首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The identification of Dinophysis species with similar morphology but different toxic (Diarrhetic Shellfish Poisoning, DSP) potential is a crucial task in harmful algae monitoring programmes. The taxonomic assignment of Dinophysis species using molecular markers is a difficult task due to extremely low interspecific variability within their nuclear ribosomal genes and intergenic regions. Mitochondrial cox1 gene has been proposed as a better specific marker for Dinophysis species based on its higher resolution for two morphologically related species (Dinophysis acuminata and Dinophysis ovum) of the “Dinophysis acuminata complex”. In this study, the potential of two mitochondrial genes (mt cox1 and cob) to discriminate among six Dinophysis species (field isolates and cultures) associated with DSP events was explored. Neither mt cox1 nor cob genes provided enough resolution for all species of Dinophysis. The cob gene showed very poor resolution and grouped all Dinophysis spp. in a common clade. In contrast, the cox1 phylogeny distinguished 5 clades in the Dinophysiales – the “acuminata complex”, the “caudata group”, “acuta + norvegica” and Phalacromaspp. However, within the “D. acuminata complex” mtcox1 is so far the unique marker that differentiates D. acuminata from other species: isolates of D. ovum and Dinophysis sacculus had almost identical sequences (only four mismatches), but they were well separated from D. acuminata. D. acuminata and Dinophysis skagii (considered a life cycle stage of the former) showed identical cox1 sequences. Probes towards this gene can be useful in Mediterranean and Western Iberia sites where the co-occurrence of close morphotypes of D. acuminata and D. sacculus pose a problem for monitoring analyses. This is the first report on cultures of D. sacculus and its phylogenetic relation with other species of the D. acuminata complex.  相似文献   

2.
The dynamics of Dinophysis acuminata and its associated diarrhetic shellfish poisoning (DSP) toxins, okadaic acid (OA) and dinophysistoxin-1 (DTX1) as well as pectenotoxins (PTXs), were investigated within plankton and shellfish in Northport Bay, NY, USA, over a four year period (2008–2011). Over the course of the study, Dinophysis bloom densities ranged from ~104 to 106 cells L−1 and exceeded 106 L−1 in 2011 when levels of total OA, total DTX1, and PTX in the water column were 188, 86, and 2900 pg mL−1, respectively, with the majority of the DSP toxins present as esters. These cell densities exceed – by two orders of magnitude – those previously reported within thousands of samples collected from NY waters from 1971 to 1986. The bloom species was positively identified as D. acuminata via scanning electron microscopy and genetic sequencing (cox1 gene). The cox1 gene sequence from the D. acuminata populations in Northport Bay was 100% identical to D. acuminata from Narragansett Bay, RI, USA and formed a strongly supported phylogenetic cluster (posterior probability = 1) that included D. acuminata and Dinophysis ovum from systems along the North Atlantic Ocean. Shellfish collected from Northport Bay during the 2011 bloom had DSP toxin levels (1245 ng g−1 total OA congeners) far exceeding the USFDA action level (160 ng g−1 total OA of shellfish tissue) representing the first such occurrence on the East Coast of the U.S. D. acuminata blooms co-occurred with paralytic shellfish poisoning (PSP) causing blooms of Alexandrium fundyense during late spring each year of the study. D. acuminata cell abundances were significantly correlated with levels of total phytoplankton biomass and Mesodinium spp., suggesting food web interactions may influence the dynamics of these blooms. Given that little is known regarding the combined effects of DSP and PSP toxins on human health and the concurrent accumulation and depuration of these toxins in shellfish, these blooms represent a novel managerial challenge.  相似文献   

