首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epithelial to mesenchymal transition (EMT) has been hypothesized as a mechanism by which cells change phenotype during carcinogenesis, as well as tumor metastasis. Whether EMT is involved in cancer metastasis has a specific, practical impact on the field of circulating tumor cells (CTCs). Since the generally accepted definition of a CTC includes the expression of epithelial surface markers, such as EpCAM, if a cancer cell loses its epithelial surface markers (which is suggested in EMT), it will not be separated and/or identified as a CTC. We have developed, and previously reported on the use of, a purely negative enrichment technology enriching for CTCs in the blood of squamous cell carcinoma of the head and neck (SCCHN). This methodology does not depend on the expression of surface epithelial markers. Using this technology, our initial data on SCCHN patient blood indicates that the presence of CTCs correlates with worse disease-free survival. Since our enrichment is not dependent on epithelial markers, we have initiated investigation of the presence of mesenchymal markers in these CTC cells to include analysis of: vimentin, epidermal growth factor receptor, N-cadherin, and CD44. With the aid of confocal microscopy, we have demonstrated not only presumed CTCs that express and/or contain: a nucleus, cytokeratins, vimentin, and either EGFR, CD44, or N-cadherin, but also cells that contain all of the aforementioned proteins except cytokeratins, suggesting that the cells have undergone the EMT process. We suggest that our negative depletion enrichment methodology provides a more objective approach in identifying and evaluating CTCs, as opposed to positive selection approaches, as it is not subjective to a selection bias and can be tailored to accommodate a variety of cytoplasmic and surface markers which can be evaluated to identify a multitude of phenotypic patterns within CTCs from individual patients, including so-called EMT as presented here.  相似文献   

2.
Chronic obstructive pulmonary disease (COPD) is a risk factor for lung cancer. Migration of circulating tumor cells (CTCs) into the blood stream is an early event that occurs during carcinogenesis. We aimed to examine the presence of CTCs in complement to CT-scan in COPD patients without clinically detectable lung cancer as a first step to identify a new marker for early lung cancer diagnosis. The presence of CTCs was examined by an ISET filtration-enrichment technique, for 245 subjects without cancer, including 168 (68.6%) COPD patients, and 77 subjects without COPD (31.4%), including 42 control smokers and 35 non-smoking healthy individuals. CTCs were identified by cytomorphological analysis and characterized by studying their expression of epithelial and mesenchymal markers. COPD patients were monitored annually by low-dose spiral CT. CTCs were detected in 3% of COPD patients (5 out of 168 patients). The annual surveillance of the CTC-positive COPD patients by CT-scan screening detected lung nodules 1 to 4 years after CTC detection, leading to prompt surgical resection and histopathological diagnosis of early-stage lung cancer. Follow-up of the 5 patients by CT-scan and ISET 12 month after surgery showed no tumor recurrence. CTCs detected in COPD patients had a heterogeneous expression of epithelial and mesenchymal markers, which was similar to the corresponding lung tumor phenotype. No CTCs were detected in control smoking and non-smoking healthy individuals. CTCs can be detected in patients with COPD without clinically detectable lung cancer. Monitoring “sentinel” CTC-positive COPD patients may allow early diagnosis of lung cancer.  相似文献   

3.
During cancer progression, malignant cells undergo epithelial-mesenchymal transitions (EMT) and mesenchymal-epithelial transitions (MET) as part of a broad invasion and metastasis program. We previously observed MET events among lung metastases in a preclinical model of prostate adenocarcinoma that suggested a relationship between epithelial plasticity and metastatic spread. We thus sought to translate these findings into clinical evidence by examining the existence of EMT in circulating tumor cells (CTC) from patients with progressive metastatic solid tumors, with a focus on men with castration-resistant prostate cancer (CRPC) and women with metastatic breast cancer. We showed that the majority (> 80%) of these CTCs in patients with metastatic CRPC coexpress epithelial proteins such as epithelial cell adhesion molecule (EpCAM), cytokeratins (CK), and E-cadherin, with mesenchymal proteins including vimentin, N-cadherin and O-cadherin, and the stem cell marker CD133. Equally, we found that more than 75% of CTCs from women with metastatic breast cancer coexpress CK, vimentin, and N-cadherin. The existence and high frequency of these CTCs coexpressing epithelial, mesenchymal, and stem cell markers in patients with progressive metastases has important implications for the application and interpretation of approved methods to detect CTCs.  相似文献   

