首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在全球气候变化背景下,降水变化对植物群落动态将产生深远的影响。以黄土高原西部荒漠草原为对象,通过野外降水控制试验,研究不同生活型植物丰富度、密度、盖度、高度和地上生物量对降水变化的响应。结果表明: 降水处理对一年生草本植物的丰富度、密度、盖度的影响在降水试验第3年(2015年)达到显著水平,以减水处理最低,植物高度对降水变化的响应更敏感,3年间,均以减水40%处理最低;植物生长和地上生物量对减水处理的负响应幅度大于对增水处理的响应。多年生草本植物的丰富度、密度和盖度在第3年以减水处理显著低于增水40%处理,但与对照无显著差异;植物高度3年间均以减水40%处理最低;丰富度、盖度、高度对减水处理的负响应幅度大于对增水处理的正响应,但地上生物量对增水40%处理的正响应较强。灌木的丰富度、密度、盖度和地上生物量对增减水20%处理的正响应最明显,可能与灌木在该处理分布相对集中有关。降水减少抑制了草本植物的生长,但对一年生草本植物的抑制作用更强,降水增加在一定程度上促进了多年生草本植物的生长和生物量积累。一年生草本植物的生长和生物量随降水年际变异波动明显,灌木受降水改变的影响相对较小,降水变化对黄土高原西部荒漠草原植物群落组成与功能将产生显著的影响。  相似文献   

2.
To identify the general effects of nitrogen addition on alpine plants, we used a meta-analysis approach to synthesize 599 observations from 51 studies on the Tibetan Plateau. Nitrogen addition significantly increased plant height by 19.0 %, plant biomass by 29.7 %, graminoid aboveground biomass by 89.8 %, and sedge aboveground biomass by 75.6 % but significantly decreased legume aboveground biomass by 34.5 %, forb aboveground biomass by 23.8 %, and species richness by 11.2 %. The effect of nitrogen addition on aboveground plant biomass and plant height increased with increasing the nitrogen addition rate. The effect of nitrogen addition on plant height increased with increasing mean annual precipitation but decreased with increasing mean annual temperature. Our findings suggested that the effect of nitrogen addition on alpine plants varied with plant functional types and nitrogen addition rate. In addition, climatic warming and precipitation changes may regulate the response of alpine plants to nitrogen addition on the Tibetan Plateau.  相似文献   

3.
Abstract. On Tenerife, the occurrence of environmental gradients over short distances provides a unique opportunity to investigate the relationship between vegetation and environmental factors. In the semi‐arid coastal region of Tenerife, floristic composition, species richness and vegetation structure of perennial plants have been studied in 67 locations covering the existing precipitation gradient. On the island as a whole, variation in species composition could be best explained by mean annual precipitation; at coastal sites, substrate age and soil characteristics also played a significant role. On the other hand, substrate chemistry and the type of eruptive material explained little of the floristic variation. Stand biomass was strongly correlated with mean annual precipitation and was, on the youngest lava flows studied, also affected by substrate age. The native stem succulent species made up the bulk of total biomass along the whole precipitation gradient. Disturbed and undisturbed sites differed significantly in stand biomass and cover. Species richness was correlated with precipitation and substrate age. Distribution of plant functional types was also related to the precipitation gradient. The relative abundance of hemicryptophytes and shrubs with non‐hairy leaves increased with increasing precipitation whereas the ratio of shrubs with hairy/non‐hairy leaves and succulent plants decreased. Some alien plants were quite frequent at disturbed sites but, on the whole, they contributed little to the species spectrum and to the stand biomass. Undisturbed sites remained almost free of introduced species not considering annuals.  相似文献   

4.
气候变化背景下,降雨变化能够深刻影响河口湿地土壤水盐条件,而土壤水盐条件是影响植物群落特征的关键环境因子。本研究以黄河三角洲湿地植物群落为对象,依托野外降雨控制试验平台(减雨60%、减雨40%、自然对照、增雨40%、增雨60%),探讨了经过6年降雨处理后湿地植物群落特征对降雨量变化的响应及机制。结果表明: 随降雨量增加,土壤电导率显著降低,土壤湿度显著增大。降雨量变化影响了植物群落物种组成,增雨处理降低了碱蓬和盐地碱蓬的优势地位,提高了荻和白茅的优势地位。随降雨量增加,植物群落Shannon指数和Margalef丰富度指数显著提高。与对照相比,增减雨处理均降低了群落频度、多度和盖度,增雨60%处理群落频度显著降低54.9%,减雨60%、减雨40%、增雨40%、增雨60%处理群落多度分别显著降低38.9%、33.8%、35.8%和45.7%。随降雨量增加,植物群落地上生物量显著增加,但可能受淹水胁迫的影响,增雨60%处理地上生物量显著低于增雨40%。Margalef丰富度指数与地上生物量呈显著正相关;地上生物量、Shannon指数、Margalef丰富度指数、Simpson多样性指数均与土壤电导率呈显著负相关;地上生物量与土壤湿度呈显著正相关。降雨量变化通过改变黄河三角洲湿地土壤水盐条件显著影响了植物群落生长特征、物种组成和多样性。  相似文献   