3.
Fluctuations of the genus Dinophysis, which contained several toxic species of diarrhetic shellfish poisoning (DSP), were investigated during blooms in Hiroshima Bay, Mutsu Bay and Ise Bay, Japan. The co-occurrences of small phytoplanktons (cryptophytes, other nanophytoplanktons, cyanobacteria and eukaryotic picophytoplanktons) were investigated to search for relationships with mixotrophic Dinophysis. Cryptophytes were divided into three size-groups based on length of their chloroplasts (>10, 5–10 and <5 μm) during counting by epifluorescence microscopy. Clear relationships were not found between the occurrences of Dinophysis spp. and nanophytoplanktons, cyanobacteria and eukaryotic picophytoplanktons. However, the fluctuations of small-sized cryptophytes (<5 μm) showed a close relationship with that of D. acuminata in Hiroshima Bay. In Mutsu Bay, small-sized cryptophytes also accompanied the first occurrence peak of Dinophysis spp. In Ise Bay, peaks of the occurrences of middle- and small-sized cryptophytes were observed 2–3 weeks before the peak of D. acuminata. These cryptophytes decreased rapidly with increase in D. acuminata. These results suggest the possibility that small-sized cryptophytes may be food organisms for mixotrophic Dinophysis, with the abundance of Dinophysis dependent on these cryptophytes.  相似文献   

4.
5.
《Harmful algae》2010,9(6):873-879
For decades, many aspects of Dinophysis biology have remained intractable due to our inability to maintain these organisms in laboratory cultures. Recent breakthroughs in culture methods have opened the door for detailed investigations of these important algae. Here, for the first time, we demonstrate toxin production in cultures of North American Dinophysis acuminata, isolated from Woods Hole, MA. These findings show that, despite the rarity of Dinophysis-related DSP events in North America, D. acuminata from this area has the ability to produce DSP toxins just as it does in other parts of the world where this species is a major cause of DSP toxicity. In our cultures, D. acuminata cells were observed feeding on Myrionecta rubra using a peduncle. Culture extracts were analyzed using LC–MS/MS, providing unequivocal evidence for the toxin DTX1 in the Dinophysis cultures. In addition, a significant amount of an okadaic acid diol ester, OA-D8, was detected. These results suggest that this Dinophysis isolate stores much of its OA as a diol ester. Also, toxin PTX-2 and a hydroxylated PTX-2 with identical fragmentation mass spectrum to that of PTX-11, but with a different retention time, were detected in this D. acuminata culture. This demonstration of toxin production in cultured North American Dinophysis sets the stage for more detailed studies investigating the causes of geographic differences in toxicity. It is now clear that North American Dinophysis have the ability to produce DSP toxins even though they only rarely cause toxic DSP events in nature. This may reflect environmental conditions that might induce or repress toxin production, genetic differences that cause modifications in toxin gene expression, or physiological and biochemical differences in prey species.  相似文献   

6.
Biotic interactions dominate plankton communities, yet the microbial consortia associated with harmful algal blooms (HABs) have not been well-described. Here, high-throughput amplicon sequencing of ribosomal genes was used to quantify the dynamics of bacterial (16S) and phytoplankton assemblages (18S) associated with blooms and cultures of two harmful algae, Alexandrium fundyense and Dinophysis acuminata. Experiments were performed to assess changes in natural bacterial and phytoplankton communities in response to the filtrate from cultures of these two harmful algae. Analysis of prokaryotic sequences from ecosystems, experiments, and cultures revealed statistically unique bacterial associations with each HAB. The dinoflagellate, Alexandrium, was strongly associated with multiple genera of Flavobacteria including Owenweeksia spp., Maribacter spp., and individuals within the NS5 marine group. While Flavobacteria also dominated Dinophysis-associated communities, the relative abundance of Alteromonadales bacteria strongly co-varied with Dinophysis abundances during blooms and Ulvibacter spp. (Flavobacteriales) and Arenicella spp. (Gammaproteobacteria) were associated with cells in culture. Eukaryotic sequencing facilitated the discovery of the endosymbiotic, parasitic dinoflagellate, Amoebophrya spp., that had not been regionally described but represented up to 17% of sequences during Alexandrium blooms. The presence of Alexandrium in field samples and in experiments significantly altered the relative abundances of bacterial and phytoplankton by both suppressing and promoting different taxa, while this effect was weaker in Dinophysis. Experiments specifically revealed a negative feedback loop during blooms whereby Alexandrium filtrate promoted the abundance of the parasite, Amoebophrya spp. Collectively, this study demonstrates that HABs formed by Alexandrium and Dinophysis harbor unique prokaryotic and eukaryotic microbiomes that are likely to, in turn, influence the dynamics of these HABs.  相似文献   

