首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considerable progress has been made in the nutritional modelling of growth. Most models typically predict (or analyse) the response of a single animal. However, the response to nutrients of a single, representative animal is likely to be different from the response of the herd. To address the variation in response between animals, a stochastic approach towards nutritional modelling is required. In the present study, an analysis method is presented to describe growth and feed intake curves of individual pigs within a population of 192 pigs. This method was developed to allow end-users of InraPorc (a nutritional model predicting and analysing growth in pigs) to easily characterise their animals based on observed data and then use the model to test different scenarios. First, growth and intake data were curve-fitted to characterise individual pigs in terms of BW (Gompertz function of age) and feed intake (power function of BW) by a set of five parameters, having a biological or technico-economical meaning. This information was then used to create a population of virtual pigs in InraPorc, having the same feed intake and growth characteristics as those observed in the population. After determination of the mean lysine (Lys) requirement curve of the population, simulations were carried out for each virtual pig using different feeding strategies (i.e. 1, 2, 3 or 10 diets) and Lys supply (ranging from 70% to 130% of the mean requirement of the population). Because of the phenotypic variation between pigs and the common feeding strategies that were applied to the population, the Lys requirement of each individual pig was not always met. The percentage of pigs for which the Lys requirement was met increased concomitantly with increasing Lys supply, but decreased with increasing number of diets used. Simulated daily gain increased and feed conversion ratio decreased with increasing Lys supply (P < 0.001) according to a curvilinear-plateau relationship. Simulated performance was close to maximum when the Lys supply was 110% of the mean population requirement and did not depend on the number of diets used. At this level of Lys supply, the coefficient of variation of simulated daily gain was minimal and close to 10%, which appears to be a phenotypic characteristic of this population. At lower Lys supplies, simulated performance decreased and variability of daily gain increased with an increasing number of diets (P < 0.001). Knowledge of nutrient requirements becomes more critical when a greater number of diets are used. This study shows the limitations of using a deterministic model to estimate the nutrient requirements of a population of pigs. A stochastic approach can be used provided that relationships between the most relevant model parameters are known.  相似文献   

2.
This study was developed to assess the impact on performance, nutrient balance, serum parameters and feeding costs resulting from the switching of conventional to precision-feeding programs for growing–finishing pigs. A total of 70 pigs (30.4±2.2 kg BW) were used in a performance trial (84 days). The five treatments used in this experiment were a three-phase group-feeding program (control) obtained with fixed blending proportions of feeds A (high nutrient density) and B (low nutrient density); against four individual daily-phase feeding programs in which the blending proportions of feeds A and B were updated daily to meet 110%, 100%, 90% or 80% of the lysine requirements estimated using a mathematical model. Feed intake was recorded automatically by a computerized device in the feeders, and the pigs were weighed weekly during the project. Body composition traits were estimated by scanning with an ultrasound device and densitometer every 28 days. Nitrogen and phosphorus excretions were calculated by the difference between retention (obtained from densitometer measurements) and intake. Feeding costs were assessed using 2013 ingredient cost data. Feed intake, feed efficiency, back fat thickness, body fat mass and serum contents of total protein and phosphorus were similar among treatments. Feeding pigs in a daily-basis program providing 110%, 100% or 90% of the estimated individual lysine requirements also did not influence BW, body protein mass, weight gain and nitrogen retention in comparison with the animals in the group-feeding program. However, feeding pigs individually with diets tailored to match 100% of nutrient requirements made it possible to reduce (P<0.05) digestible lysine intake by 26%, estimated nitrogen excretion by 30% and feeding costs by US$7.60/pig (−10%) relative to group feeding. Precision feeding is an effective approach to make pig production more sustainable without compromising growth performance.  相似文献   