4.
Isolation of circulating tumor cells (CTCs) from peripheral blood has the potential to provide a far easier “liquid biopsy” than tumor tissue biopsies, to monitor tumor cell populations during disease progression and in response to therapies. Many CTC isolation technologies have been developed. We optimized the Parsortix system, an epitope independent, size and compressibility-based platform for CTCs isolation, making it possible to harvest CTCs at the speed and sample volume comparable to standard CellSearch system. We captured more than half of cancer cells from different cancer cell lines spiked in blood samples from healthy donors using this system. Cell loss during immunostaining of cells transferred and fixed on the slides is a major problem for analyzing rare cell samples. We developed a novel cell transfer and fixation method to retain >90% of cells on the slide after the immunofluorescence process without affecting signal strength and specificity. Using this optimized method, we evaluated the Parsortix system for CTC harvest in prostate cancer patients in comparison to immunobead based CTC isolation systems IsoFlux and CellSearch. We harvested a similar number (p = 0.33) of cytokeratin (CK) positive CTCs using Parsortix and IsoFlux from 7.5 mL blood samples of 10 prostate cancer patients (an average of 33.8 and 37.6 respectively). The purity of the CTCs harvested by Parsortix at 3.1% was significantly higher than IsoFlux at 1.0% (p = 0.02). Parsortix harvested significantly more CK positive CTCs than CellSearch (p = 0.04) in seven prostate cancer patient samples, where both systems were utilized (an average of 32.1 and 10.1 respectively). We also captured CTC clusters using Parsortix. Using four-color immunofluorescence we found that 85.8% of PC3 cells expressed EpCAM, 91.7% expressed CK and 2.5% cells lacked both epithelial markers. Interestingly, 95.6% of PC3 cells expressed Vimentin, including those cells that lacked both epithelial marker expression, indicating epithelial-to-mesenchymal transition. CK-positive/Vimentin-positive/CD45-negative, and CK-negative/Vimentin-positive/CD45-negative cells were also observed in four of five prostate cancer patients but rarely in three healthy controls, indicating that Parsortix harvests CTCs with both epithelial and mesenchymal features. We also demonstrated using PC3 and DU145 spiking experiment that Parsortix harvested cells were viable for cell culture.  相似文献   

5.
Circulating tumour cells (CTCs) are independent predictor of prognosis in metastatic breast cancer. Nevertheless, in one third of patients, circulating tumour cells are undetected by conventional methods. Aim of the study was to assess the prognostic value of circulating tumour cells expressing mesenchymal markers in metastatic breast cancer patients. We isolated CTC from blood of 55 metastatic breast cancer patients. CTC were characterized for cytokeratins and markers of epithelial mesenchymal transition. The gain of mesenchymal markers in CTC was correlated to prognosis of patients in a follow-up of 24 months. The presence of mesenchymal markers on CTC more accurately predicted worse prognosis than the expression of cytokeratins alone. Because of the frequent loss of epithelial antigens by CTC, assays targeting epithelial antigens may miss the most invasive cell population. Thus, there is an urgent need to improve detection methods to identify CTC which undergone epithelial mesenchymal transition program.  相似文献   

6.
Circulating tumor cells (CTCs) have been detected in the bloodstream of both early-stage and advanced cancer patients. However, very little is know about the dynamics of CTCs during cancer progression and the clinical relevance of longitudinal CTC enumeration. To address this, we developed a simple bioluminescence imaging assay to detect CTCs in mouse models of metastasis. In a 4T1 orthotopic metastatic mammary carcinoma mouse model, we demonstrated that this quantitative method offers sensitivity down to 2 CTCs in 0.1–1mL blood samples and high specificity for CTCs originating from the primary tumor, independently of their epithelial status. In this model, we simultaneously monitored blood CTC dynamics, primary tumor growth, and lung metastasis progression over the course of 24 days. Early in tumor development, we observed low numbers of CTCs in blood samples (10–15 cells/100 µL) and demonstrated that CTC dynamics correlate with viable primary tumor growth. To our knowledge, these data represent the first reported use of bioluminescence imaging to detect CTCs and quantify their dynamics in any cancer mouse model. This new assay is opening the door to the study of CTC dynamics in a variety of animal models. These studies may inform clinical decision on the appropriate timing of blood sampling and value of longitudinal CTC enumeration in cancer patients.  相似文献   

7.