7.
Marine dinoflagellates of the genus Dinophysis are well known for producing diarrhetic shellfish poisoning (DSP) toxins and/or pectenotoxins which have a significant impact on public health as well as on marine aquaculture. Out of more than 80 Dinophysis species recorded so far, D. cf. acuminata is the most commonly observed in coastal areas worldwide. Due to their highly similar morphological features, however, an accurate discrimination of the various D. cf. acuminata species such as D. acuminata, D. ovum, and D. sacculus under light microscopy has proven to be a difficult task to accomplish. Hence, these species have thus far been referred to as the “Dinophysis acuminata complex”. Recent studies showed a discrimination between local strains of D. acuminata and D. ovum from Galician, northwestern Spain, using the mitochondrial cox1 gene as a genetic marker in addition to commonly used morphological features such as size and contour of the large hypothecal plates, shape of the small cells formed as part of their polymorphic life-cycle, development of the left sulcal list and ribs, and length of the right sulcal list. In the present study, attempts were made to discriminate between D. acuminata and D. ovum following single-cell isolation of 54 “D. acuminata complex” collected from Korean coastal waters, based on the abovementioned traits. Morphological data showed that all the traits analyzed overlapped between the two species. The mitochondrial cox1 (cytochrome c oxidase subunit I) gene sequences of every isolate were also determined, but a genetic distinction between D. acuminata and D. ovum could not be confirmed, suggesting that the cox1 gene is not a suitable genetic marker for discrimination between the two species. The results of this study suggest that the morphological variations observed within the “D. acuminata complex” may have been caused by several factors (e.g. different geographical locations, seasonal changes, and different environmental conditions), and that D. acuminata and D. ovum may be the same species.  相似文献   

8.
Due to the increasing prevalence of Dinophysis spp. and their toxins on every US coast in recent years, the need to identify and monitor for problematic Dinophysis populations has become apparent. Here, we present morphological analyses, using light and scanning electron microscopy, and rDNA sequence analysis, using a ~2-kb sequence of ribosomal ITS1, 5.8S, ITS2, and LSU DNA, of Dinophysis collected in mid-Atlantic estuarine and coastal waters from Virginia to New Jersey to better characterize local populations. In addition, we analyzed for diarrhetic shellfish poisoning (DSP) toxins in water and shellfish samples collected during blooms using liquid-chromatography tandem mass spectrometry and an in vitro protein phosphatase inhibition assay and compared this data to a toxin profile generated from a mid-Atlantic Dinophysis culture. Three distinct morphospecies were documented in mid-Atlantic surface waters: D. acuminata, D. norvegica, and a “small Dinophysis sp.” that was morphologically distinct based on multivariate analysis of morphometric data but was genetically consistent with D. acuminata. While mid-Atlantic D. acuminata could not be distinguished from the other species in the D. acuminata-complex (D. ovum from the Gulf of Mexico and D. sacculus from the western Mediterranean Sea) using the molecular markers chosen, it could be distinguished based on morphometrics. Okadaic acid, dinophysistoxin 1, and pectenotoxin 2 were found in filtered water and shellfish samples during Dinophysis blooms in the mid-Atlantic region, as well as in a locally isolated D. acuminata culture. However, DSP toxins exceeded regulatory guidance concentrations only a few times during the study period and only in noncommercial shellfish samples.  相似文献   