3.
The effect of feeding pigs in a three-phase feeding (3PF) system or a daily-phase feeding (DPF) system on growth performance, body composition, and N and P excretions was studied on 8 pens of 10 pigs each. Feeds for the 3PF and DPF treatments were obtained by mixing two feeds, one with a high nutrient concentration and the other with a low nutrient concentration. The DPF pigs tended (P=0.08) to consume more feed (+3.7%) than the 3PF pigs, but only during the first feeding phase. The DPF pigs consumed 7.3% less protein (P<0.01) but a similar amount of total P. For the whole growing period, the DPF pigs tended (P=0.08) to gain more weight (+2.4%) than the 3PF pigs, mainly because of faster growth (P=0.02) during the first feeding period. At the end of the experiment, total body protein mass was similar in the two treatment groups, but the DPF pigs had 8% more body lipids (P=0.04) than the 3PF pigs. Daily multiphase feeding reduced N excretion by 12% (P<0.01) but did not significantly reduce P excretion. In addition, feed costs, nutrient intake and nutrient excretion under the two feeding strategies were simulated and compared after different approaches were used to formulate complete feeds for each phase of the 3PF system, as well as the two feeds used in the DPF program. Simulated feed intake and growth was similar to those observed in the animal experiment. In comparison with the simulated 3PF system, the feed cost for the DPF pigs was reduced by 1.0%, the simulated N and P intakes were reduced by 7.3% and 4.4%, respectively, and the expected N and P excretions were reduced by 12.6% and 6.6%, respectively. The concomitant adjustment of the dietary concentration of nutrients to match the evaluated requirements of pig populations can be an efficient approach to significantly reduce feeding costs and N and P excretions in pig production systems.  相似文献   

4.
Precision feeding requires a mathematical model to estimate standardized ileal digestible (SID) lysine (Lys) requirements (SIDLysR) in real time. However, this type of model requires constant calibration updates. The objective of this study was to review the calibration of the model used to estimate the real-time Lys requirements of individual growing-finishing pigs. A digestibility trial (n = 10) was conducted to evaluate amino acids digestibility during the growing and finishing phases. Additionally, 120 pigs were used in two 28-day growth experiments conducted as completely randomized design with growing (25 ± 2.1 kg BW, n = 60; 10 pigs per treatment) or finishing barrows (68.1 ± 6 kg BW, n = 60; 10 pigs per treatment). In each experiment, the pigs were divided into six equal treatment groups and fed 60%, 70%, 80%, 90%, 100% or 110% of their estimated individual SIDLysR. The Lys requirement of each pig was estimated daily using a real-time model. Body composition was measured with dual-energy X-ray densitometry on day 1 and 28 of the experiments. Average daily feed intake increased quadratically (P < 0.05) during both growth phases. Maximum average daily gain (ADG) (0.98 kg) and maximum protein deposition (PD; 170 g/day) were observed in growing pigs fed 100% of the estimated SIDLysR (P < 0.001). During the growing period, PD in BW gain (17% to 19%) and N efficiency (52% to 65%) increased linearly (P < 0.01) with increasing inclusion rates of SID Lys. Finishing pigs had maximum ADG (1.2 kg/day) when they were fed 100% of the requirements. However, the amount of protein in BW gain (13% to 16%) and N efficiency (40% to 55%) increased linearly (P < 0.01) with increasing inclusion rates of SID Lys. In conclusion, the model proposed for precision feeding is correctly calibrated to predict SIDLysR that maximize PD and ADG of average pigs from 25 to 50 kg BW. Still, there is an opportunity to improve the estimation of SIDLysR and N retention in individual pigs by better representing the individual proportion of protein in BW gain and the factors controlling the efficiency of Lys utilization in individual pigs.  相似文献   

5.
The implementation of precision feeding in growing–finishing facilities requires accurate estimates of the animals’ nutrient requirements. The objectives of the current study was to validate a method for estimating the real-time individual standardized ileal digestible (SID) lysine (Lys) requirements of growing–finishing pigs and the ability of this method to estimate the Lys requirements of pigs with different feed intake and growth patterns. Seventy-five pigs from a terminal cross and 72 pigs from a maternal cross were used in two 28-day experimental phases beginning at 25.8 (±2.5) and 73.3 (±5.2) kg BW, respectively. Treatments were randomly assigned to pigs within each experimental phase according to a 2×4 factorial design in which the two genetic lines and four dietary SID Lys levels (70%, 85%, 100% and 115% of the requirements estimated by the factorial method developed for precision feeding) were the main factors. Individual pigs’ Lys requirements were estimated daily using a factorial approach based on their feed intake, BW and weight gain patterns. From 25 to 50 kg BW, this method slightly underestimated the pigs’ SID Lys requirements, given that maximum protein deposition and weight gain were achieved at 115% of SID Lys requirements. However, the best gain-to-feed ratio (G : F) was obtained at a level of 85% or more of the estimated Lys requirement. From 70 to 100 kg, the method adequately estimated the pigs’ individual requirements, given that maximum performance was achieved at 100% of Lys requirements. Terminal line pigs ate more (P=0.04) during the first experimental phase and tended to eat more (P=0.10) during the second phase than the maternal line pigs but both genetic lines had similar ADG and protein deposition rates during the two phases. The factorial method used in this study to estimate individual daily SID Lys requirements was able to accommodate the small genetic differences in feed intake, and it was concluded that this method can be used in precision feeding systems without adjustments. However, the method’s ability to accommodate large genetic differences in feed intake and protein deposition patterns needs to be studied further.  相似文献   