5.
Large‐diameter, tall‐stature, and big‐crown trees are the main stand structures of forests, generally contributing a large fraction of aboveground biomass, and hence play an important role in climate change mitigation strategies. Here, we hypothesized that the effects of large‐diameter, tall‐stature, and big‐crown trees overrule the effects of species richness and remaining trees attributes on aboveground biomass in tropical forests (i.e., we term the “big‐sized trees hypothesis”). Specifically, we assessed the importance of: (a) the “top 1% big‐sized trees effect” relative to species richness; (b) the “99% remaining trees effect” relative to species richness; and (c) the “top 1% big‐sized trees effect” relative to the “99% remaining trees effect” and species richness on aboveground biomass. Using environmental factor and forest inventory datasets from 712 tropical forest plots in Hainan Island of southern China, we tested several structural equation models for disentangling the relative effects of big‐sized trees, remaining trees attributes, and species richness on aboveground biomass, while considering for the full (indirect effects only) and partial (direct and indirect effects) mediation effects of climatic and soil conditions, as well as interactions between species richness and trees attributes. We found that top 1% big‐sized trees attributes strongly increased aboveground biomass (i.e., explained 55%–70% of the accounted variation) compared to species richness (2%–18%) and 99% remaining trees attributes (6%–10%). In addition, species richness increased aboveground biomass indirectly via increasing big‐sized trees but via decreasing remaining trees. Hence, we show that the “big‐sized trees effect” overrides the effects of remaining trees attributes and species richness on aboveground biomass in tropical forests. This study also indicates that big‐sized trees may be more susceptible to atmospheric drought. We argue that the effects of big‐sized trees on species richness and aboveground biomass should be tested for better understanding of the ecological mechanisms underlying forest functioning.  相似文献   

6.
氮沉降和降水变异显著影响草地群落结构和功能,但缺乏对不同管理措施下草地群落结构对氮沉降和降水变异响应的研究。为模拟不同管理措施下草地群落结构对氮沉降和降水变异的响应特征,以半干旱黄土区云雾山国家自然保护区典型草原为研究对象,系统分析了在封育、刈割和火烧三种管理措施下,氮添加和水添加对群落地上生物量、功能群组成和群落多样性的影响。结果表明,氮添加和水添加对地上生物量、功能群组成和群落多样性指数的影响因管理措施不同有所差异。(1)在封育草地上,氮添加显著降低物种多样性,对地上生物量影响较小;水添加显著增加物种多样性指数,氮添加和水添加的交互作用显著增加地上生物量、禾本科所占比例和莎草科所占比例;物种多样性指数均与地上生物量无显著相关,与不同功能群所占比例显著相关。(2)在刈割草地上,氮添加和水添加显著提高草地群落地上生物量,氮添加和水添加交互作用尤为显著;氮添加和水添加显著增加物种丰富度指数,对物种均匀度影响较小;杂草类所占比例和地上生物量对Shannon-Weiner多样性指数的贡献率较大。(3)在火烧草地上,氮添加和水添加显著提高群落地上生物量,对物种多样性的影响因年份不同有所差异,氮添加和水添加交互作用具有累加效应;Shannon-Weiner多样性指数与地上生物量呈显著负相关,与莎草科所占比例呈显著正相关。研究表明管理措施显著影响群落结构对氮添加和水添加的响应特征,亦改变生产力和物种多样性的关系模式,为更好地应对全球变化进行草地管理提供数据支撑。  相似文献   