9.
The seasonal distribution of the dinoflagellate genus, Dinophysis, in Maizuru Bay, Japan, was investigated from May 1997 to December 1999. Seven species of Dinophysis were detected, including the toxic species of Dinophysis acuminata and D. fortii. The most dominant species wasD. acuminata, detected year-around and more abundantly during periods when water temperatures were between 15 and 18 °C. No relationship was found between cell abundance of Dinophysis spp. and concentrations of dissolved inorganic nutrients. Phycoerythrin containing nano- and picophytoplankton (cryptophytes and cyanobacteria), suspected to be prey of mixotrophic Dinophysis, were enumerated simultaneously. A clear relationship was not found among the cell abundances of Dinophysis spp. and nano- and picophytoplankton. Autofluorescence of Dinophysis spp. (mainly D. acuminata and D. fortii) under blue-light excitation was usually of a yellow-orange color. Occasionally, Dinophysis spp. had red autofluorescencing and yellow-orange autofluorescencing particles. The proportion of cells possessing red autofluorescence tended to be higher in the warm season. Numerous coccoid cells of picophytoplankton (ca. 1–2 μm in diameter) were found attached to the cell surface of D. acuminata, D. fortii, etc. and food vacuole-like structures also observed. These observations suggest there is a close relationship between mixotrophic Dinophysis spp. and certain picophytoplankton. Based on our observations, the possibility that the picophytoplankton found to be attached onto Dinophysis cell surfaces are a food source for Dinophysis, and a source of DSP toxins, is discussed.  相似文献   

10.
For decades, many aspects of Dinophysis biology have remained intractable due to our inability to maintain these organisms in laboratory cultures. Recent breakthroughs in culture methods have opened the door for detailed investigations of these important algae. Here, for the first time, we demonstrate toxin production in cultures of North American Dinophysis acuminata, isolated from Woods Hole, MA. These findings show that, despite the rarity of Dinophysis-related DSP events in North America, D. acuminata from this area has the ability to produce DSP toxins just as it does in other parts of the world where this species is a major cause of DSP toxicity. In our cultures, D. acuminata cells were observed feeding on Myrionecta rubra using a peduncle. Culture extracts were analyzed using LC–MS/MS, providing unequivocal evidence for the toxin DTX1 in the Dinophysis cultures. In addition, a significant amount of an okadaic acid diol ester, OA-D8, was detected. These results suggest that this Dinophysis isolate stores much of its OA as a diol ester. Also, toxin PTX-2 and a hydroxylated PTX-2 with identical fragmentation mass spectrum to that of PTX-11, but with a different retention time, were detected in this D. acuminata culture. This demonstration of toxin production in cultured North American Dinophysis sets the stage for more detailed studies investigating the causes of geographic differences in toxicity. It is now clear that North American Dinophysis have the ability to produce DSP toxins even though they only rarely cause toxic DSP events in nature. This may reflect environmental conditions that might induce or repress toxin production, genetic differences that cause modifications in toxin gene expression, or physiological and biochemical differences in prey species.  相似文献   

11.
Dinophysis acuminata produces lipophilic shellfish toxins (LSTs) that have economic and ecological impact on marine invertebrates in NE Atlantic where aquaculture farming is prevalent. Identification of D. acuminata can be complex. Cells exhibit a variety of morphotypes that overlap between species making identification using routine light microscopy difficult. These cells are mixotrophic and their population size is influenced by hydrographic conditions and prey populations. Dinophysis cells are able to acquire and temporarily keep prey plastids from a variety of photosynthetic unicellular sources. The Dinophysis community in Scottish waters tend to be dominated by cells with morphologies that appear to be variants of D. acuminata/norvegica complex particularly during late spring/early summer. To determine the identity of these morphotypes, DNA barcoding was performed on 32 single cell isolates from sites around the Scottish coast using the ribosomal internal transcribed spacer 1 (ITS1) and a partial cytochrome oxidase I (COI) fragment on the same single cells. Although the cells exhibited a variety of morphotypes, most were restricted to one cluster containing D. acuminata and three grouped with Dinophysis ovum. This is the first molecular confirmation of the presence of D. ovum in Scottish waters. Two isolates showed considerable divergence – one was unidentifiable from the public databases, whilst the other matched a Dinophysis cf. acuta isolate from Canada. To investigate prey plastids, molecular analysis of these Dinophysis single cells was conducted with a partial fragment of the plastid ribosomal marker (16S). Most cells harboured plastids from the cryptophyte Teleaulax – the most commonly reported plastid type, however one cell harboured a Rhodomonas/Storeatula derived plastid. This finding increases the range and variety of cryptophyte plastids found in Dinophysis and increases the range of prey-types.  相似文献   