6.
Residual feed intake (RFI), defined as the difference between observed and expected feed intake based on growth and backfat, has been used to investigate genetic variation in feed efficiency in cattle, poultry and pigs. However, little is known about the biological basis of differences in RFI in pigs. To this end, the objective of this study was to evaluate the fifth generation of a line of pigs selected for reduced RFI against a randomly selected Control line for performance, carcass and chemical carcass composition and overall efficiency. Here, emphasis was on the early grower phase. A total of 100 barrows, 50 from each line, were paired by age and weight (22.6 ± 3.9 kg) and randomly assigned to one of four feeding treatments in 11 replicates: ad libitum (Ad), 75% of Ad (Ad75), 55% of Ad (Ad55) and weight stasis (WS), which involved weekly adjustments in intake to keep body weight (BW) constant for each pig. Pigs were individually penned (group housing was used for selection) and were on treatment for 6 weeks. Initial BW did not significantly differ between the lines (P > 0.17). Under Ad feeding, the low RFI pigs consumed 8% less feed compared with Control line pigs (P < 0.06), had less carcass fat (P < 0.05), but with no significant difference in growth rate (P > 0.85). Under restricted feeding, low RFI pigs under the Ad75 treatment had a greater rate of gain while consuming the same amount of feed as Control pigs. Despite the greater gain, no significant line differences in carcass composition or carcass traits were observed. For the WS treatment, low RFI pigs had similar BW (P > 0.37) with no significant difference in feed consumption (P > 0.32). Overall, selection for reduced RFI has decreased feed intake, with limited differences in growth rate but reduced carcass fat, as seen under Ad feeding. Collectively, results indicate that the effects of selection for low RFI are evident during the early grower stage, which allows for greater savings to the producer.  相似文献   

7.
This study was undertaken to evaluate the effect that switching from conventional to precision feeding systems during the growing-finishing phase would have on the potential environmental impact of Brazilian pig production. Standard life-cycle assessment procedures were used, with a cradle-to-farm gate boundary. The inputs and outputs of each interface of the life cycle (production of feed ingredients, processing in the feed industry, transportation and animal rearing) were organized in a model. Grain production was independently characterized in the Central-West and South regions of Brazil, whereas the pigs were raised in the South region. Three feeding programs were applied for growing-finishing pigs: conventional phase feeding by group (CON); precision daily feeding by group (PFG) (whole herd fed the same daily adjusted diet); and precision daily feeding by individual (PFI) (diets adjusted daily to match individual nutrient requirements). Raising pigs (1 t pig BW at farm gate) in South Brazil under the CON feeding program using grain cultivated in the same region led to emissions of 1840 kg of CO2-eq, 13.1 kg of PO4-eq and 32.2 kg of SO2-eq. Simulations using grain from the Central-West region showed a greater climate change impact. Compared with the previous scenario, a 17% increase in climate change impact was found when simulating with soybeans produced in Central-West Brazil, whereas a 28% increase was observed when simulating with corn and soybeans from Central-West Brazil. Compared with the CON feeding program, the PFG and PFI programs reduced the potential environmental impact. Applying the PFG program mitigated the potential climate change impact and eutrophication by up to 4%, and acidification impact by up to 3% compared with the CON program. Making a further adjustment by feeding pigs according to their individual nutrient requirements mitigated the potential climate change impact by up to 6% and the potential eutrophication and acidification impact by up to 5% compared with the CON program. The greatest environmental gains associated with the adoption of precision feeding were observed when the diet combined soybeans from Central-West Brazil with corn produced in Southern Brazil. The results clearly show that precision feeding is an effective approach for improving the environmental sustainability of Brazilian pig production.  相似文献   

