首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pah1 is the phosphatidate phosphatase in the yeast Saccharomyces cerevisiae that produces diacylglycerol for triacylglycerol synthesis and concurrently controls the levels of phosphatidate used for phospholipid synthesis. Phosphorylation and dephosphorylation of Pah1 regulate its subcellular location and phosphatidate phosphatase activity. Compared with its phosphorylation by multiple protein kinases, Pah1 is dephosphorylated by a protein phosphatase complex consisting of Nem1 (catalytic subunit) and Spo7 (regulatory subunit). In this work, we characterized the Nem1-Spo7 phosphatase complex for its enzymological, kinetic, and regulatory properties with phosphorylated Pah1. The dephosphorylation of Pah1 by Nem1-Spo7 phosphatase resulted in the stimulation (6-fold) of phosphatidate phosphatase activity. For Pah1 phosphorylated by the Pho85-Pho80 kinase complex, maximum Nem1-Spo7 phosphatase activity required Mg2+ ions (8 mm) and Triton X-100 (0.25 mm) at pH 5.0. The energy of activation for the reaction was 8.4 kcal/mol, and the enzyme was thermally labile at temperatures above 40 °C. The enzyme activity was inhibited by sodium vanadate, sodium fluoride, N-ethylmaleimide, and phenylglyoxal but was not significantly affected by lipids or nucleotides. Nem1-Spo7 phosphatase activity was dependent on the concentrations of Pah1 phosphorylated by Pho85-Pho80, Cdc28-cyclin B, PKA, and PKC with kcat and Km values of 0.29 s−1 and 81 nm, 0.11 s−1 and 127 nm, 0.10 s−1 and 46 nm, and 0.02 s−1 and 38 nm, respectively. Its specificity constant (kcat/Km) for Pah1 phosphorylated by Pho85-Pho80 was 1.6-, 4-, and 6-fold higher, respectively, than that phosphorylated by PKA, Cdc28-cyclin B, and PKC.  相似文献   

3.
Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary phase of growth. In this study, we examined the mechanism for its degradation using purified Pah1 and isolated proteasomes. Pah1 expressed in S. cerevisiae or Escherichia coli was not degraded by the 26S proteasome, but by its catalytic 20S core particle, indicating that its degradation is ubiquitin-independent. The degradation of Pah1 by the 20S proteasome was dependent on time and proteasome concentration at the pH optimum of 7.0. The 20S proteasomal degradation was conserved for human lipin 1 phosphatidate phosphatase. The degradation analysis using Pah1 truncations and its fusion with GFP indicated that proteolysis initiates at the N- and C-terminal unfolded regions. The folded region of Pah1, in particular the haloacid dehalogenase-like domain containing the DIDGT catalytic sequence, was resistant to the proteasomal degradation. The structural change of Pah1, as reflected by electrophoretic mobility shift, occurs through its phosphorylation by Pho85-Pho80, and the phosphorylation sites are located within its N- and C-terminal unfolded regions. Phosphorylation of Pah1 by Pho85-Pho80 inhibited its degradation, extending its half-life by ∼2-fold. The dephosphorylation of endogenously phosphorylated Pah1 by the Nem1-Spo7 protein phosphatase, which is highly specific for the sites phosphorylated by Pho85-Pho80, stimulated the 20S proteasomal degradation and reduced its half-life by 2.6-fold. These results indicate that the proteolysis of Pah1 by the 20S proteasome is controlled by its phosphorylation state.  相似文献   

