首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional structure of adeno-associated virus (AAV) serotype 6 (AAV6) was determined using cryo-electron microscopy and image reconstruction and using X-ray crystallography to 9.7- and 3.0-Å resolution, respectively. The AAV6 capsid contains a highly conserved, eight-stranded (βB to βI) β-barrel core and large loop regions between the strands which form the capsid surface, as observed in other AAV structures. The loops show conformational variation compared to other AAVs, consistent with previous reports that amino acids in these loop regions are involved in differentiating AAV receptor binding, transduction efficiency, and antigenicity properties. Toward structure-function annotation of AAV6 with respect to its unique dual glycan receptor (heparan sulfate and sialic acid) utilization for cellular recognition, and its enhanced lung epithelial transduction compared to other AAVs, the capsid structure was compared to that of AAV1, which binds sialic acid and differs from AAV6 in only 6 out of 736 amino acids. Five of these residues are located at or close to the icosahedral 3-fold axis of the capsid, thereby identifying this region as imparting important functions, such as receptor attachment and transduction phenotype. Two of the five observed amino acids are located in the capsid interior, suggesting that differential AAV infection properties are also controlled by postentry intracellular events. Density ordered inside the capsid, under the 3-fold axis in a previously reported, conserved AAV DNA binding pocket, was modeled as a nucleotide and a base, further implicating this capsid region in AAV genome recognition and/or stabilization.Adeno-associated viruses (AAVs) are nonpathogenic single-stranded DNA (ssDNA) parvoviruses that belong to the Dependovirus genus and require helper viruses, such as Adenovirus or Herpesvirus, for lytic infection (4, 8, 22, 67). These viruses package a genome of ∼4.7 kb inside an icosahedral capsid (∼260 Å in diameter) with a triangulation number equal to 1 assembled from a total of 60 copies of their overlapping capsid viral protein (VP) 1 (VP1), VP2, and VP3 in a predicted ratio of 1:1:8/10 (10). The VPs are encoded from a cap open reading frame (ORF). VP3 is 61 kDa and constitutes 90% of the capsid''s protein composition. The less abundant VPs, VP1 (87 kDa) and VP2 (73 kDa), share the same C-terminal amino acid sequence with VP3 but have additional N-terminal sequences. A rep ORF codes for four overlapping proteins required for replication and DNA packaging.To date, more than 100 AAV isolates have been identified (21). Among the human and nonhuman primate AAVs isolated, 12 serotypes (AAV serotype 1 [AAV1] to AAV12) have been described and are classified into six phylogenetic clades on the basis of their VP sequences and antigenic reactivities, with AAV4 and AAV5 considered to be clonal isolates (21). AAV1 and AAV6, which represent clade A, differ by only 6 out of 736 VP1 amino acids (5 amino acids within VP3) and are antigenically cross-reactive. Other clade representatives include AAV2 (clade B), AAV2-AAV3 hybrid (clade C), AAV7 (clade D), AAV8 (clade E), and AAV9 (clade F) (21).The AAVs are under development as clinical gene delivery vectors (e.g., see references 5, 9, 12, 13, 24, 25, 53, and 61), with AAV2, the prototype member of the genus, being the most extensively studied serotype for this application. AAV2 has been successfully used to treat several disorders, but its broad tissue tropism makes it less effective for tissue-specific applications and the prevalence of preexisting neutralizing antibodies in the human population (11, 43) limits its utilization, especially when readministration is required to achieve a therapeutic outcome. Efforts have thus focused on characterizing the capsid-associated tissue tropism and transduction properties conferred by the capsid of representative serotypes of other clades (21). Outcomes of these studies include the observation that AAV1 and AAV6, for example, transduce liver, muscle, and airway epithelial cells more efficiently (e.g., up to 200-fold) than AAV2 (27, 28, 30). In addition, the six residues (Table (Table1)1) that differ between the VPs of AAV1 and AAV6 (a natural recombinant of AAV1 and AAV2 [56]) confer functional disparity between these two viruses. For example, AAV6 shows ∼3-fold higher lung cell epithelium transduction than AAV1 (27), and AAV1 and AAV6 bind terminally sialylated proteoglycans as their primary receptor, whereas AAV6 additionally binds to heparan sulfate (HS) proteoglycans with moderate affinity (70, 71). Therefore, a comparison of the AAV1 and AAV6 serotypes and, in particular, their capsid structures can help pinpoint the capsid regions that confer differences in cellular recognition and tissue transduction.