8.
Significant differences in the estimation of amino acid requirements exist between the available factorial methods. This study aimed to compare current factorial models used to estimate the individual and population standardised ileal digestible (SID) lysine (Lys) requirements of growing pigs during a 26-day feeding phase. Individual daily feed intake and BW data from 40 high-performance pigs (25-kg initial BW) were smoothed by linear regression. Body weight gain was constant (regression slope not different from 0) for all the pigs. The CV of the SID Lys requirements ranged from 22% at the beginning of the trial to 8% at the end. The population Brazilian tables (BT-2017) and National Research Council (NRC-2012) SID Lys requirements for the average pig were 16% higher than the average requirement estimated by the individual precision-feeding model (IPF), but similar to the estimated for the population assuming that population requirements are those of the 80th-percentile pig of the population (IPF-80). Meaning that, the IPF-80, BT-2017, and NRC-2012 models would yield similar recommendations when pigs are group-fed in conventional multi-phase systems. Additionally, the IPF-80 estimates are independent of the phase length, whereas the BT-2017 and NRC-2012 models use average population values in the middle of the feeding phase for the calculations and therefore, conventional requirement estimations decrease as the length of the feeding phase increases. In conclusion, the BT-2017 and NRC-2012 methods were calibrated for maximum population responses, which explains why these methods yield higher values than those estimated for the average pig by the IPF model. This study shows the limitations of conventional factorial methods to estimate amino acid requirements for precision-feeding systems.  相似文献   

9.
Improvement of feed efficiency in pigs has been achieved essentially by increasing lean growth rate, which resulted in lower feed intake (FI). The objective was to evaluate the impact of strategies for improving feed efficiency on the dynamics of FI and growth in growing pigs to revisit nutrient recommendations and strategies for feed efficiency improvement. In 2010, three BWs, at 35±2, 63±9 and 107±7 kg, and daily FI during this period were recorded in three French test stations on 379 Large White and 327 French Landrace from maternal pig populations and 215 Large White from a sire population. Individual growth and FI model parameters were obtained with the InraPorcR software and individual nutrient requirements were computed. The model parameters were explored according to feed efficiency as measured by residual feed intake (RFI) or feed conversion ratio (FCR). Animals were separated in groups of better feed efficiency (RFI or FCR), medium feed efficiency and poor feed efficiency. Second, genetic relationships between feed efficiency and model parameters were estimated. Despite similar average daily gains (ADG) during the test for all RFI groups, RFI pigs had a lower initial growth rate and a higher final growth rate compared with other pigs. The same initial growth rate was found for all FCR groups, but FCR pigs had significantly higher final growth rates than other pigs, resulting in significantly different ADG. Dynamic of FI also differed between RFI or FCR groups. The calculated digestible lysine requirements, expressed in g/MJ net energy (NE), showed the same trends for RFI or FCR groups: the average requirements for the 25% most efficient animals were 13% higher than that of the 25% least efficient animals during the whole test, reaching 0.90 to 0.95 g/MJ NE at the beginning of the test, which is slightly greater than usual feed recommendations for growing pigs. Model parameters were moderately heritable (0.30±0.13 to 0.56±0.13), except for the precocity of growth (0.06±0.08). The parameter representing the quantity of feed at 50 kg BW showed a relatively high genetic correlation with RFI (0.49±0.14), and average protein deposition between 35 and 110 kg had the highest correlation with FCR (−0.76±0.08). Thus, growth and FI dynamics may be envisaged as breeding tools to improve feed efficiency. Furthermore, improvement of feed efficiency should be envisaged jointly with new feeding strategies.  相似文献   

10.
Providing pigs a diet that matches their nutrient requirements involves optimizing the diet based on the nutrient digestibility values of the considered feed ingredients. Feeding the same quantity of a diet to pigs with similar BW but with different requirements, however, can result in a different average daily gain (ADG) and backfat thickness (BF) between pigs. Digestibility may contribute to this variation in efficiency. We investigated variation in feed efficiency traits in grower-finisher pigs associated with variation in faecal digestibility values, independent of feed intake at the time of measuring faecal digestibility. Considered traits were ADG, average daily feed intake (ADFI), feed conversion ratio (FCR), BF and residual feed intake (RFI). Feed intake, BW, and BF data of one hundred and sixty three-way crossbreed grower-finisher pigs (eighty female and eighty male) were collected during two phases, from day 0 of the experiment (mean BW 23 kg) till day 56 (mean BW 70 kg) and from day 56 to slaughter (mean BW 121 kg). Pigs were either fed a diet based on corn/soybean meal or a more fibrous diet based on wheat/barley/by-products, with titanium dioxide as indigestible marker. Faecal samples of one hundred and five pigs were collected on the day before slaughter and used to determine apparent faecal digestibility of DM, ash, organic matter (OM), CP, crude fat (CFat), crude fibre (CF), and to calculate the digestibility of nonstarch polysaccharides (NSPs) and energy (E). The effects of diet, sex and covariate feed intake at sampling (FIs) on faecal digestibility values were estimated and were significant for all except for CFat. Faecal digestibility values of each individual pig determined at the day before slaughter, corrected for diet, sex and FIs, were used to estimate their association with ADG, ADFI, FCR, BF, and RFI. In the first phase, a one percent unit increase in faecal digestibility of DM, ash, OM, E, CP, CFat, CF, NSP, and Ash individually was related to 0.01–0.03 unit reduction in FCR and 6–23 g/day reduction in RFI. A unit increase in CP digestibility was related to 0.1 mm increase in BF and 10 g/day increase in ADG. In the second phase, a one percent unit increase in faecal digestibility of DM, CP and Ash was related to a decrease of 16–20 g/day in RFI. In conclusion, the relationship between variation in feed efficiency traits and faecal digestibility values is different across the developmental stages of a pig.  相似文献   

