was determined that CB-IRFD of 2D gels detected ∼3 times as many proteins as densitometric imaging, and a comparable number of proteins as seen by SR (50). This study also concluded that CB-IRFD yielded a significantly higher signal to background ratio (S/BG) than SR, providing initial evidence that CB-IRFD may be superior to SR in some aspects of stain performance (50).Despite this initial evidence of the viability of CB-IRF as an in-gel protein detection method, a detailed characterization of this technology has not yet been reported. Here a more thorough, quantitative characterization of CB-IRFD is described, establishing its lowest limit of detection (LLD), IPV, and LDR in comparison to SR. Finally a wealth of modifications and enhancements of CCB formulations have been reported (8, 12, 21, 24, 26, 29, 40, 41, 5254), and likewise there are many commercially available CCB stain formulations. To date, none of these formulations have been compared quantitatively in terms of their relative performance when detected using IRF. As a general detection method for gel-based proteomics, CB-IRFD was found to provide comparable or even slightly superior performance to SR according to most criteria, including sensitivity and selectivity (50). Furthermore, in terms of LDR, CB-IRFD showed distinct advantages over SR. However, assessing proteomes resolved by 2DE revealed critical distinctions between CB-IRFD and SR in terms of protein quantification versus threshold detection: neither stain could be considered unequivocally superior to the other by all criteria. Nonetheless, IRFD proved the most sensitive method of detecting CB-stained protein in-gel, enabling high sensitivity detection without the need for expensive reagents or even commercial formulations. Overall, CB-IRFD is a viable alternative to SR and other mainstream fluorescent stains, mitigating the high cost of large-scale gel-based proteomic analyses, making high sensitivity gel-based proteomics accessible to all labs. With improvements to CB formulations and/or image acquisition instruments, the performance of this detection technology may be further enhanced.  相似文献   