Background

Evaluation of cancer biomarkers from blood could significantly enable biomarker assessment by providing a relatively non-invasive source of representative tumor material. Circulating Tumor Cells (CTCs) isolated from blood of metastatic cancer patients hold significant promise in this regard.

Methodology/Principal Findings

Using spiked tumor-cells we evaluated CTC capture on different CTC technology platforms, including CellSearch® and two biochip platforms, and used the isolated CTCs to develop and optimize assays for molecular characterization of CTCs. We report similar performance for the various platforms tested in capturing CTCs, and find that capture efficiency is dependent on the level of EpCAM expression. We demonstrate that captured CTCs are amenable to biomarker analyses such as HER2 status, qRT-PCR for breast cancer subtype markers, KRAS mutation detection, and EGFR staining by immunofluorescence (IF). We quantify cell surface expression of EGFR in metastatic lung cancer patient samples. In addition, we determined HER2 status by IF and FISH in CTCs from metastatic breast cancer patients. In the majority of patients (89%) we found concordance with HER2 status from patient tumor tissue, though in a subset of patients (11%), HER2 status in CTCs differed from that observed in the primary tumor. Surprisingly, we found CTC counts to be higher in ER+ patients in comparison to HER2+ and triple negative patients, which could be explained by low EpCAM expression and a more mesenchymal phenotype of tumors belonging to the basal-like molecular subtype of breast cancer.

Conclusions/Significance

Our data suggests that molecular characterization from captured CTCs is possible and can potentially provide real-time information on biomarker status. In this regard, CTCs hold significant promise as a source of tumor material to facilitate clinical biomarker evaluation. However, limitations exist from a purely EpCAM based capture system and addition of antibodies to mesenchymal markers could further improve CTC capture efficiency to enable routine biomarker analysis from CTCs.  相似文献   

8.
Pancreatic cancers are typically resistant to chemo and radiation therapy and are predisposed to distant metastases. Circulating tumor cells (CTCs) are tumor cells disseminated from primary and metastatic sites and can be isolated from peripheral blood. CTC may overcome the limitation of the current available tumor markers, CA19-9. As a surrogate for 'real-time biopsy', CTCs allow recurrent assessment of a tumor's biological activity. We review the current methodologies for CTC extraction and characterization including antibody-based immunological assays, PCR-based assays, and novel technologies based on the physical or biological characteristics of CTCs. CTCs also provide an accessible link to the existence of epithelial to mesenchymal transition, tumor stem cell markers, and ongoing clonal mutations and epigenetic changes in the tumor. We also explore the potential of using CTC profiling in diagnosis, selection of neoadjuvant and adjuvant therapy, detection of recurrent disease, examination of pharmacodynamic biomarkers, as well as in gene therapy and immunotherapy for pancreatic cancer. Ongoing CTC characterization not only has the potential to represent all cells shed from primary pancreatic tumor and each metastatic site, but also allows dynamic sampling at multiple time points during the clinical course to identify the subpopulations of CTCs and the specific molecules driving metastasis and chemo resistance. We predict that CTC genotyping and phenotyping will play an increasing role in personalized therapy and in identification of novel therapeutic targets as well as monitoring the course and status of the disease.  相似文献   