7.
Grime's (1998) "mass-ratio" hypothesis holds that ecosystem processes depend in the short term on functional properties of dominant plants and in the longer term on how resident species influence the recruitment of dominants. The latter of these effects may be especially important among early-successional species in disturbed ecosystems, but experimental tests are few. We removed two groups of early-successional species, an annual forb Gutierrezia dracunculoides (DC.) S. F. Blake and annual species (mostly grasses) that complete growth early in the growing season [early-season (ES) species], from a heavily-grazed grassland in central Texas, USA dominated by a C4 perennial grass. We sought to determine effects of annuals on grassland functioning [productivity, water balance, soil and plant nitrogen (N)] and composition. Removals did not impact N retention in the soil/plant system during the two years of this study, but removing ES annuals increased the amount of water between 30 and 120 cm in the soil profile early in each growing season. Production and N accumulation by vegetation declined following the removal of ES annuals in approximate proportion to the contribution of annuals to aboveground biomass and N, consistent with the mass-ratio hypothesis. By the second year, production and N uptake by initially sub-dominant species increased to fully compensate for the loss of annuals. These results are consistent with the view that ecosystem functions are more strongly linked to species attributes than to diversity per se. Longer-term effects of annuals on grassland composition were evident in a dramatic increase in biomass of perennial forbs after annuals were removed. Because perennial forbs differ from the dominant grass in this grassland in traits that influence ecosystem functioning, ES annuals may affect grassland functioning more by regulating the composition of vegetation than by directly affecting process rates.  相似文献   

8.
Contemporary biodiversity experiments, in which plant species richness is manipulated and aboveground productivity of the system measured, generally demonstrate that lowering plant species richness reduces productivity. However, we propose that community density may in part compensate for this reduction of productivity at low diversity. We conducted a factorial experiment in which plant functional group richness was held constant at three, while plant species richness increased from three to six to 12 species and community density from 440 to 1050 to 2525 seedlings m−2. Response variables included density, evenness and above- and belowground biomass at harvest. The density gradient converged slightly during the course of the experiment due to about 10% mortality at the highest sowing density. Evenness measured in terms of aboveground biomass at harvest significantly declined with density, but the effect was weak. Overall, aboveground, belowground and total biomass increased significantly with species richness and community density. However, a significant interaction between species richness and community density occurred for both total and aboveground biomass, indicating that the diversity–productivity relationship was flatter at higher than at lower density. Thus, high species richness enabled low-density communities to reach productivity levels otherwise seen only at high density. The relative contributions of the three functional groups C3, C4 and nitrogen-fixers to aboveground biomass were less influenced by community density at high than at low species richness. We interpret the interaction effects between community density and species richness on community biomass by expanding findings about constant yield and size variation from monocultures to plant mixtures.  相似文献   

9.
Increases in nitrogen (N) deposition and variation in precipitation have been occurring in temperate deserts; however, little information is available regarding plant phenological responses to environmental cues and their relationships with plant growth pattern in desert ecosystems. In this study, plant phenology and growth of six annuals in response to N and water addition were monitored throughout two consecutive growing seasons in 2011 and 2012 in a temperate desert in northwestern China. The effects of N and water addition on reproductive phenology differed among plant species. N and water addition consistently advanced the flowering onset time and fruiting time of four spring ephemerals; however, their effects on two spring‐summer annuals were inconsistent, with advances being noted in one species and delays in another. N and water addition alone increased plant height, relative growth rate, leaf number, flower number, and individual biomass, while their combinative effects on plant growth and reproductive phenology were dependent on species. Multiple regression analysis showed that flowering onset time was negatively correlated with relative growth rate of two species, and negatively correlated with maximum plant height of the other four species. Our study demonstrates that phenological responses to increasing precipitation and N deposition varied in annuals with different life histories, whereby the effects of climate change on plant growth rate were related to reproductive phenology. Desert annuals that were able to accelerate growth rate under increasing soil resource availability tended to advance their flowering onset time to escape drought later in the growing season. This study promotes our understanding of the responses of temperate desert annuals to increasing precipitation and N deposition in this desert.  相似文献   

10.
California's Sierra Nevada mountains are predicted to experience greater variation in annual precipitation according to climate change models, while nitrogen deposition from pollution continues to increase. These changes may significantly affect understory communities and fuels in forests where managers are attempting to restore historic conditions after a century of altered fire regimes. The objective of this research was to experimentally test the effects of increasing and decreasing snowpack depth, increasing nitrogen, and applying prescribed fire to mixed-conifer forest understories at two sites in the central and southern Sierra Nevada. Understory response to treatments significantly differed between sites with herb biomass increasing in shrub-dominated communities when snowpack was reduced. Fire was a more important factor in post-treatment species richness and cover than either snowpack addition or reduction. Nitrogen additions unexpectedly increased herbaceous species richness. These varied findings indicate that modeling future climatic influences on biodiversity may be more difficult than additive prediction based on increasing the ecosystem's two limiting growth resources. Increasing snowpack and nitrogen resulted in increased shrub biomass production at both sites and increased herb production at the southern site. This additional understory biomass has the potential to increase fuel connectivity in patchy Sierran mixed-conifer forests, increasing fire severity and size.  相似文献   