TABLE 1.

Amino acid differences between AAV1 and AAV6 and their reported mutants
AAVAmino acid at positiona:
Glycan targetbReference
129418531532584598642
AAV1LEEDFANS70
AAV1-E/KLEKDFANHS+ (and S)c70
AAV6FDKDLVHHS and S70
AAV6.1FDEDLVHHS (and S)c40, 70
AAV6.2LDKDLVHHS (and S)c40, 70
AAV6R2LDEDLVHHS (and S)c40
HAE1LEEDLVN(HS and S)d39
HAE2LDKDLVN(HS and S)d39
shH10FDKNLVNHS (and S-inde)33
Open in a separate windowaMutant residues in boldface have an AAV6 parental original; those underlined have an AAV1 parental origin.bS, sialic acid; HS, heparan sulfate; HS+, HS positive.cThe sialic acid binding phenotypes of these mutants were not discussed in the respective publications but are assumed to be still present.dThe glycan targets for these mutants were not discussed in this publication; thus, the phenotypes indicated are assumed.eThis mutant is sialic acid independent (S-ind) for cellular transduction.The structures of AAV1 to AAV5 and AAV8 have been determined by X-ray crystallography and/or cryo-electron microscopy and image reconstruction (cryo-EM) (23, 36, 47, 52, 66, 73; unpublished data), and preliminary characterization of crystals has also been reported for AAV1, AAV5, AAV7, and AAV9 (15, 45, 46, 55). The capsid VP structures contain a conserved eight-stranded (βB to βI) β-barrel core and large loop regions between the strands that form the capsid surface. The capsid surface is characterized by depressions at the icosahedral 2-fold axes of symmetry, finger-like projections surrounding the 3-fold axes, and canyon-like depressions surrounding the 5-fold axes. A total of nine variable regions (VRs; VRI to VRIX) were defined when the two most disparate structures, AAV2 and AAV4, were compared (23). The VRs contain amino acids that contribute to slight differences in surface topologies and distinct functional phenotypes, such as in receptor binding, transduction efficiency, and antigenic reactivity (10, 23, 37, 47).The structure of virus-like particles (VLPs) of AAV6, produced in a baculovirus/Sf9 insect cell expression system, has been determined by two highly complementary approaches, cryo-EM and X-ray crystallography. The AAV6 VP structure contains the general features already described for the AAVs and has conformational differences in the VRs compared to the VRs of other AAVs. The 9.7-Å-resolution cryoreconstructed structure enabled the localization of the C-α positions of five of the six amino acids that differ between highly homologous AAV6 and AAV1 but did not provide information on the positions of the side chains or their orientations. The X-ray crystal structure determined to 3.0-Å resolution enabled us to precisely map the atomic positions of these five residues at or close to the icosahedral 3-fold axes of the capsid. Reported mutagenesis and biochemical studies had functionally annotated the six residues differing between AAV1 and AAV6 with respect to their roles in receptor attachment and differential cellular transduction. Their disposition identifies the 3-fold capsid region as playing essential roles in AAV infection.  相似文献   

2.
Adeno-associated virus 4 (AAV4) is one of the most divergent serotypes among known AAV isolates. Mucins or O-linked sialoglycans have been identified as the primary attachment receptors for AAV4 in vitro. However, little is known about the role(s) played by sialic acid interactions in determining AAV4 tissue tropism in vivo. In the current study, we first characterized two loss-of-function mutants obtained by screening a randomly mutated AAV4 capsid library. Both mutants harbored several amino acid residue changes localized to the 3-fold icosahedral symmetry axes on the AAV4 capsid and displayed low transduction efficiency in vitro. This defect was attributed to decreased cell surface binding as well as uptake of mutant virions. These results were further corroborated by low transgene expression and recovery of mutant viral genomes in cardiac and lung tissue following intravenous administration in mice. Pharmacokinetic analysis revealed rapid clearance of AAV4 mutants from the blood circulation in conjunction with low hemagglutination potential ex vivo. These results were recapitulated with mice pretreated intravenously with sialidase, directly confirming the role of sialic acids in determining AAV4 tissue tropism. Taken together, our results support the notion that blood-borne AAV4 particles interact sequentially with O-linked sialoglycans expressed abundantly on erythrocytes followed by cardiopulmonary tissues and subsequently for viral cell entry.  相似文献   