4.
In the yeast Saccharomyces cerevisiae, the PAH1-encoded Mg2+-dependent phosphatidate (PA) phosphatase Pah1 regulates the bifurcation of PA to diacylglycerol (DAG) for triacylglycerol (TAG) synthesis and to CDP-DAG for phospholipid synthesis. Pah1 function is mainly regulated via control of its cellular location by phosphorylation and dephosphorylation. Pah1 phosphorylated by multiple protein kinases is sequestered in the cytosol apart from its substrate PA in the membrane. The phosphorylated Pah1 is then recruited and dephosphorylated by the protein phosphatase complex Nem1 (catalytic subunit)-Spo7 (regulatory subunit) in the endoplasmic reticulum. The dephosphorylated Pah1 hops onto and scoots along the membrane to recognize PA for its dephosphorylation to DAG. Here, we developed a proteoliposome model system that mimics the Nem1-Spo7/Pah1 phosphatase cascade to provide a tool for studying Pah1 regulation. Purified Nem1-Spo7 was reconstituted into phospholipid vesicles prepared in accordance with the phospholipid composition of the nuclear/endoplasmic reticulum membrane. The Nem1-Spo7 phosphatase reconstituted in the proteoliposomes, which were measured 60 nm in an average diameter, was catalytically active on Pah1 phosphorylated by Pho85-Pho80, and its active site was located at the external side of the phospholipid bilayer. Moreover, we determined that PA stimulated the Nem1-Spo7 activity, and the regulatory effect was governed by the nature of the phosphate headgroup but not by the fatty acyl moiety of PA. The reconstitution system for the Nem1-Spo7/Pah1 phosphatase cascade, which starts with the phosphorylation of Pah1 by Pho85-Pho80 and ends with the production of DAG, is a significant advance to understand a regulatory cascade in yeast lipid synthesis.Supplementary key words: phosphatidate, diacylglycerol, triacylglycerol, phosphatidate phosphatase, Pho85-Pho80, Nem1-Spo7 protein phosphatase, endoplasmic reticulum, phospholipid bilayer, reconstitution, proteoliposome  相似文献   

5.
Lipid homeostasis allows cells to adjust membrane biophysical properties in response to changes in environmental conditions. In the yeast Saccharomyces cerevisiae, a downward shift in temperature from an optimal reduces membrane fluidity, which triggers a lipid remodeling of the plasma membrane. How changes in membrane fluidity are perceived, and how the abundance and composition of different lipid classes is properly balanced, remain largely unknown. Here, we show that the levels of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], the most abundant plasma membrane phosphoinositide, drop rapidly in response to a downward shift in temperature. This change triggers a signaling cascade transmitted to cytosolic diphosphoinositol phosphate derivatives, among them 5-PP-IP4 and 1-IP7, that exert regulatory functions on genes involved in the inositol and phospholipids (PLs) metabolism, and inhibit the activity of the protein kinase Pho85. Consistent with this, cold exposure triggers a specific program of neutral lipids and PLs changes. Furthermore, we identified Pho85 as playing a key role in controlling the synthesis of long-chain bases (LCBs) via the Ypk1-Orm2 regulatory circuit. We conclude that Pho85 orchestrates a coordinated response of lipid metabolic pathways that ensure yeast thermal adaptation.  相似文献   

6.
Pah1p, which functions as phosphatidate phosphatase (PAP) in the yeast Saccharomyces cerevisiae, plays a crucial role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate and its product diacylglycerol. The diacylglycerol produced by PAP is used for the synthesis of triacylglycerol as well as for the synthesis of phospholipids via the Kennedy pathway. Pah1p is a highly phosphorylated protein in vivo and has been previously shown to be phosphorylated by the protein kinases Pho85p-Pho80p and Cdc28p-cyclin B. In this work, we showed that Pah1p was a bona fide substrate for protein kinase A, and we identified by mass spectrometry and mutagenesis that Ser-10, Ser-677, Ser-773, Ser-774, and Ser-788 were the target sites of phosphorylation. Protein kinase A-mediated phosphorylation of Pah1p inhibited its PAP activity by decreasing catalytic efficiency, and the inhibitory effect was primarily conferred by phosphorylation at Ser-10. Analysis of the S10A and S10D mutations (mimicking dephosphorylation and phosphorylation, respectively), alone or in combination with the seven alanine (7A) mutations of the sites phosphorylated by Pho85p-Pho80p and Cdc28p-cyclin B, indicated that phosphorylation at Ser-10 stabilized Pah1p abundance and inhibited its association with membranes, PAP activity, and triacylglycerol synthesis. The S10A mutation enhanced the physiological effects imparted by the 7A mutations, whereas the S10D mutations attenuated the effects of the 7A mutations. These data indicated that the protein kinase A-mediated phosphorylation of Ser-10 functions in conjunction with the phosphorylations mediated by Pho85p-Pho80p and Cdc28p-cyclin B and that phospho-Ser-10 should be dephosphorylated for proper PAP function.  相似文献   