9.
孙帅  邓宇亮 《遗传》2015,37(12):1251-1257
循环肿瘤细胞(Circulating tumor cells,CTCs)是从肿瘤原发病灶脱落并侵入外周血循环的肿瘤细胞。由于CTCs存在较大的异质性,其与癌症发展转移密切相关,但目前尚缺乏有效的CTCs单细胞异质性检测方法。鉴于此,本文发展了在单细胞层面对CTCs进行基因突变的检测方法并用于单个肺癌CTC的EGFR(Epidermal growth factor receptor)基因突变检测。首先用集成式微流控系统完成血液中稀有CTCs的捕获,接着将CTCs释放入含有多个微孔的微阵列芯片中,得到含有单个CTC的微孔,通过显微操作将单个CTC转入PCR管内完成单细胞基因组的放大,并进行单细胞的EGFR基因突变检测。以非小细胞肺癌细胞系A549、NCI-H1650和NCI-H1975为样本,通过芯片与毛细管修饰、引物扩增条件(复性温度、循环次数)的优化,结果显示在复性温度59℃、30个循环次数的条件下,引物扩增效果最优。利用该方法成功地对非小细胞肺癌(Non-small cell lung cancer, NSCLC)患者的血液样本进行了测试。从患者2 mL血液中获取5个CTCs,分别对其EGFR基因的第18、19、20、21外显子进行测序,发现该患者CTCs均为EGFR野生型。研究结果证明此检测方法可以灵敏地用于单个CTC基因突变的检测,在临床研究上具有重要的指导意义。  相似文献   

10.
The presence of circulating tumor cells (CTCs) in peripheral blood is associated with metastasis and prognosis in hepatocellular carcinoma (HCC) patients. The epithelial–mesenchymal transition (EMT) has a pivotal role in tumor invasion and dissemination. To identify more sensitive biomarkers for evaluating metastasis and prognosis, we investigated the expression of EMT markers, including vimentin, twist, ZEB1, ZEB2, snail, slug and E-cadherin in CTCs, primary HCC tumors and adjacent non-tumoral liver tissues. After isolating viable CTCs from the peripheral blood of HCC patients using asialoglycoprotein receptors (ASGPRs), the CTCs were identified with immunofluorescence staining. CTCs were detected in the peripheral blood obtained from 46 of 60 (76.7%) HCC patients. Triple-immunofluorescence staining showed that twist and vimentin expression could be detected in CTCs obtained from 39 (84.8%) and 37 (80.4%) of the 46 patients, respectively. The expression of both twist and vimentin in CTCs was significantly correlated with portal vein tumor thrombus. Coexpression of twist and vimentin in CTCs could be detected in 32 (69.6%) of the 46 patients and was highly correlated with portal vein tumor thrombus, TNM classification and tumor size. Quantitative fluorescence western blot analysis revealed that the expression levels of E-cadherin, vimentin and twist in HCC tumors were significantly associated with the positivity of isolated CTCs (P=0.013, P=0.012, P=0.009, respectively). However, there was no significant difference in ZEB1, ZEB2, snail and slug expression levels in CTCs, primary HCC tumors and adjacent non-tumoral liver tissues across samples with regard to the clinicopathological parameters. Our results demonstrate that the EMT has a role in promoting the blood-borne dissemination of primary HCC cells, and the twist and vimentin expression levels in CTCs could serve as promising biomarkers for evaluating metastasis and prognosis in HCC patients.  相似文献   

11.
12.
While previous studies have shown that the number of circulating tumor cells (CTCs) alone is not sufficient to reflect tumor progression and that cyclooxygenase-2 (COX-2) expression is correlated with colorectal cancer (CRC) metastasis, COX-2 expression status and its potential functions in CTCs of CRC patients are unknown. Here, epithelial-mesenchymal transition (EMT) phenotype-based subsets of CTCs and the COX-2 expression status in CTCs were identified and their potential clinical values were assessed in 91 CRC patients. CTCs were enumerated in peripheral blood and subsets of CTCs (epithelial [eCTCs], mesenchymal [mCTCs], and biophenotypic [bCTCs]) and the COX-2 expression status were determined using the RNA in situ hybridization method. CTCs were detected in 80.2% (73 of 91) patients. Neither the total CTC nor eCTC numbers were found to significantly associate with any of the clinicopathological features. However, the number of mCTCs was significantly associated with distance metastasis (P = 0.035) and had a trend of being associated with lymph node metastasis ( P = 0.055). Among the 73 patients enrolled for evaluating COX-2 expression, 52.5% (38 of 73) were found to express COX-2 in CTCs, and COX-2 expression in CTCs was not found to associate with the clinicopathological factors. However, COX-2 expression in mCTCs tended to have a higher rate in patients with metastasis compared with those without metastasis (72.0% vs 42.8%; P = 0.072). Furthermore, COX-2 expression and mCTC marker expression correlated positively ( R = 0.287; P = 0.017). Further studies are required to investigate the clinical value of the expression of COX-2 in mCTCs, especially in CRC patients with the advanced tumor stage and distant metastasis.  相似文献   