3.
The domestic chicken is an attractive model system to explore the development and function of brain circuits. Electroporation-mediated and retrovirus (including lentivirus) vector-mediated gene transfer techniques have been widely used to introduce genetic material into chicken cells. However, it is still challenging to efficiently transduce chicken postmitotic neurons without harming the cells. To overcome this problem, we searched for a virus vector suitable for gene transfer into chicken neurons, and report here a novel recombinant virus vector derived from avian adeno-associated virus (A3V). A3V vector efficiently transduces neuronal cells, but not non-neuronal cells in the brain. A single A3V injection into a postembryonic chick brain allows gene expression selectively in neuronal cells within 24 hrs. Such rapid and neuron-specific gene transduction raises the possibility that A3V vector can be utilized for studies of memory formation in filial imprinting, which occurs during the early postnatal days. A3V injection into the neural tube near the ear vesicle at early embryonic stage resulted in persistent and robust gene expression until E20.5 in the auditory brainstem. We further devised an A3V-mediated tetracycline (Tet) dependent gene expression system as a tool for studying the auditory circuit, consisting of the nucleus magnocellularis (NM) and nucleus laminaris (NL), that primarily computes interaural time differences (ITDs). Using this Tet system, we can transduce NM neurons without affecting NL neurons. Thus, the A3V technology complements current gene transfer techniques in chicken studies and will contribute to better understanding of the functional organization of neural circuits.  相似文献   

4.
Previous studies from our laboratory demonstrated that PVC-211 murine leukemia virus (MuLV), a neuropathogenic variant of Friend MuLV (F-MuLV), had undergone genetic changes which allowed it to efficiently infect rat brain capillary endothelial cells (BCEC) in vivo and in vitro. Two amino acid changes from F-MuLV in the putative receptor binding domain (RBD) of the envelope surface protein of PVC-211 MuLV (Glu-116 to Gly and Glu-129 to Lys) were shown to be sufficient for conferring BCEC tropism on PVC-211 MuLV. Recent examination of the unique RBD of PVC-211 MuLV revealed that the substitution of Lys for Glu at position 129 created a new heparin-binding domain that overlapped a heparin-binding domain common to ecotropic MuLVs. In this study we used heparin-Sepharose columns to demonstrate that PVC-211 MuLV, but not F-MuLV, can bind efficiently to heparin and that one or both of the amino acids in the RBD of PVC-211 MuLV that are associated with BCEC tropism are responsible. We further showed that heparin can enhance or inhibit MuLV infection and that the mode of action is dependent on heparin concentration, sulfation of heparin, and the affinity of the virus for heparin. Our results suggest that the amino acid changes that occurred in the envelope surface protein of PVC-211 MuLV may allow the virus to bind strongly to the surface of BCEC via heparin-like molecules, increasing the probability that the virus will bind to its cell surface receptor and efficiently infect these cells.  相似文献   

5.
6.
Adeno-associated virus (AAV) capsid assembly requires expression of the assembly-activating protein (AAP) together with capsid proteins VP1, VP2, and VP3. AAP is encoded by an alternative open reading frame of the cap gene. Sequence analysis and site-directed mutagenesis revealed that AAP contains two hydrophobic domains in the N-terminal part of the molecule that are essential for its assembly-promoting activity. Mutation of these sequences reduced the interaction of AAP with the capsid proteins. Deletions and a point mutation in the capsid protein C terminus also abolished capsid assembly and strongly reduced the interaction with AAP. Interpretation of these observations on a structural basis suggests an interaction of AAP with the VP C terminus, which forms the capsid protein interface at the 2-fold symmetry axis. This interpretation is supported by a decrease in the interaction of monoclonal antibody B1 with VP3 under nondenaturing conditions in the presence of AAP, indicative of steric hindrance of B1 binding to its C-terminal epitope by AAP. In addition, AAP forms high-molecular-weight oligomers and changes the conformation of nonassembled VP molecules as detected by conformation-sensitive monoclonal antibodies A20 and C37. Combined, these observations suggest a possible scaffolding activity of AAP in the AAV capsid assembly reaction.  相似文献   