11.
The Tibetan Plateau has undergone significant climate warming in recent decades, and precipitation has also become increasingly variable. Much research has explored the effects of climate change on vegetation on this plateau. As potential vegetation buried in the soil, the soil seed bank is an important resource for ecosystem restoration and resilience. However, almost no studies have explored the effects of climate change on seed banks and the mechanisms of these effects. We used an altitudinal gradient to represent a decrease in temperature and collected soil seed bank samples from 27 alpine meadows (3,158–4,002 m) along this gradient. A structural equation model was used to explore the direct effects of mean annual precipitation (MAP) and mean annual temperature (MAT) on the soil seed bank and their indirect effects through aboveground vegetation and soil environmental factors. The species richness and abundance of the aboveground vegetation varied little along the altitudinal gradient, while the species richness and density of the seed bank decreased. The similarity between the seed bank and aboveground vegetation decreased with altitude; specifically, it decreased with MAP but was not related to MAT. The increase in MAP with increasing altitude directly decreased the species richness and density of the seed bank, while the increase in MAP and decrease in MAT with increasing altitude indirectly increased and decreased the species richness of the seed bank, respectively, by directly increasing and decreasing the species richness of the plant community. The size of the soil seed bank declined with increasing altitude. Increases in precipitation directly decreased the species richness and density and indirectly decreased the species richness of the seed bank with increasing elevation. The role of the seed bank in aboveground plant community regeneration decreases with increasing altitude, and this process is controlled by precipitation but not temperature.  相似文献   

12.
生产力是草地生态系统重要的服务功能, 而生物量作为生态系统生产力的主要组成部分, 往往同时受到氮和水分两个因素的限制。在全球变化背景下, 研究草地生态系统生物量对氮沉降增加和降水变化的响应具有重要意义, 但现有研究缺乏对其在大区域空间尺度以及长时间尺度上响应的综合评估和量化。本研究搜集了1990-2017年间发表论文的有关模拟氮沉降及降水变化研究的相关数据, 进行整合分析, 探讨草地生态系统生物量对氮沉降和降水量两个因素的变化在空间和时间尺度上的响应。结果表明: (1)氮添加、增雨处理以及同时增氮增雨处理都能够显著地提高草地生态系统的地上生物量(37%, 41%, 104%)、总生物量(32%, 23%, 60%)和地上地下生物量比(29%, 25%, 46%)。单独增雨显著提高地下生物量(10%), 单独施氮对地下生物量影响不显著, 但同时增雨则能显著提高地下生物量(43%); (2)氮添加和增雨处理对草地生态系统生物量的影响存在明显的空间变异。在温暖性气候区和海洋性气候区的草地生态系统中, 氮添加对地上、总生物量及地上地下生物量比的促进作用更强, 而在寒冷性气候区和温带大陆性气候区的草地生态系统中, 则增雨处理对地下、总生物量的促进作用更强; (3)草地生态系统生物量对氮添加和增雨处理的响应也存在时间格局上的变化, 地下生物量随着氮添加年限的增加有降低的趋势, 地上、总生物量及地上地下生物量比则有增加的趋势。增雨年限的增加对总生物量没有明显的影响, 但持续促进地上生物量和地下生物量, 增加地上地下生物量比, 可见长期增氮、长期增雨对地上生物量的促进作用更明显。  相似文献   

13.
Biodiversity experiments generally report a positive effect of plant biodiversity on aboveground biomass (overyielding), which typically increases with time. Various studies also found overyielding for belowground plant biomass, but this has never been measured over time. Also, potential underlying mechanisms have remained unclear. Differentiation in rooting patterns among plant species and plant functional groups has been proposed as a main driver of the observed biodiversity effect on belowground biomass, leading to more efficient belowground resource use with increasing diversity, but so far there is little evidence to support this. We analyzed standing root biomass and its distribution over the soil profile, along a 1–16 species richness gradient over eight years in the Jena Experiment in Germany, and compared belowground to aboveground overyielding. In our long‐term dataset, total root biomass increased with increasing species richness but this effect was only apparent after four years. The increasingly positive relationship between species richness and root biomass, explaining 12% of overall variation and up to 28% in the last year of our study, was mainly due to decreasing root biomass at low diversity over time. Functional group composition strongly affected total standing root biomass, explaining 44% of variation, with grasses and legumes having strong overall positive and negative effects, respectively. Functional group richness or interactions between functional group presences did not strongly contribute to overyielding. We found no support for the hypothesis that vertical root differentiation increases with species richness, with functional group richness or composition. Other explanations, such as stronger negative plant–soil feedbacks in low‐diverse plant communities on standing root biomass and vertical distribution should be considered.  相似文献   