11.
12.
Breeding leaner pigs during the last decades may have changed pig’s empty body (EB) composition, a key trait for elaborating feeding recommendations. This research aimed to provide new experimental data on changes in the chemical composition of the EB of pigs from 20 to 140 kg BW. In addition, the impact of a reduction in the dietary CP associated with lower lysine, methionine+cystine, threonine and tryptophan levels was determined. In total, 48 males, castrates and females weighing 20 kg BW were allocated either to a control grower–finisher diet formulated according to current Swiss feeding recommendations, or a low CP grower–finisher diet (80% of control). Feed intake was monitored and pigs were weighed weekly. The chemical composition of EB (blood, hairs and hoofs, offals, bile, carcass) was determined at 20, 40, 60, 80, 100, 120 and 140 kg BW on four pigs per gender and diet (eight pigs per gender at 20 kg). The five fractions were weighed and samples were analysed for dry matter, protein, fat and energy. Nutrient deposition rates and N efficiency were calculated by using the 20 kg BW category as reference. Analysis revealed an accurate feed optimisation for the aforementioned essential amino acids (EAA), whereas digestible isoleucine content in the low CP diet was at 70% of the control diet. Despite similar feed intake, daily gain and feed efficiency were impaired (P<0.01) from 20 to 100 kg BW in the low CP compared with the control pigs. In the same growth period, castrates had the greatest feed intake but, together with females, displayed the lowest (P<0.01) feed efficiency. Protein deposition was reduced (P<0.01) by up to 31% with low CP diet and was lower (P<0.01) in castrates and females than males at 100 kg BW. The greatest fat deposition rates were found with low CP diet and castrates. N efficiency improved (P<0.05) by 10% with the low CP diet from 100 to 140 kg. The males displayed the greatest (P<0.05) N efficiency. These findings suggest that the CP content of finisher II diets could be reduced to 102, 102 and 104 g/kg for females, castrates and males, respectively, without a negative impact on protein deposition or growth. It remains unclear whether the negative effects found in the BW range from 20 to 100 kg on the EB deposition were due to the 20% reduction of the dietary CP and the five limiting EAA or to other EAA via an unbalanced EAA profile.  相似文献   

13.
Greenback flounder Rhombosolea tapirina ( c. 2 g) fed to satiation had significantly ( P <0·01) higher feed consumption in the evening than in the morning whereas there was no difference between feeding times for flounder fed restricted rations (1 or 2% body weight per day) because they consumed all of the ration. Differences in growth performance were due to feeding time and ration. Carcass moisture, lipid and energy content were significantly ( P <0·001) different between rations; length gain was significantly affected by feeding time ( P <0·05) and ration ( P <0·001); weight gain showed a significant ( P <0·001) interaction between feeding time and ration. The relationship between feed consumption and specific growth rate showed that the exponential gradient was significantly higher ( P <0·01) for the evening fed fish and indicated feed efficiency for evening fed fish increased as feed consumption increased. Urea excretion increased from 12–20 to 58–63% of total nitrogen excretion at the 1 and 3% rations, respectively. Ammonia and urea excretion were significantly affected by ration ( P <0·001) and feeding time ( P <0·05). Fish fed the 2% ration in the evening had higher growth efficiency and significantly ( P <0·01) lower rates of urea excretion than fish fed 2 or 3% ration in the morning. It is suggested that the higher energetic costs associated with differences in ammonia and urea excretion contributed to differences in growth efficiency.  相似文献   