9.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

10.
11.
12.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

13.
Quantifying the similarity of spectra is an important task in various areas of spectroscopy, for example, to identify a compound by comparing sample spectra to those of reference standards. In mass spectrometry based discovery proteomics, spectral comparisons are used to infer the amino acid sequence of peptides. In targeted proteomics by selected reaction monitoring (SRM) or SWATH MS, predetermined sets of fragment ion signals integrated over chromatographic time are used to identify target peptides in complex samples. In both cases, confidence in peptide identification is directly related to the quality of spectral matches. In this study, we used sets of simulated spectra of well-controlled dissimilarity to benchmark different spectral comparison measures and to develop a robust scoring scheme that quantifies the similarity of fragment ion spectra. We applied the normalized spectral contrast angle score to quantify the similarity of spectra to objectively assess fragment ion variability of tandem mass spectrometric datasets, to evaluate portability of peptide fragment ion spectra for targeted mass spectrometry across different types of mass spectrometers and to discriminate target assays from decoys in targeted proteomics. Altogether, this study validates the use of the normalized spectral contrast angle as a sensitive spectral similarity measure for targeted proteomics, and more generally provides a methodology to assess the performance of spectral comparisons and to support the rational selection of the most appropriate similarity measure. The algorithms used in this study are made publicly available as an open source toolset with a graphical user interface.In “bottom-up” proteomics, peptide sequences are identified by the information contained in their fragment ion spectra (1). Various methods have been developed to generate peptide fragment ion spectra and to match them to their corresponding peptide sequences. They can be broadly grouped into discovery and targeted methods. In the widely used discovery (also referred to as shotgun) proteomic approach, peptides are identified by establishing peptide to spectrum matches via a method referred to as database searching. Each acquired fragment ion spectrum is searched against theoretical peptide fragment ion spectra computed from the entries of a specified sequence database, whereby the database search space is constrained to a user defined precursor mass tolerance (2, 3). The quality of the match between experimental and theoretical spectra is typically expressed with multiple scores. These include the number of matching or nonmatching fragments, the number of consecutive fragment ion matches among others. With few exceptions (47) commonly used search engines do not use the relative intensities of the acquired fragment ion signals even though this information could be expected to strengthen the confidence of peptide identification because the relative fragment ion intensity pattern acquired under controlled fragmentation conditions can be considered as a unique “fingerprint” for a given precursor. Thanks to community efforts in acquiring and sharing large number of datasets, the proteomes of some species are now essentially mapped out and experimental fragment ion spectra covering entire proteomes are increasingly becoming accessible through spectral databases (816). This has catalyzed the emergence of new proteomics strategies that differ from classical database searching in that they use prior spectral information to identify peptides. Those comprise inclusion list sequencing (directed sequencing), spectral library matching, and targeted proteomics (17). These methods explicitly use the information contained in empirical fragment ion spectra, including the fragment ion signal intensity to identify the target peptide. For these methods, it is therefore of highest importance to accurately control and quantify the degree of reproducibility of the fragment ion spectra across experiments, instruments, labs, methods, and to quantitatively assess the similarity of spectra. To date, dot product (1824), its corresponding arccosine spectral contrast angle (2527) and (Pearson-like) spectral correlation (2831), and other geometrical distance measures (18, 32), have been used in the literature for assessing spectral similarity. These measures have been used in different contexts including shotgun spectra clustering (19, 26), spectral library searching (18, 20, 21, 24, 25, 2729), cross-instrument fragmentation comparisons (22, 30) and for scoring transitions in targeted proteomics analyses such as selected reaction monitoring (SRM)1 (23, 31). However, to our knowledge, those scores have never been objectively benchmarked for their performance in discriminating well-defined levels of dissimilarities between spectra. In particular, similarity scores obtained by different methods have not yet been compared for targeted proteomics applications, where the sensitive discrimination of highly similar spectra is critical for the confident identification of targeted peptides.In this study, we have developed a method to objectively assess the similarity of fragment ion spectra. We provide an open-source toolset that supports these analyses. Using a computationally generated benchmark spectral library with increasing levels of well-controlled spectral dissimilarity, we performed a comprehensive and unbiased comparison of the performance of the main scores used to assess spectral similarity in mass spectrometry.We then exemplify how this method, in conjunction with its corresponding benchmarked perturbation spectra set, can be applied to answer several relevant questions for MS-based proteomics. As a first application, we show that it can efficiently assess the absolute levels of peptide fragmentation variability inherent to any given mass spectrometer. By comparing the instrument''s intrinsic fragmentation conservation distribution to that of the benchmarked perturbation spectra set, nominal values of spectral similarity scores can indeed be translated into a more directly understandable percentage of variability inherent to the instrument fragmentation. As a second application, we show that the method can be used to derive an absolute measure to estimate the conservation of peptide fragmentation between instruments or across proteomics methods. This allowed us to quantitatively evaluate, for example, the transferability of fragment ion spectra acquired by data dependent analysis in a first instrument into a fragment/transition assay list used for targeted proteomics applications (e.g. SRM or targeted extraction of data independent acquisition SWATH MS (33)) on another instrument. Third, we used the method to probe the fragmentation patterns of peptides carrying a post-translation modification (e.g. phosphorylation) by comparing the spectra of modified peptide with those of their unmodified counterparts. Finally, we used the method to determine the overall level of fragmentation conservation that is required to support target-decoy discrimination and peptide identification in targeted proteomics approaches such as SRM and SWATH MS.  相似文献   