7.
8.
Incubation of highly purified adeno-associated virus (AAV) capsids in vitro at pH 5.5 induced significant autocleavage of capsid proteins at several amino acid positions. No autocleavage was seen at pH 7.5. Examination of other AAV serotypes showed at least two different pH-induced cleavage patterns, suggesting that different serotypes have evolved alternative protease cleavage sites. In contrast, incubation of AAV serotypes with an external protease substrate showed that purified AAV capsid preparations have robust protease activity at neutral pH but not at pH 5.5, opposite to what is seen with capsid protein autocleavage. Several lines of evidence suggested that protease activity is inherent in AAV capsids and is not due to contaminating proteins. Control virus preparations showed no protease activity on external substrates, and filtrates of AAV virus preparations also showed no protease activity contaminating the capsids. Further, N-terminal Edman sequencing identified unique autocleavage sites in AAV1 and AAV9, and mutagenesis of amino acids adjacent to these sites eliminated cleavage. Finally, mutation of an amino acid in AAV2 (E563A) that is in a conserved pH-sensitive structural region eliminated protease activity on an external substrate but did not seem to affect autocleavage. Taken together, our data suggested that AAV capsids have one or more protease active sites that are sensitive to pH induction. Further, it appears that acidic pHs comparable to those seen in late endosomes induce a structural change in the capsid that induces autolytic protease activity. The pH-dependent protease activity may have a role in viral infection.  相似文献   

9.
10.
Efficient local expression from recombinant adeno-associated virus (rAAV)-cystic fibrosis (CF) transmembrane conductance regulator (CFTR) vectors has been observed in the airways of rabbits and monkeys for up to 6 months following a single bronchoscopic delivery. However, it is likely that repeated administrations of rAAV vectors will be necessary for sustained correction of the CF defect in the airways. The current study was designed to test the feasibility of repeated airway delivery of rAAV vectors in the rabbit lung. After two doses of rAAV-CFTR to the airways, rabbits generated high titers of serum anti-AAV neutralizing antibodies. Rabbits then received a third dose of a rAAV vector containing the green fluorescent protein (GFP) reporter gene packaged in either AAV serotype 2 (AAV2) or serotype 3 (AAV3) capsids. Each dose consisted of 1 ml containing 5 x 10(9) DNase-resistant particles of rAAV vector, having no detectable replication-competent AAV or adenovirus. Three weeks later, GFP expression was observed in airway epithelial cells despite high anti-AAV neutralizing titers at the time of delivery. There was no significant difference in the efficiency of DNA transfer or expression between the rAAV3 and rAAV2 groups. No significant inflammatory responses to either repeated airway exposure to rAAV2-CFTR vectors or to GFP expression were observed. These experiments demonstrate that serum anti-AAV neutralizing antibody titers do not predict airway neutralization in vivo and that repeated airway delivery rAAV allows for safe and effective gene transfer.  相似文献   

11.
The Role of Interferon in Influenza Virus Tissue Tropism   总被引:9,自引:3,他引:9       下载免费PDF全文
We have studied the pathogenesis of influenza virus infection in mice that are unable to respond to type I or II interferons due to a targeted disruption of the STAT1 gene. STAT1−/− animals are 100-fold more sensitive to lethal infection with influenza A/WSN/33 virus than are their wild-type (WT) counterparts. Virus replicated only in the lungs of WT animals following intranasal (i.n.) virus inoculation, while STAT1−/− mice developed a fulminant systemic influenza virus infection following either i.n. or intraperitoneal inoculation. We investigated the mechanism underlying this altered virus tropism by comparing levels of virus replication in fibroblast cell lines and murine embryonic fibroblasts derived from WT mice, STAT−/− mice, and mice lacking gamma interferon (IFNγ−/− mice) or the IFN-α receptor (IFNαR−/− mice). Influenza A/WSN/33 virus replicates to high titers in STAT1−/− or IFNαR−/− fibroblasts, while cells derived from WT or IFNγ−/− animals are resistant to influenza virus infection. Immunofluorescence studies using WT fibroblast cell lines demonstrated that only a small subpopulation of WT cells can be infected and that in the few infected WT cells, virus replication is aborted at an early, nuclear phase. In all organs examined except the lung, influenza A WSN/33 virus infection is apparently prevented by an intact type I interferon response. Our results demonstrate that type I interferon plays an important role in determining the pathogenicity and tissue restriction of influenza A/WSN/33 virus in vivo and in vitro.  相似文献   