14.
A total of 120 Duroc×(Large White×Landrace) pigs, 50% barrows and 50% gilts, with 54.1±0.14 kg BW and 103±3 days of age, were used to study the effect of advancing the shift to a standard finisher feed from 100 to 90 and 80 kg BW on production performances and carcass and pork quality. Each of the six treatments (two sexes×three BWs at time of feeding shift) was replicated four times and the experimental unit was the pen (with five pigs for growth performance and carcass variables and three pigs for pork and fat traits). The grower (163 g CP and 9.5 g total Lys/kg) and the finisher diets (152 g CP and 7.9 g total Lys/kg) were based on maize, barley and vegetal protein concentrates, contained 13.39 MJ metabolizable energy/kg and were offered ad libitum through the trial. Pigs intended for dry-cured product elaboration were slaughtered at 170±3 days of age as average (124 and 115 kg BW for barrows and gilts, respectively). For the overall period, barrows ate more feed (P<0.001) and grew faster (P=0.03) than gilts. No effect of feed shift was observed on growth performances, although the average daily CP intake (P=0.01) and feeding costs (P=0.04) were reduced by advancing the transition to the finisher feed. Carcasses from barrows were heavier (P<0.001) and had wider backfat depth (P<0.001) than those from gilts but no significant differences were observed in the meat chemical composition. The feed change schedule did not modify carcass or meat traits. It is concluded that an early shift to the finisher feed (at 80 kg BW instead of 100 kg BW) might be an interesting strategy in pigs intended for dry-cured products because, although it neither increased body fatness nor improved pork quality, CP intake and feeding costs were reduced without impairment of growth performances. Results were similar for barrows and gilts.  相似文献   

15.
The objective of this study was to evaluate the effect of a combined low-protein, low-phosphorus diet supplemented with limiting amino acids and microbial phytase on performance, nutrient utilization and carcass characteristics of late-finishing barrows. 4?×?8 crossbreed barrows were continuously housed in metabolism cages from 70?–?110?kg BW and were fed diets, either conventional (A) or protein reduced (B) or protein and phosphorus reduced diets (C) based on barley, maize and soybean meal. Diet A (positive control) contained in air dry matter 13% and 10% CP as well as 0.49% and 0.42% P at growth phases I (70?–?100?kg BW) or II (100?–?110?kg BW), respectively. Diet B was low in CP (11.3%, 8.4%), diet C low in CP and low in P (CP: as B, P: 0.36%, 0.30%). To diet B the limiting amino acids lysine, methionine, threonine and trypthophan were added to meet the levels in diet A. To diet C the limiting amino acids and 800 FTU/kg Aspergillus-phytase were supplemented. At the end of the balance periods the barrows were slaughtered, the carcasses scored and loin chops, ham and Phalanx prima IV were analysed for nutrients and minerals. The CP or P reduction in diets B and C did not generally negatively affect growth, feed efficiency, absolute nitrogen retention or overall carcass performances of the pigs. With the low CP diets B and C, N excretion per unit BWG was decreased by about 23%. The addition of microbial phytase (diet C) increased apparent total tract digestibility of P by about 20%. In spite of 30% reduction of P intake (diet C), the absolute P retention related to 1?kg BW did not differ between treatments. Thus, phytase supplementation in diet C reduced P excretion per unit BWG by about 33%. Phytase raised apparent digestibility of Zn by about 20% but not Ca digestibility. Generally the carcass traits and meat characteristics were not affected by any of the diet strategies. Mineralization of the Phalanx prima IV was also similar in all treatment groups. However, phytase supplementation led to significantly increased zinc concentration in bones (25%). In contrast, Fe incorporation into the Phalanx prima IV was not affected. In general, the feeding regimen introduced in this experiment offers substantial benefits in maintaining a sustainable environmental-friendly pork production even at the stage of late-finishing barrows.  相似文献   