12.
The mixotrophic dinoflagellate Dinophysis acuminata is a widely distributed diarrhetic shellfish poisoning (DSP) producer. Toxin variability of Dinophysis spp. has been well studied, but little is known of the manner in which toxin production is regulated throughout the cell cycle in these species, in part due to their mixotrophic characteristics. Therefore, an experiment was conducted to investigate cell cycle regulation of growth, photosynthetic efficiency, and toxin production in D. acuminata. First, a three-step synchronization approach, termed “starvation-feeding-dark”, was used to achieve a high degree of synchrony of Dinophysis cells by starving the cells for 2 weeks, feeding them once, and then placing them in darkness for 58 h. The synchronized cells started DNA synthesis (S phase) 10 h after being released into the light, initiated G2 growth stage eight hours later, and completed mitosis (M phase) 2 h before lights were turned on. The toxin content of three dominant toxins, okadaic acid (OA), dinophysistoxin-1 (DTX1) and pectenotoxin-2 (PTX2), followed a common pattern of increasing in G1 phase, decreasing on entry into the S phase, then increasing again in S phase and decreasing in M phase during the diel cell cycle. Specific toxin production rates were positive throughout the G1 and S phases, but negative during the transition from G1 to S phase and late in M phase, the latter reflecting cell division. All toxins were initially induced by the light and positively correlated with the percentage of cells in S phase, indicating that biosynthesis of Dinophysis toxins might be under circadian regulation and be most active during DNA synthesis.  相似文献   

13.
The entrapment and death of the ciliate Mesodinium rubrum in the mucus threads in cultures with Dinophysis is described and quantified. Feeding experiments with different concentrations and predator–prey ratios of Dinophysis acuta, Dinophysis acuminata and M. rubrum to study the motility loss and aggregate formation of the ciliates and the feeding behaviour of Dinophysis were carried out. In cultures of either Dinophysis species, the ciliates became entrapped in the mucus, which led to the formation of immobile aggregates of M. rubrum and subsequent cell lysis. The proportion of entrapped ciliates was influenced by the concentration of Dinophysis and the ratio of predator and prey in the cultures. At high cell concentrations of prey (136 cells mL−1) and predator (100 cells mL−1), a maximum of 17% of M. rubrum cells became immobile and went through cell lysis. Ciliates were observed trapped in the mucus even when a single D. acuminata cell was present in a 3.4 mL growth medium. Both Dinophysis species were able to detect immobile or partly immobile ciliates at a distance and circled around the prey prior to the capture with a stretched out peduncle. Relatively high entrapment and lysis of M. rubrum cells in the mucus threads indicates that under certain conditions Dinophysis might have a considerable impact on the population of M. rubrum.  相似文献   

14.
Never before observed or cited in Dinophysis studies, deformations in Dinophysis acuminata and Dinophysis sacculus are reported throughout their cellular division phases (cytokinesis, and sulcal list regeneration) in 5 in situ cell cycle studies in the Punic harbors of Carthage (northern Tunisia). Two types of deformation were observed: invaginations in the ventral and dorsal margin and protuberances at the base of the left sulcal list. No virus or bacteria were detected with Syber green stain. In situ division rates (μ) varied among seasons and stations for the same species. D. acuminata exhibited moderate (0.22 day−1) to high (0.68 day−1) μ rates which were however very low (0.02–0.17 day−1) for D. sacculus in autumn and moderate (0.21–0.35 day−1) in late spring. In 2009 the seasonal distribution of Dinophysis indicates maximum Dinophysis cf. ovum abundance in March and a high number of D. acuminata in early June, while in 2010 maximum abundance of the same species was found in mid-June.Molecular and genetic studies and staining with specific fluorescent strains should be addressed to hopefully explain these Dinophysis cell deformations during their in situ division.  相似文献   