12.
Developing a system for widespread somatic gene transfer in the central nervous system (CNS) would be beneficial for understanding the global influence of exogenous genes on animal models. We injected an adeno-associated virus serotype 2 (AAV2) vector into the cerebral lateral ventricles at birth and mapped its distribution and transduction pattern from a promoter capable of expression in multiple targets. The injections resulted in structure-specific patterns of expression that were maintained for at least 1 year in most regions, with efficient targeting of some of the major principal neuron layers. The patterns of transduction were explained by circulation of the viral vector in the subarachnoid space via CSF flow, followed by transduction of underlying structures, rather than by progenitor cell infection and subsequent migration. This study demonstrates that gene transfer throughout the CNS can be achieved without germ line transmission and establishes an experimental strategy for introducing genes to somatic cells in a highly predictable manner.  相似文献   

13.
Zhu P  Li Q  Wang G 《Microbial ecology》2008,55(3):406-414
Invasive species poses a threat to the world’s oceans. Alien sponges account for the majority of introduced marine species in the isolated Hawaiian reef ecosystems. In this study, cultivation-dependent and cultivation-independent techniques were applied to investigate microbial consortia associated with the alien Hawaiian marine sponge Suberites zeteki. Its microbial communities were diverse with representatives of Actinobacteria, Firmicutes, α- and γ-Proteobacteria, Bacteroidetes, Chlamydiae, Planctomycetes, and Cyanobacteria. Specifically, the genus Chlamydia was identified for the first time from marine sponges, and two genera (Streptomyces and Rhodococcus) were added to the short list of culturable actinobacteria from sponges. Culturable microbial communities were dominated by Bacillus species (63%) and contained actinobacterial species closely affiliated with those from habitats other than marine sponges. Cyanobacterial clones were clustered with free-living cyanobacteria from water column and other environmental samples; they show no affiliation with other sponge-derived cyanobacteria. The low sequence similarity of Planctomycetes, Chlamydiae, and α-Proteobacteria clones to other previously described sequences suggested that S. zeteki may contain new lineages of these bacterial groups. The microbial diversity of S. zeteki was different from that of other studied marine sponges. This is the first report on microbial communities of alien marine invertebrate species. For the first time, it provides an insight into microbial structure within alien marine sponges in the Hawaiian marine ecosystems.  相似文献   

14.
15.
2-Oxoacids Regulate Kynurenic Acid Production in the Rat Brain   总被引:4,自引:2,他引:2  
Abstract : This study was designed to examine the role of 2-oxoacids in the enzymatic transamination of L-kynurenine to the excitatory amino acid receptor antagonist, kynurenate, in the rat brain. In brain tissue slices incubated in Krebs-Ringer buffer with a physiological concentration of L-kynurenine, pyruvate, and several other straight- and branched-chain 2-oxoacids, substantially restored basal kynurenate production in a dose-dependent manner without increasing the intracellular concentration of L-kynurenine. All 2-oxoacids tested also reversed or attenuated the hypoglycemia-induced decrease in kynurenate synthesis, but only pyruvate and oxaloacetate also substantially restored intracellular L-kynurenine accumulation. Thus, 2-oxoacids increase kynurenate formation in the brain primarily by functioning as co-substrates of the transamination reaction. This was supported further by the fact that the nonspecific kynurenine aminotransferase inhibitors (aminooxy)acetic acid and dichlorovinylcysteine prevented the effect of pyruvate on kynurenate production in a dose-dependent manner. Moreover, all 2-oxoacids tested attenuated or prevented the effects of veratridine, quisqualate, or L-α-aminoadipate, which reduce the transamination of L-kynurenine to kynurenate. Finally, dose-dependent increases in extracellular kynurenate levels in response to an intracerebral perfusion with pyruvate or α-ketoisocaproate were demonstrated by in vivo microdialysis. Taken together, these data show that 2-oxoacids can directly augment the de novo production of kynurenate in several areas of the rat brain. 2-Oxoacids may therefore provide a novel pharmacological approach for the manipulation of excitatory amino acid receptor function and dysfunction.  相似文献   