14.
Aims Plant biomass accounts for the main part of grassland productivity. The productivity of grassland regarded as one of important ecosystem function is always co-limited by nitrogen and water availability, therefore, how grasslands respond to atmosphic nitrogen (N) addition and precipitation increasing need to be systematically and quantitatively evaluated at different climate conditions and temporal scales. Methods To investigate the impact of nitrogen addition and precipitation increasing on grassland biomass over climate conditions and temproal scales, a meta-analysis was conducted based on 46 papers that were published during 1990-2017 involving 1 350 observations. Important findings Results showed that: (1) N addtion, precipitation increasing and the combinations of these two treatments significantly increased the aboveground biomass (37%, 41%, 104%), total biomass (32%, 23%, 60%) and the ratio of aboveground biomass to belowground biomass (29%, 25%, 46%) in grassland ecosystem. Belowground biomass showed no response to single N addtion, but could be significantly enhanced together with increaseing precipitation; (2) The response of grassland biomass under these N addtion and the increasing of precipitation showed obvious spatial pattern under different climate conditions. The N addition tended to increase more aboveground biomass, total biomass and the ratio of aboveground biomass to belowground biomass under high sites with high mean annual air temperature (MAT) and mean annual precipitation (MAP) while precipitation increasing tended to simulate more belowground biomass and total biomass under low MAT and MAP sites; (3) In addition, the response of grassland biomass under these two global change index showed obvious temporal pattern. With the increase of duration of N addition, the belowgound biomass tended to decrease, while the aboveground biomass, total biomass and the ratio of aboveground biomass to belowground biomass tended to increase under N addition. With the increase of duration of precipitation manipulation, the total biomass showed no response to precipitation increasing, while aboveground biomass, belowground biomass and the ratio of aboveground biomass to belowground biomass tended to be enhanced. The results indicated that aboveground biomass was more likely to be enhanced than belowground biomass under N addition or precipitation increasing in the long term. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

15.
《植物生态学报》2018,42(8):818
生产力是草地生态系统重要的服务功能, 而生物量作为生态系统生产力的主要组成部分, 往往同时受到氮和水分两个因素的限制。在全球变化背景下, 研究草地生态系统生物量对氮沉降增加和降水变化的响应具有重要意义, 但现有研究缺乏对其在大区域空间尺度以及长时间尺度上响应的综合评估和量化。本研究搜集了1990-2017年间发表论文的有关模拟氮沉降及降水变化研究的相关数据, 进行整合分析, 探讨草地生态系统生物量对氮沉降和降水量两个因素的变化在空间和时间尺度上的响应。结果表明: (1)氮添加、增雨处理以及同时增氮增雨处理都能够显著地提高草地生态系统的地上生物量(37%, 41%, 104%)、总生物量(32%, 23%, 60%)和地上地下生物量比(29%, 25%, 46%)。单独增雨显著提高地下生物量(10%), 单独施氮对地下生物量影响不显著, 但同时增雨则能显著提高地下生物量(43%); (2)氮添加和增雨处理对草地生态系统生物量的影响存在明显的空间变异。在温暖性气候区和海洋性气候区的草地生态系统中, 氮添加对地上、总生物量及地上地下生物量比的促进作用更强, 而在寒冷性气候区和温带大陆性气候区的草地生态系统中, 则增雨处理对地下、总生物量的促进作用更强; (3)草地生态系统生物量对氮添加和增雨处理的响应也存在时间格局上的变化, 地下生物量随着氮添加年限的增加有降低的趋势, 地上、总生物量及地上地下生物量比则有增加的趋势。增雨年限的增加对总生物量没有明显的影响, 但持续促进地上生物量和地下生物量, 增加地上地下生物量比, 可见长期增氮、长期增雨对地上生物量的促进作用更明显。  相似文献   