14.
15.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

16.
17.
Mitochondria play a central role in energy metabolism and cellular survival, and consequently mitochondrial dysfunction is associated with a number of human pathologies. Reversible protein phosphorylation emerges as a central mechanism in the regulation of several mitochondrial processes. In skeletal muscle, mitochondrial dysfunction is linked to insulin resistance in humans with obesity and type 2 diabetes. We performed a phosphoproteomics study of functional mitochondria isolated from human muscle biopsies with the aim to obtain a comprehensive overview of mitochondrial phosphoproteins. Combining an efficient mitochondrial isolation protocol with several different phosphopeptide enrichment techniques and LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, including 116 phosphoserine, 23 phosphothreonine, and 16 phosphotyrosine residues. The relatively high number of phosphotyrosine residues suggests an important role for tyrosine phosphorylation in mitochondrial signaling. Many of the mitochondrial phosphoproteins are involved in oxidative phosphorylation, tricarboxylic acid cycle, and lipid metabolism, i.e. processes proposed to be involved in insulin resistance. We also assigned phosphorylation sites in mitochondrial proteins involved in amino acid degradation, importers and transporters, calcium homeostasis, and apoptosis. Bioinformatics analysis of kinase motifs revealed that many of these mitochondrial phosphoproteins are substrates for protein kinase A, protein kinase C, casein kinase II, and DNA-dependent protein kinase. Our results demonstrate the feasibility of performing phosphoproteome analysis of organelles isolated from human tissue and provide novel targets for functional studies of reversible phosphorylation in mitochondria. Future comparative phosphoproteome analysis of mitochondria from healthy and diseased individuals will provide insights into the role of abnormal phosphorylation in pathologies, such as type 2 diabetes.Mitochondria are the primary energy-generating systems in eukaryotes. They play a crucial role in oxidative metabolism, including carbohydrate metabolism, fatty acid oxidation, and urea cycle, as well as in calcium signaling and apoptosis (1, 2). Mitochondrial dysfunction is centrally involved in a number of human pathologies, such as type 2 diabetes, Parkinson disease, and cancer (3). The most prevalent form of cellular protein post-translational modifications (PTMs),1 reversible phosphorylation (46), is emerging as a central mechanism in the regulation of mitochondrial functions (7, 8). The steadily increasing numbers of reported mitochondrial kinases, phosphatases, and phosphoproteins imply an important role of protein phosphorylation in different mitochondrial processes (911).Mass spectrometry (MS)-based proteome analysis is a powerful tool for global profiling of proteins and their PTMs, including protein phosphorylation (12, 13). A variety of proteomics techniques have been developed for specific enrichment of phosphorylated proteins and peptides and for phosphopeptide-specific data acquisition techniques at the MS level (14). Enrichment methods based on affinity chromatography, such as titanium dioxide (TiO2) (1517), zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) (18), immobilized metal affinity chromatography (IMAC) (19, 20), and ion exchange chromatography (strong anion exchange and strong cation exchange) (21, 22), have shown high efficiencies for enrichment of phosphopeptides (14). Recently, we demonstrated that calcium phosphate precipitation (CPP) is highly effective for enriching phosphopeptides (23). It is now generally accepted that no single method is comprehensive, but combinations of different enrichment methods produce distinct overlapping phosphopeptide data sets to enhance the overall results in phosphoproteome analysis (24, 25). Phosphopeptide sequencing by mass spectrometry has seen tremendous advances during the last decade (26). For example, MS/MS product ion scanning, multistage activation, and precursor ion scanning are effective methods for identifying serine (Ser), threonine (Thr), and tyrosine (Tyr) phosphorylated peptides (14, 26).A “complete” mammalian mitochondrial proteome was reported by Mootha and co-workers (27) and included 1098 proteins. The mitochondrial phosphoproteome has been characterized in a series of studies, including yeast, mouse and rat liver, porcine heart, and plants (19, 2831). To date, the largest data set by Deng et al. (30) identified 228 different phosphoproteins and 447 phosphorylation sites in rat liver mitochondria. However, the in vivo phosphoproteome of human mitochondria has not been determined. A comprehensive mitochondrial phosphoproteome is warranted for further elucidation of the largely unknown mechanisms by which protein phosphorylation modulates diverse mitochondrial functions.The percutaneous muscle biopsy technique is an important tool in the diagnosis and management of human muscle disorders and has been widely used to investigate metabolism and various cellular and molecular processes in normal and abnormal human muscle, in particular the molecular mechanism underlying insulin resistance in obesity and type 2 diabetes (32). Skeletal muscle is rich in mitochondria and hence a good source for a comprehensive proteomics and functional analysis of mitochondria (32, 33).The major aim of the present study was to obtain a comprehensive overview of site-specific phosphorylation of mitochondrial proteins in functionally intact mitochondria isolated from human skeletal muscle. Combining an efficient protocol for isolation of skeletal muscle mitochondria with several different state-of-the-art phosphopeptide enrichment methods and high performance LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, many of which have not been reported before. We characterized this mitochondrial phosphoproteome by using bioinformatics tools to classify functional groups and functions, including kinase substrate motifs.  相似文献   