7.
The plasma membrane delineates the cell and mediates its communication and material exchange with the environment. Many processes of the plasma membrane occur through interactions of proteins with phosphatidylinositol(4,5)-bisphosphate (PI(4,5)P2), which is highly enriched in this membrane and is a key determinant of its identity. Eisosomes function in lateral organization of the plasma membrane, but the molecular function of their major protein subunits, the BAR domain–containing proteins Pil1 and Lsp1, is poorly understood. Here we show that eisosomes interact with the PI(4,5)P2 phosphatase Inp51/Sjl1, thereby recruiting it to the plasma membrane. Pil1 is essential for plasma membrane localization and function of Inp51 but not for the homologous phosphatidylinositol bisphosphate phosphatases Inp52/Sjl2 and Inp53/Sjl3. Consistent with this, absence of Pil1 increases total and available PI(4,5)P2 levels at the plasma membrane. On the basis of these findings, we propose a model in which the eisosomes function in maintaining PI(4,5)P2 levels by Inp51/Sjl1 recruitment.  相似文献   

8.
Yeast Pah1p phosphatidate phosphatase (PAP) catalyzes the penultimate step in the synthesis of triacylglycerol. PAP plays a crucial role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate and its product diacylglycerol. The cellular amounts of these lipid intermediates influence the synthesis of triacylglycerol and the pathways by which membrane phospholipids are synthesized. Physiological functions affected by PAP activity include phospholipid synthesis gene expression, nuclear/endoplasmic reticulum membrane growth, lipid droplet formation, and vacuole homeostasis and fusion. Yeast lacking Pah1p PAP activity are acutely sensitive to fatty acid-induced toxicity and exhibit respiratory deficiency. PAP is distinguished in its cellular location, catalytic mechanism, and physiological functions from Dpp1p and Lpp1p lipid phosphate phosphatases that utilize a variety of substrates that include phosphatidate. Phosphorylation/dephosphorylation is a major mechanism by which Pah1p PAP activity is regulated. Pah1p is phosphorylated by cytosolic-associated Pho85p–Pho80p, Cdc28p-cyclin B, and protein kinase A and is dephosphorylated by the endoplasmic reticulum-associated Nem1p–Spo7p phosphatase. The dephosphorylation of Pah1p stimulates PAP activity and facilitates the association with the membrane/phosphatidate allowing for its reaction and triacylglycerol synthesis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

9.
Diacylglycerol (DAG) is a fusogenic lipid that can be produced through phospholipase C activity on phosphatidylinositol 4,5‐bisphosphate [PI(4,5)P2 ], or through phosphatidic acid (PA) phosphatase activity. The fusion of Saccharomyces cerevisiae vacuoles requires DAG, PA and PI(4,5)P2 , and the production of these lipids is thought to provide temporally specific stoichiometries that are critical for each stage of fusion. Furthermore, DAG and PA can be interconverted by the DAG kinase Dgk1 and the PA phosphatase Pah1. Previously we found that pah1 Δ vacuoles were fragmented, blocked in SNARE priming and showed arrested endosomal maturation. In other pathways the effects of deleting PAH1 can be compensated for by additionally deleting DGK1 ; however, deleting both genes did not rescue the pah1 Δ vacuolar defects. Deleting DGK1 alone caused a marked increase in vacuole fusion that was attributed to elevated DAG levels. This was accompanied by a gain in resistance to the inhibitory effects of PA as well as inhibitors of Ypt7 activity. Together these data show that Dgk1 function can act as a negative regulator of vacuole fusion through the production of PA at the cost of depleting DAG and reducing Ypt7 activity.  相似文献   