13.
Small cell lung cancer (SCLC) is distinguished by aggressive growth, early dissemination and a poor prognosis at advanced stage. The remarkably high count of circulating tumor cells (CTCs) of SCLC allowed for the establishment of permanent CTC cultures at our institution for the first time. CTCs are assumed to have characteristics of cancer stem cells (CSCs) and an epithelial-mesenchymal transition (EMT) phenotype, but extravasation of tumors at distal sites is marked by epithelial features. Two SCLC CTC cell lines, namely BHGc7 and BHGc10, as well as SCLC cell lines derived from primary tumors and metastases were analyzed for the expression of pluripotent stem cell markers and growth factors. Expression of E-cadherin and β-Catenin were determined by flow cytometry. Stem cell-associated markers SOX17, α-fetoprotein, OCT-3/4, KDR, Otx2, GATA-4, Nanog, HCG, TP63 and Goosecoid were not expressed in the 2 CTC lines. In contrast, high expression was found for HNF-3β/FOXA2, SOX2, PDX-1/IPF1 and E-cadherin. E-cadherin expression was restricted to the 2 CTCs and 2 cell lines derived from pleural effusion (SCLC26A) and bone metastases (NCI-H526), respectively. Thus, these SCLC CTCs established from extended disease SCLC patients lack expression of stem cell markers which suppress the epithelial phenotype. Instead they express high levels of E-cadherin consistent with a mesenchymal-epithelial transition (MET or EMrT) and form large tumorospheres possibly in response to the selection pressure of first-line chemotherapy. HNF-3β/FOXA2 and PDX-1/IPF1 expression seem to be related to growth factor dependence on insulin/IGF-1 receptors and IGF-binding proteins.  相似文献   

14.
PURPOSE: Gastric cancer studies indicated a potential correlation between circulating tumor cells (CTCs) in peripheral blood and tumor relapse/metastasis. The prevalence and significance of circulating tumor microemboli (CTM) in gastric cancer remain unknown. We investigated the prevalence and prognostic value of CTCs and CTM for progression-free survival (PFS) and overall survival (OS) in gastric cancer patients. METHODS:Eighty-one gastric cancer patients consented to provide 5 ml of peripheral blood before systematic therapy. CTCs and CTM were isolated using isolation by size of epithelial tumor cells and characterized by cytopathologists. For 41 stage IV gastric cancer patients, CTM was investigated as a potential biomarker to predict prognosis. RESULTS:CTCs were detected in 51 patients; the average count was 1.81. In clinical stage I, II, III, and IV patients, the average CTC counts were 1.40, 0.67, 1.24, and 2.71, respectively. CTM were detected in 3 of 33 clinical stage I to IIIb patients, at an average of 0.12 (0-2). CTM were detected in 13 of 53 clinical stage IIIc to IV patients, at an average of 1.26 (0-22). In stage IV patients, CTM positivity correlated with the CA125 level. PFS and OS in CTM-positive patients were significantly lower than in CTM-negative patients (P < .001). CTM positivity was an independent factor for determining the PFS (P = .016) and OS (P = .003) of stage IV patients in multivariate analysis. Using markers of the epithelial-mesenchymal transition, single CTCs were divided into three phenotypes including epithelial CTCs, biphenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs. For CTM, CK?/Vimentin+/CD45? and CK+/Vimentin+/CD45? phenotypes were observed, but the CK+/Vimentin?/CD45? CTM phenotype was not. CA125 was detected in gastric cancer cell lines BGC823 and MGC803. CONCLUSIONS: In stage IV patients, CTM positivity was correlated with serum CA125 level. CTM were an independent predictor of shorter PFS and OS in stage IV patients. Thus, CTM detection may be a useful tool to predict prognosis in stage IV patients.  相似文献   