16.
Dietary phosphorus concentration greatly affects pig’s growth performance, environmental impact and diet cost. A total of 1080 pigs (initially 5.9 ± 1.08 kg) from three commercial research rooms were used to determine the effects of increasing standardized total tract digestible (STTD) P concentrations in diets without and with phytase on growth performance and percentage bone ash. Pens (10 pigs/pen, 9 pens/treatment) were balanced for equal weights and randomly allotted to 12 treatments. Treatments were arranged in two dose titrations (without or with 2000 units of phytase) with six levels of STTD P each. The STTD P levels were expressed as a percentage of NRC (2012) requirement estimates (% of NRC; 0.45 and 0.40% for phases 1 and 2, respectively) and were: 80%, 90%, 100%, 110%, 125% and 140% of NRC in diets without phytase and 100%, 110%, 125%, 140%, 155% and 170% of NRC in diets with phytase. Diets were provided in three phases, with experimental diets fed during phases 1 (days 0 to 11) and 2 (days 11 to 25), followed by a common diet from days 25 to 46. On day 25, radius samples from one median-weight gilt per pen were collected for analysis of bone ash. During the treatment period, increasing STTD P from 80% to 140% of NRC in diets without phytase improved average daily gain (ADG; quadratic, P < 0.01), average daily feed intake (ADFI; quadratic, P < 0.05) and gain–feed ratio (G : F; linear, P < 0.01). Estimated STTD P requirement in diets without phytase was 117% and 91% of NRC for maximum ADG according to quadratic polynomial (QP) and broken-line linear (BLL) models, respectively, and was 102%, 119% and >140% of NRC for maximum G : F using BLL, broken-line quadratic and linear models, respectively. When diets contained phytase, increasing STTD P from 100% to 170% of NRC improved ADG (quadratic, P < 0.05) and G : F (linear, P < 0.01). Estimated STTD P requirement in diets containing phytase was 138% for maximum ADG (QP), and 147% (QP) and 116% (BLL) of NRC for maximum G : F. Increasing STTD P increased (linear, P < 0.01) the percentage bone ash regardless of phytase addition. When comparing diets containing the same STTD P levels, phytase increased (P < 0.01) ADG, ADFI and G : F. In summary, estimated STTD P requirements varied depending on the response criteria and statistical models and ranged from 91% to >140% of NRC (0.41% to >0.63% of phase 1 diet and 0.36% to >0.56% of phase 2 diet) in diets without phytase, and from 116% to >170% of NRC (0.52% to >0.77% of phase 1 diet and 0.46% to >0.68% of phase 2 diet) for diets containing phytase. Phytase exerted an extra-phosphoric effect on promoting pig’s growth and improved the P dose-responses for ADG and G : F.  相似文献   

17.
A total of 200 crossbred pigs (castrated males and females) were used in five replicates to evaluate the influence of rearing conditions for fattening pigs on growth performance, manure production and gaseous emissions. Approximately at 36 kg body weight (BW), littermates were allocated to either a conventional (fully slatted floor, 0.65 m2/pig, considered as control, CON) or an alternative (sawdust bedding, 1.3 m2/pig, with free access to an outdoor area 1.1 m2/pig, OUT) system, until slaughter at approximately 115 kg BW. Pigs had free access to standard growing and finishing diets. Manure was stored as slurry below the slatted floor in the CON system and as litter, for the inside area, or slurry and liquid, for the outside area, in the OUT system. The amount and composition of manure were determined at the end of each replicate. Ammonia emission from the rooms was measured continuously. Dust and odour concentrations were measured in replicates 1 and 2, and CH4, N2O and CO2 emissions were measured in replicate 3. Compared with the CON, the OUT pigs exhibited a faster growth rate (+8%, P < 0.001) due to their greater feed intake (+0.21 kg/day, P < 0.01), resulting in a heavier BW (+7.3 kg, P < 0.001) and a lower lean meat content (-1.6% points, P < 0.001) at slaughter. The total amount of manure produced per pig was similar in both systems (380 kg/pig), but because of the contribution of sawdust, dry matter (DM) content was higher (P < 0.001) and concentrations in N, P, K, Cu and Zn in DM were lower (P < 0.001) in manure from the OUT than from the CON system. In the OUT system, most of the manure DM (70%) was collected indoor, corresponding mostly to the contribution of the sawdust, and most of the manure water (70%) was collected outdoor. Pigs excreted indoor about 60% and 40% of urine and faeces, respectively. Ammonia emission from the room was lower for the OUT system, whereas total NH3 emissions, including the outdoor area, tended to be higher (12.0 and 14.1 g/day N-NH3 per pig for CON and OUT, respectively). Nitrous oxide emission was higher (1.6 and 4.6 g/day N-N2O per pig for CON and OUT, respectively) and methane emission was lower (12.1 and 5.9 g/day per pig for CON and OUT, respectively), for the OUT compared with the CON system.  相似文献   