16.
Pseudotype virus vectors serve as a powerful tool for the study of virus receptor usage and entry. We describe the development of murine leukemia virus (MuLV) particles pseudotyped with the visna virus envelope glycoprotein and encoding a green fluorescent protein reporter as a tool to study the expression of the visna virus receptor. Functional MuLV/visna virus pseudotypes were obtained when the cytoplasmic tail of the visna virus envelope TM protein was truncated to 3, 7, or 11 amino acids in length. MuLV/visna virus particles were used to transduce a panel of cell types from various organisms, including sheep, goat, human, hamster, mouse, monkey, and quail. The majority of the cells examined were susceptible to MuLV/visna pseudotype viruses, supporting the notion that the visna virus cellular receptor is a widely expressed protein found in many species. Of 16 different cell types tested, only mouse embryo fibroblast NIH 3T3 cells, hamster ovary CHO cells, and the human promonocyte cell line U937 cells were not susceptible to transduction by the pseudotyped virus. The production of functional MuLV/visna virus pseudotypes has provided a sensitive, biologically relevant system to study visna virus cell entry and envelope-receptor interactions.  相似文献   

17.
A basic question in adeno-associated virus (AAV) biology has been whether adenovirus (Ad) infection provided any function which directly promoted replication of AAV DNA. Previously in vitro assays for AAV DNA replication, using linear duplex AAV DNA as the template, uninfected or Ad-infected HeLa cell extracts, and exogenous AAV Rep protein, demonstrated that Ad infection provides a direct helper effect for AAV DNA replication. It was shown that the nature of this helper effect was to increase the processivity of AAV DNA replication. Left unanswered was the question of whether this effect was the result of cellular factors whose activity was enhanced by Ad infection or was the result of direct participation of Ad proteins in AAV DNA replication. In this report, we show that in the in vitro assay, enhancement of processivity occurs with the addition of either the Ad DNA-binding protein (Ad-DBP) or the human single-stranded DNA-binding protein (replication protein A [RPA]). Clearly Ad-DBP is present after Ad infection but not before, whereas the cellular level of RPA is not apparently affected by Ad infection. However, we have not measured possible modifications of RPA which might occur after Ad infection and affect AAV DNA replication. When the substrate for replication was an AAV genome inserted into a plasmid vector, RPA was not an effective substitute for Ad-DBP. Extracts supplemented with Ad-DBP preferentially replicated AAV sequences rather than adjacent vector sequences; in contrast, extracts supplemented with RPA preferentially replicated vector sequences.  相似文献   

18.
19.
The skeletal muscle provides a very permissive physiological environment for adeno-associated virus (AAV) type 2-mediated gene transfer. We have studied the early steps leading to the establishment of permanent transgene expression, after injection of recombinant AAV (rAAV) particles in the quadriceps muscle of mice. The animals received an rAAV encoding a secreted protein, murine erythropoietin (mEpo), under the control of the human cytomegalovirus major immediate-early promoter and were sacrificed between 1 and 60 days after injection. The measurement of plasma Epo levels and of hematocrits indicated a progressive increase of transgene expression over the first 2 weeks, followed by a stabilization at maximal plateau values. The rAAV sequences were analyzed by Southern blotting following neutral or alkaline gel electrophoresis of total DNA from injected muscles. While a high number of rAAV sequences were detected during the first 5 days following the injection, only a few percent of these sequences was retained in the animals analyzed after 2 weeks, in which transgene expression was maximal. Double-stranded DNA molecules resulting from de novo second-strand synthesis were detected as early as day 1, indicating that this crucial step of AAV-mediated gene transfer is readily accomplished in the muscle. The templates driving stable gene expression at later time points are low in copy number and structured as high-molecular-weight concatemers or interlocked circles. The presence of the circular form of the rAAV genomes at early time points suggests that the molecular transformations involved in the formation of stable concatemers may involve a rolling-circle type of DNA replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号