18.
Understanding how a small brain region, the suprachiasmatic nucleus (SCN), can synchronize the body''s circadian rhythms is an ongoing research area. This important time-keeping system requires a complex suite of peptide hormones and transmitters that remain incompletely characterized. Here, capillary liquid chromatography and FTMS have been coupled with tailored software for the analysis of endogenous peptides present in the SCN of the rat brain. After ex vivo processing of brain slices, peptide extraction, identification, and characterization from tandem FTMS data with <5-ppm mass accuracy produced a hyperconfident list of 102 endogenous peptides, including 33 previously unidentified peptides, and 12 peptides that were post-translationally modified with amidation, phosphorylation, pyroglutamylation, or acetylation. This characterization of endogenous peptides from the SCN will aid in understanding the molecular mechanisms that mediate rhythmic behaviors in mammals.Central nervous system neuropeptides function in cell-to-cell signaling and are involved in many physiological processes such as circadian rhythms, pain, hunger, feeding, and body weight regulation (14). Neuropeptides are produced from larger protein precursors by the selective action of endopeptidases, which cleave at mono- or dibasic sites and then remove the C-terminal basic residues (1, 2). Some neuropeptides undergo functionally important post-translational modifications (PTMs),1 including amidation, phosphorylation, pyroglutamylation, or acetylation. These aspects of peptide synthesis impact the properties of neuropeptides, further expanding their diverse physiological implications. Therefore, unveiling new peptides and unreported peptide properties is critical to advancing our understanding of nervous system function.Historically, the analysis of neuropeptides was performed by Edman degradation in which the N-terminal amino acid is sequentially removed. However, analysis by this method is slow and does not allow for sequencing of the peptides containing N-terminal PTMs (5). Immunological techniques, such as radioimmunoassay and immunohistochemistry, are used for measuring relative peptide levels and spatial localization, but these methods only detect peptide sequences with known structure (6). More direct, high throughput methods of analyzing brain regions can be used.Mass spectrometry, a rapid and sensitive method that has been used for the analysis of complex biological samples, can detect and identify the precise forms of neuropeptides without prior knowledge of peptide identity, with these approaches making up the field of peptidomics (712). The direct tissue and single neuron analysis by MALDI MS has enabled the discovery of hundreds of neuropeptides in the last decade, and the neuronal homogenate analysis by fractionation and subsequent ESI or MALDI MS has yielded an equivalent number of new brain peptides (5). Several recent peptidome studies, including the work by Dowell et al. (10), have used the specificity of FTMS for peptide discovery (10, 1315). Here, we combine the ability to fragment ions at ultrahigh mass accuracy (16) with a software pipeline designed for neuropeptide discovery. We use nanocapillary reversed-phase LC coupled to 12 Tesla FTMS for the analysis of peptides present in the suprachiasmatic nucleus (SCN) of rat brain.A relatively small, paired brain nucleus located at the base of the hypothalamus directly above the optic chiasm, the SCN contains a biological clock that generates circadian rhythms in behaviors and homeostatic functions (17, 18). The SCN comprises ∼10,000 cellular clocks that are integrated as a tissue level clock which, in turn, orchestrates circadian rhythms throughout the brain and body. It is sensitive to incoming signals from the light-sensing retina and other brain regions, which cause temporal adjustments that align the SCN appropriately with changes in environmental or behavioral state. Previous physiological studies have implicated peptides as critical synchronizers of normal SCN function as well as mediators of SCN inputs, internal signal processing, and outputs; however, only a small number of peptides have been identified and explored in the SCN, leaving unresolved many circadian mechanisms that may involve peptide function.Most peptide expression in the SCN has only been studied through indirect antibody-based techniques (1929), although we recently used MS approaches to characterize several peptides detected in SCN releasates (30). Previous studies indicate that the SCN expresses a rich diversity of peptides relative to other brain regions studied with the same techniques. Previously used immunohistochemical approaches are not only inadequate for comprehensively evaluating PTMs and alternate isoforms of known peptides but are also incapable of exhaustively examining the full peptide complement of this complex biological network of peptidergic inputs and intrinsic components. A comprehensive study of SCN peptidomics is required that utilizes high resolution strategies for directly analyzing the peptide content of the neuronal networks comprising the SCN.In our study, the SCN was obtained from ex vivo coronal brain slices via tissue punch and subjected to multistage peptide extraction. The SCN tissue extract was analyzed by FTMS/MS, and the high resolution MS and MS/MS data were processed using ProSightPC 2.0 (16), which allows the identification and characterization of peptides or proteins from high mass accuracy MS/MS data. In addition, the Sequence Gazer included in ProSightPC was used for manually determining PTMs (31, 32). As a result, a total of 102 endogenous peptides were identified, including 33 that were previously unidentified, and 12 PTMs (including amidation, phosphorylation, pyroglutamylation, and acetylation) were found. The present study is the first comprehensive peptidomics study for identifying peptides present within the mammalian SCN. In fact, this is one of the first peptidome studies to work with discrete brain nuclei as opposed to larger brain structures and follows up on our recent report using LC-ion trap for analysis of the peptides in the supraoptic nucleus (33); here, the use of FTMS allows a greater range of PTMs to be confirmed and allows higher confidence in the peptide assignments. This information on the peptides in the SCN will serve as a basis to more exhaustively explore the extent that previously unreported SCN neuropeptides may function in SCN regulation of mammalian circadian physiology.  相似文献   

19.
A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号