18.
Floor space allowance for pigs has substantial effects on pig growth and welfare. Data from 30 papers examining the influence of floor space allowance on the growth of finishing pigs was used in a meta-analysis to develop alternative prediction equations for average daily gain (ADG), average daily feed intake (ADFI) and gain : feed ratio (G : F). Treatment means were compiled in a database that contained 30 papers for ADG and 28 papers for ADFI and G : F. The predictor variables evaluated were floor space (m2/pig), k (floor space/final BW0.67), Initial BW, Final BW, feed space (pigs per feeder hole), water space (pigs per waterer), group size (pigs per pen), gender, floor type and study length (d). Multivariable general linear mixed model regression equations were used. Floor space treatments within each experiment were the observational and experimental unit. The optimum equations to predict ADG, ADFI and G : F were: ADG, g=337.57+(16 468×k)−(237 350×k2)−(3.1209×initial BW (kg))+(2.569×final BW (kg))+(71.6918×k×initial BW (kg)); ADFI, g=833.41+(24 785×k)−(388 998×k2)−(3.0027×initial BW (kg))+(11.246×final BW (kg))+(187.61×k×initial BW (kg)); G : F=predicted ADG/predicted ADFI. Overall, the meta-analysis indicates that BW is an important predictor of ADG and ADFI even after computing the constant coefficient k, which utilizes final BW in its calculation. This suggests including initial and final BW improves the prediction over using k as a predictor alone. In addition, the analysis also indicated that G : F of finishing pigs is influenced by floor space allowance, whereas individual studies have concluded variable results.  相似文献   

19.
A deterministic, dynamic model was developed, to enable predictions of phosphorus (P) digested, retained and excreted for different pig genotypes and under different dietary conditions. Before confidence can be placed on the predictions of the model, its evaluation was required. A sensitivity analysis of model predictions to ±20% changes in the model parameters was undertaken using a basal UK industry standard diet and a pig genotype characterized by British Society Animal Science as being of ‘intermediate growth’. Model outputs were most sensitive to the values of the efficiency of digestible P utilization for growth and the non-phytate P absorption coefficient from the small intestine into the bloodstream; all other model parameters influenced model outputs by <10%, with the majority of the parameters influencing outputs by <5%. Independent data sets of published experiments were used to evaluate model performance based on graphical comparisons and statistical analysis. The literature studies were selected on the basis of the following criteria: they were within the BW range of 20 to 120 kg, pigs grew in a thermo-neutral environment; and they provided information on P intake, retention and excretion. In general, the model predicted satisfactorily the quantitative pig responses, in terms of P digested, retained and excreted, to variation in dietary inorganic P supply, Ca and phytase supplementation. The model performed well with ‘conventional’, European feed ingredients and poorly with ‘less conventional’ ones, such as dried distillers grains with solubles and canola meal. Explanations for these inconsistencies in the predictions are offered in the paper and they are expected to lead to further model development and improvement. The latter would include the characterization of the origin of phytate in pig diets.  相似文献   

20.
This study was initiated to understand whether feeding behaviour and physiology may contribute to the rate of fatigued pigs at processing plants. Specifically, this study sought to determine: (1) how often pigs eat during the day, (2) the times of the day they eat and (3) a first approximation of the time from feed consumption to excretion (rate of passage) when housed in a group in conventional finishing facilities. Finally, models were constructed to try to predict the percentage of pigs with empty/diminished gastrointestinal (GI) tracts depending on the time of day of truck loading and transport durations. Pigs were randomly selected, weighed and selected for behavioural observations. From video records and live observations, the number of meals (feeding bouts) per day and the time of the day meals took place were recorded. Feed containing chromic oxide was fed to determine when a given meal was excreted. With the feeding times of day determined, models were constructed of the percentage of pigs that would have empty stomachs depending on the time of day pigs were removed from the barn and the length of transport/lairage. Finishing pigs housed in groups ate 5.6 ± 0.6 meals per day with an average feeding bout (meal) length of 11.3 ± 1.1 min. Many pigs fed ad libitum ate most of their meals during the afternoon and evening. The rate of passage of feed was 20.5 h (range = 18 to 24 h). Because fewer pigs ate in the late evening through morning, if pigs were shipped at these times they would have an increased risk of arriving at the stun at a plant with an empty GI tract. Some of the variation in rates of fatigued pigs and pork quality may be explained by times of day taken off feed and transport duration. Shipping in the afternoon or early evening may result in fewer pigs with empty/diminished GI tracts at processing which may influence the rate of fatigued pigs and pork quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号