10.
Pah1 phosphatidate (PA) phosphatase plays a major role in triacylglycerol synthesis in Saccharomyces cerevisiae by producing its precursor diacylglycerol and concurrently regulates de novo phospholipid synthesis by consuming its precursor PA. The function of Pah1 requires its membrane localization, which is controlled by its phosphorylation state. Pah1 is dephosphorylated by the Nem1-Spo7 protein phosphatase, whereas its phosphorylation occurs by multiple known and unknown protein kinases. In this work, we show that Rim11, a yeast homolog of mammalian glycogen synthase kinase-3β, is a protein kinase that phosphorylates Pah1 on serine (Ser12, Ser602, and Ser818) and threonine (Thr163, Thr164, Thr522) residues. Enzymological characterization of Rim11 showed that its Km for Pah1 (0.4 μM) is similar to those of other Pah1-phosphorylating protein kinases, but its Km for ATP (30 μM) is significantly higher than those of these same kinases. Furthermore, we demonstrate Rim11 phosphorylation of Pah1 does not require substrate prephosphorylation but was increased ∼2-fold upon its prephosphorylation by the Pho85-Pho80 protein kinase. In addition, we show Rim11-phosphorylated Pah1 was a substrate for dephosphorylation by Nem1-Spo7. Finally, we demonstrate the Rim11 phosphorylation of Pah1 exerted an inhibitory effect on its PA phosphatase activity by reduction of its catalytic efficiency. Mutational analysis of the major phosphorylation sites (Thr163, Thr164, and Ser602) indicated that Rim11-mediated phosphorylation at these sites was required to ensure Nem1-Spo7-dependent localization of the enzyme to the membrane. Overall, these findings advance our understanding of the phosphorylation-mediated regulation of Pah1 function in lipid synthesis.  相似文献   

11.
Yeast PAH1-encoded phosphatidate phosphatase is the enzyme responsible for the production of the diacylglycerol used for the synthesis of triacylglycerol that accumulates in the stationary phase of growth. Paradoxically, the growth phase-mediated inductions of PAH1 and phosphatidate phosphatase activity do not correlate with the amount of Pah1p; enzyme abundance declined in a growth phase-dependent manner. Pah1p from exponential phase cells was a relatively stable protein, and its abundance was not affected by incubation with an extract from stationary phase cells. Recombinant Pah1p was degraded upon incubation with the 100,000 × g pellet fraction of stationary phase cells, although the enzyme was stable when incubated with the same fraction of exponential phase cells. MG132, an inhibitor of proteasome function, prevented degradation of the recombinant enzyme. Endogenously expressed and plasmid-mediated overexpressed levels of Pah1p were more abundant in the stationary phase of cells treated with MG132. Pah1p was stabilized in mutants with impaired proteasome (rpn4Δ, blm10Δ, ump1Δ, and pre1 pre2) and ubiquitination (hrd1Δ, ubc4Δ, ubc7Δ, ubc8Δ, and doa4Δ) functions. The pre1 pre2 mutations that eliminate nearly all chymotrypsin-like activity of the 20 S proteasome had the greatest stabilizing effect on enzyme levels. Taken together, these results supported the conclusion that Pah1p is subject to proteasome-mediated degradation in the stationary phase. That Pah1p abundance was stabilized in pah1Δ mutant cells expressing catalytically inactive forms of Pah1p and dgk1Δ mutant cells with induced expression of DGK1-encoded diacylglycerol kinase indicated that alteration in phosphatidate and/or diacylglycerol levels might be the signal that triggers Pah1p degradation.  相似文献   

12.
13.
14.
15.
During hyperosmotic shock, Saccharomyces cerevisiae adjusts to physiological challenges, including large plasma membrane invaginations generated by rapid cell shrinkage. Calcineurin, the Ca2+/calmodulin–dependent phosphatase, is normally cytosolic but concentrates in puncta and at sites of polarized growth during intense osmotic stress; inhibition of calcineurin-activated gene expression suggests that restricting its access to substrates tunes calcineurin signaling specificity. Hyperosmotic shock promotes calcineurin binding to and dephosphorylation of the PI(4,5)P2 phosphatase synaptojanin/Inp53/Sjl3 and causes dramatic calcineurin-dependent reorganization of PI(4,5)P2-enriched membrane domains. Inp53 normally promotes sorting at the trans-Golgi network but localizes to cortical actin patches in osmotically stressed cells. By activating Inp53, calcineurin repolarizes the actin cytoskeleton and maintains normal plasma membrane morphology in synaptojanin-limited cells. In response to hyperosmotic shock and calcineurin-dependent regulation, Inp53 shifts from associating predominantly with clathrin to interacting with endocytic proteins Sla1, Bzz1, and Bsp1, suggesting that Inp53 mediates stress-specific endocytic events. This response has physiological and molecular similarities to calcineurin-regulated activity-dependent bulk endocytosis in neurons, which retrieves a bolus of plasma membrane deposited by synaptic vesicle fusion. We propose that activation of Ca2+/calcineurin and PI(4,5)P2 signaling to regulate endocytosis is a fundamental and conserved response to excess membrane in eukaryotic cells.  相似文献   