15.
Circulating tumor cells (CTCs) are exfoliated at various stages of cancer, and could provide invaluable information for the diagnosis and prognosis of cancers. There is an urgent need for the development of cost-efficient and scalable technologies for rare CTC enrichment from blood. Here we report a novel method for isolation of rare tumor cells from excess of blood cells using gas-filled buoyant immuno-microbubbles (MBs). MBs were prepared by emulsification of perfluorocarbon gas in phospholipids and decorated with anti-epithelial cell adhesion molecule (EpCAM) antibody. EpCAM-targeted MBs efficiently (85%) and rapidly (within 15 minutes) bound to various epithelial tumor cells suspended in cell medium. EpCAM-targeted MBs efficiently (88%) isolated frequent tumor cells that were spiked at 100,000 cells/ml into plasma-depleted blood. Anti-EpCAM MBs efficiently (>77%) isolated rare mouse breast 4T1, human prostate PC-3 and pancreatic cancer BxPC-3 cells spiked into 1, 3 and 7 ml (respectively) of plasma-depleted blood. Using EpCAM targeted MBs CTCs from metastatic cancer patients were isolated, suggesting that this technique could be developed into a valuable clinical tool for isolation, enumeration and analysis of rare cells.  相似文献   

16.
Circulating tumor cells (CTCs) have emerged as a potential biomarker in the diagnosis, prognosis, treatment, and surveillance of lung cancer. However, CTC detection is not only costly, but its sensitivity is also low, thus limiting its usage and the collection of robust data regarding the significance of CTCs in lung cancer. We aimed to seek clinical variables that enhance the prediction of CTCs in patients with non-small cell lung cancer (NSCLC). Clinical samples and pathological data were collected from 169 NSCLC patients. CTCs were detected by CellSearch and tumor markers were detected using the Luminex xMAP assay. Univariate analyses revealed that histology, tumor stage, tumor size, invasiveness, tumor grade and carcinoembryonic antigen (CEA) were associated with the presence of CTCs. However, the level of CTCs was not associated with the degree of nodal involvement (N) or tumor prognostic markers Ki-67, CA125, CA199, Cyfra21-1, and SCCA. Using logistic regression analysis, we found that the combination of CTCs with tumor marker CEA has a better disease prediction. Advanced stage NSCLC patients with elevated CEA had higher numbers of CTCs. These data suggest a useful prediction model by combining CTCs with serum CEA in NSCLC patients.  相似文献   

17.
Circulating tumor cells (CTCs) might not only serve as prognostic marker but could also be useful for monitoring treatment efficacy. A multicolor flow cytometry protocol for their detection and molecular characterization in peripheral blood was developed which consisted of erythrocyte lysis followed by staining of cells with fluorochrome-labeled antibodies against CD45 and the epithelial markers EpCam and cytokeratin 7/8. For reducing the number of events acquired by flow cytometry, an electronic threshold for the fluorescent signals from the epithelial markers was applied. After establishment of the protocol by using spiking experiments, its suitability to determine the absolute number of CTCs as well as their expression of epidermal growth factor receptor (EGFR) and its phosphorylated form (phospho-EGFR) in blood samples from patients with squamous cell carcinoma of the head and neck (SCCHN) was validated. Spiking experiments demonstrated an excellent recovery (mean 85%) and a linear performance (R(2) = 0.98) of the protocol. Sensitivity and specificity were comparable to our former protocol using immunomagnetic CTC pre-enrichment. The analysis of 33 SCCHN patient samples revealed the presence of CTCs in 33.3% of cases with a mean ± SD of 1.5 ± 0.5 CTCs per 3.75 ml blood. EGFR was expressed in 100% and phospho-EGFR in 36.4% of the CTC+ cases. We have established a simple and sensitive multicolor flow cytometry protocol for detection of CTCs in patients with epithelial cancers including SCCHN which will allow their detailed molecular characterization.  相似文献   