16.
Aims UV-B radiation is known to affect plant physiology and growth rate in ways that can influence community species composition and structure. Nevertheless, comparatively little is known about how UV-B radiation induced changes in the performance of individual species cascades to affect overall community properties. Because foliage leaves are primarily responsible for photosynthesis and carbon gain and are the major organ that senses and responds to UV-B radiation, we hypothesized that, under reduced UV-B radiation, species with larger leaf areas per plant would manifest higher growth rates and hence tend to improve their community status compared to species with smaller leaf areas per plant in herbaceous plant communities.Methods We tested this hypothesis by examining plant traits (leaf area per plant and plant height), plant growth rate (aboveground biomass per plant and plant biomass per area) and community status (species within-community relative biomass) for 19 common species in a two-year field experiment in an alpine meadow on Tibetan Plateau.Important findings Aboveground biomass per plant, as well as per area, progressively increased in a 39% reduced (relative to ambient) UV-B treatment during the experimental period. At the second year, 11 out of 19 species significantly or marginally significantly increased their plant height, leaf area per plant and aboveground biomass per plant. No species was negatively affected by reducing UV-B. As hypothesized, the increase in aboveground biomass per plant increased with increasing leaf area per plant, as indicated by cross-species regression analysis. Moreover, the change in species within-community status increased with increasing leaf area per plant. Our study demonstrates that UV-B radiation has differential effects on plant growth rate across species and hence significantly affects species composition and plant community structure. We suggest that UV-B radiation is an ecological factor structuring plant communities particularly in alpine and polar areas.  相似文献   

17.
在青藏高原进行了大范围的群落调查 ,研究高原的两种主要草地群落类型———高寒草甸和高寒草原的植物物种丰富度及其变化。结果表明 :(1)在 5 0个样地 2 5 0个 1m× 1m的样方中 ,共出现 2 6 7种植物 ,其中高寒草甸179种 ,高寒草原 135种。在高寒草甸 ,1m2 样方内物种数最多为 32种 ,最少的仅为 3种 ;在高寒草原 ,物种数最多为 18种 /m2 ,最少的仅为 2种 /m2 。 (2 )物种丰富度随经度和纬度的增加呈增加趋势 ;随海拔的上升呈减少趋势。对物种丰富度与环境因子之间进行逐步回归 ,发现物种丰富度与生长季降水和温暖指数呈显著正相关。 (3)物种丰富度与地上生物量呈显著正相关。  相似文献   

18.
A series of communities were established in situ to differentiate the effects of species richness, functional richness and functional group identity on invasibility of Mediterranean annual old fields. We monitored the demographic and vegetative parameters of two exotic annuals introduced as seedlings, Conyza bonariensis and C. canadensis . Community species richness and functional composition determined resistance to invasion by Conyza. Conyza bonariensis biomass decreased with increasing species richness. Legumes increased the biomass and consequently the net fecundity of both Conyza , while survival was favoured by Asteraceae . Communities with fewer Asteraceae and grasses increased the reproductive effort of C. bonariensis . A separate glasshouse experiment using the same species mixes revealed that establishment of Conyza decreased with increasing species richness or when grasses were present. Patterns of Conyza performance are interpreted in the light of measurements of ecosystem functional parameters, making it possible to formulate hypotheses about mechanisms limiting community invasibility.  相似文献   

19.
? Premise of the study: Climate change models predict increasing variability in precipitation across the globe, with an increase in the incidence of large precipitation events but decreasing overall event frequency. Research with annual species in arid and semiarid ecosystems has demonstrated that precipitation variability can influence plant community dynamics; however, less is known about the impact of precipitation variability in less water-limited ecosystems, including economically important agricultural systems. ? Methods: We conducted three greenhouse experiments to determine how variation in total precipitation and the interval between precipitation events affected emergence and growth of two common annual midwestern weed species, Chenopodium album (Chenopodiaceae) and Setaria faberi (Poaceae). ? Key results: Both species responded to precipitation variability; however, the effect depended on life stage and precipitation amount, indicating that responses are highly context-dependent. Emergence of both species increased with longer intervals between precipitation events at low total precipitation, but species' responses varied under typical precipitation amounts. Individual seedling biomass of both species depended on interactions between total water and intervals, but species' responses differed; Setaria faberi biomass was reduced with longer intervals, but Chenopodium album had either a positive or no response. ? Conclusions: Our results suggest that changes in precipitation variability likely will affect the composition and relative abundance of agriculturally important weeds. These results are important for understanding how changes in the temporal variability of precipitation due to global climate changes could impact plants in non-arid communities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号