16.
Changes in nuclear size and shape during the cell cycle or during development require coordinated nuclear membrane remodeling, but the underlying molecular events are largely unknown. We have shown previously that the activity of the conserved phosphatidate phosphatase Pah1p/Smp2p regulates nuclear structure in yeast by controlling phospholipid synthesis and membrane biogenesis at the nuclear envelope. Two screens for novel regulators of phosphatidate led to the identification of DGK1. We show that Dgk1p is a unique diacylglycerol kinase that uses CTP, instead of ATP, to generate phosphatidate. DGK1 counteracts the activity of PAH1 at the nuclear envelope by controlling phosphatidate levels. Overexpression of DGK1 causes the appearance of phosphatidate-enriched membranes around the nucleus and leads to its expansion, without proliferating the cortical endoplasmic reticulum membrane. Mutations that decrease phosphatidate levels decrease nuclear membrane growth in pah1Delta cells. We propose that phosphatidate metabolism is a critical factor determining nuclear structure by regulating nuclear membrane biogenesis.  相似文献   

17.
RNA viruses take advantage of cellular resources, such as membranes and lipids, to assemble viral replicase complexes (VRCs) that drive viral replication. The host lipins (phosphatidate phosphatases) are particularly interesting because these proteins play key roles in cellular decisions about membrane biogenesis versus lipid storage. Therefore, we examined the relationship between host lipins and tombusviruses, based on yeast model host. We show that deletion of PAH1 (phosphatidic acid phosphohydrolase), which is the single yeast homolog of the lipin gene family of phosphatidate phosphatases, whose inactivation is responsible for proliferation and expansion of the endoplasmic reticulum (ER) membrane, facilitates robust RNA virus replication in yeast. We document increased tombusvirus replicase activity in pah1Δ yeast due to the efficient assembly of VRCs. We show that the ER membranes generated in pah1Δ yeast is efficiently subverted by this RNA virus, thus emphasizing the connection between host lipins and RNA viruses. Thus, instead of utilizing the peroxisomal membranes as observed in wt yeast and plants, TBSV readily switches to the vastly expanded ER membranes in lipin-deficient cells to build VRCs and support increased level of viral replication. Over-expression of the Arabidopsis Pah2p in Nicotiana benthamiana decreased tombusvirus accumulation, validating that our findings are also relevant in a plant host. Over-expression of AtPah2p also inhibited the ER-based replication of another plant RNA virus, suggesting that the role of lipins in RNA virus replication might include several more eukaryotic viruses.  相似文献   

18.
Phosphatidate phosphatase (PAP) catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol. In the yeast Saccharomyces cerevisiae, PAP is encoded by PAH1, DPP1, and LPP1. The presence of PAP activity in the pah1Δ dpp1Δ lpp1Δ triple mutant indicated another gene(s) encoding the enzyme. We purified PAP from the pah1Δ dpp1Δ lpp1Δ triple mutant by salt extraction of mitochondria followed by chromatography with DE52, Affi-Gel Blue, phenyl-Sepharose, MonoQ, and Superdex 200. Liquid chromatography/tandem mass spectrometry analysis of a PAP-enriched sample revealed multiple putative phosphatases. By analysis of PAP activity in mutants lacking each of the proteins, we found that APP1, a gene whose molecular function has been unknown, confers ∼30% PAP activity of wild type cells. The overexpression of APP1 in the pah1Δ dpp1Δ lpp1Δ mutant exhibited a 10-fold increase in PAP activity. The PAP activity shown by App1p heterologously expressed in Escherichia coli confirmed that APP1 is the structural gene for the enzyme. Introduction of the app1Δ mutation into the pah1Δ dpp1Δ lpp1Δ triple mutant resulted in a complete loss of PAP activity, indicating that distinct PAP enzymes in S. cerevisiae are encoded by APP1, PAH1, DPP1, and LPP1. Lipid analysis of cells lacking the PAP genes, singly or in combination, showed that Pah1p is the only PAP involved in the synthesis of triacylglycerol as well as in the regulation of phospholipid synthesis. App1p, which shows interactions with endocytic proteins, may play a role in vesicular trafficking through its PAP activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号