18.
Circulating cancer cells (CTCs) can serve as a non-invasive liquid biopsy and provide opportunities for early cancer diagnosis and evaluation. However, the value of CTCs for diagnosis or prognosis of small pulmonary nodules (SPNs) is unclear. Fifty-three patients diagnosed with SPNs with a diameter less than 30 mm by CT examination were enrolled in the study. The CTC numbers, CT examination features, serum tumor marker concentrations, and histopathological characteristics were analyzed. Centromere probe 8 (CEP8) was used as a marker for CTC identification. The CTC numbers were significantly different in patients with malignant and benign SPNs and with early (0/Ⅰa) and advanced (Ⅰb/Ⅱ/Ⅲ) lung cancer stages. ROC analysis showed that the CTC numbers was effective on malignant SNP diagnosis. The combined use of CTCs and the density features of the nodules determined by CT further improved the overall screening, the diagnostic effectiveness for malignant SNPs, and determination of the pTNM (≤Ia vs.>Ia) stage. The CT morphology revealed that large, single, and solid SPNs were associated with significant CTC numbers and the CTC numbers were correlated with malignant histopathology. Using CEP8 as a marker resulted in detection of more CTC numbers in 22 patient samples triple stained for CEP8, EpCAM, and CKs. The CTCs determined by CEP8-positive staining could serve as potential screening and diagnostic markers for malignant SPNs.  相似文献   

19.
Intratumoral heterogeneity of breast cancer remains a major challenge in successful treatment. Failure of cancer therapies can also be accredited to inability to systemically eradicate cancer stem cells (CSCs). Recent evidence points to the role of epithelial-mesenchymal transition (EMT) in expanding the pool of tumor cells with CSCs features. Thus, we assessed expression level as well as heterogeneity of CSCs markers in primary tumors (PT), lymph node metastasis (LNM), and circulating tumor cells (CTCs)–enriched blood fractions in order to correlate them with signs of EMT activation as well as clinicopathological data of breast cancer patients. Level of CSCs markers (ALDH1, CD44, CD133, OCT-4, NANOG) and EMT markers was quantified in PT (N=107), LNM (N=56), and CTCs-enriched blood fractions (N=85). Heterogeneity of CSCs markers expression within each PT and LNM was assessed by calculating Gini Index. Percentage of ALDH1-positive cells was elevated in PT in comparison to LNM (P = .005). However, heterogeneity of the four CSCs markers: ALDH1 (P = .019), CD133 (P = .009), OCT-4 (P = .027), and CD44 (P < .001) was decreased in LNM. Samples classified as mesenchymal (post-EMT) showed elevated expression of CSCs markers (OCT-4 and CD44 in PT; OCT-4 in LNM; ALDH1, OCT-4, NANOG, CD44 in CTCs). Patients with mesenchymal-like CTCs had worse prognosis than patients with epithelial-like or no CTCs (P = .0025). CSCs markers are enriched in PT, LNM, and CTCs with mesenchymal features, but their heterogeneity is decreased in metastatic lymph nodes. Mesenchymal CTCs phenotype correlates with poor prognosis of the patients.  相似文献   

20.
Circulating tumor cells (CTCs) are important targets for treatment and critical surrogate markers when evaluating cancer prognosis and therapeutic response. A sensitive methodology for detecting CTCs in gastric cancer (GC) patients is needed. In this study we demonstrate a device for enrichment and cultivation of CTCs. In total, 22 patients with GC, all candidates for surgery, were enrolled in the study. Peripheral blood samples were collected before surgery, and patients were re-evaluated within operation and divided into two groups: resectable and non-resectable GC. A new size-based separation test for enrichment and cultivation of CTCs was used (MetaCell®). In addition to cytomorphological analysis, gene expression of tumor associated genes (Cytokeratin-18, Cytokeratin-19, Cytokeratin-20, Cytokeratin-7, EPCAM, MUC1, HER2, EGFR) and of leukocyte markers (e.g. CD45, CD68) was tested in enriched CTC fractions. CTCs were detected in 59 % of the patients studied (n = 13/22). CTCs were detected in seven patients of the resection group (7/10, 70 %) and six of the non-resectable group (6/12, 50 %). Enrichment of the viable CTCs allowed subsequent successful cultivation in vitro. The cytomorphological characterization of the CTCs was a prerequisite of random gene expression testing in CTC-positive samples. In CTC-positive samples gene expression of cytokeratin 18 and 19 was elevated in comparison to the whole blood gene expression analysis. CTCs were found to be present in both resectable and non-resectable gastric cancer patients. The size-based separation platform for CTCs may be used for in vitro cultivation, as well as in subsequent molecular analysis if desired. The sensitivity of CTC-detection could be enhanced by the combination of cytomorphological and molecular analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号