15.
The purpose of the study was to investigate the genetic diversity of Dinophysis species from around the Scottish coast, with a view to an improved understanding of the dynamics and identification of this genus in Scottish waters. Single-cell PCR amplification with direct sequencing was performed on a total of 441 Dinophysis cells isolated from both live and Lugol's fixed plankton net samples. Universal eukaryotic primers were used to amplify the large subunit (LSU) ribosomal RNA (rRNA) gene of the Dinophysis isolates, with a frequency of PCR success of 26% for non-fixed and 48% for fixed samples. From this a total of 30 isolates were selected for this study and the D1–D2 region of the LSU-rRNA gene sequenced for phylogenetic analysis. No significant correlation could be made between geographical location and LSU sequence, although some regional sequence heterogeneity was observed within the Dinophysis acuta species. LSU sequence data was used to design Dinophysis genus specific and Dinophysis clade-specific primers primarily to ensure clean sequences from universal D1–D2 amplicons without a requirement for cloning. Three clade-specific primers designed to a region within the D2 hypervariable region of the LSU-rRNA gene allowed discrimination of Dinophysis acuminata/norvegica from Dinophysis tripos/caudata and Dinophysis fortii/acuta. In two isolates, SC359 (D. tripos) and LC58 (D. acuta), nested PCR products were observed with both the expected clade-specific primer, and Dasd-R2, the D. acuminata/norvegica clade-specific primer. Cloning and sequence analysis suggested that these amplicons were genuine “D. acuminata-like” sequences and their presence, albeit at a low frequency within different Dinophysis species, indicated that individual Dinophysis cells possess heterologous copies of the LSU-rRNA gene that are similar to LSU sequences normally associated with D. acuminata. The nature of the process that generated these hybrid cells, the frequency of such events and their importance is as yet unknown, but may provide a cautionary note for the development of PCR-based species specific detection methods.  相似文献   

16.
Dinophysis is a cosmopolitan genus of marine dinoflagellates, considered as the major proximal source of diarrheic shellfish toxins and the only producer of pectenotoxins (PTX). From three oceanographic expeditions carried out during autumn, spring and late summer along the Argentine Sea (∼38–56°S), lipophilic phycotoxins were determined by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) in size-fractionated plankton samples. Lipophilic toxin profiles were associated with species composition by microscopic analyses of toxigenic phytoplankton. Pectenotoxin-2 and PTX-11 were frequently found together with the presence of Dinophysis acuminata and Dinophysis tripos. By contrast, okadaic acid was rarely detected and only in trace concentrations, and dinophysistoxins were not found. The clear predominance of PTX over other lipophilic toxins in Dinophysis species from the Argentine Sea is in accordance with previous results obtained from north Patagonian Gulfs of the Argentine Sea, and from coastal waters of New Zealand, Chile, Denmark and United States. Dinophysis caudata was rarely found and it was confined to the north of the sampling area. Because of low cell densities, neither D. caudata nor Dinophysis norvegica could be biogeographically related to lipophilic toxins in this study. Nevertheless, the current identification of D. norvegica in the southern Argentine Sea is the first record for the southwestern Atlantic Ocean. Given the typical toxigenicity of this species on a global scale, this represents an important finding for future surveillance of plankton-toxin associations.  相似文献   

17.
Multiple species of the genus Dinophysis produce diarrhetic shellfish toxins (okadaic acid and Dinophysis toxins, OA/DTXs analogs) and/or pectenotoxins (PTXs). Only since 2008 have DSP events (illnesses and/or shellfish harvesting closures) become recognized as a threat to human health in the United States. This study characterized 20 strains representing five species of Dinophysis spp. isolated from three US coastal regions that have experienced DSP events: the Northeast/Mid-Atlantic, the Gulf of Mexico, and the Pacific Northwest. Using a combination of morphometric and DNA-based evidence, seven Northeast/Mid-Atlantic isolates and four Pacific Northwest isolates were classified as D. acuminata, a total of four isolates from two coasts were classified as D. norvegica, two isolates from the Pacific Northwest coast were identified as D. fortii, and three isolates from the Gulf of Mexico were identified as D. ovum and D. caudata. Toxin profiles of D. acuminata and D. norvegica varied by their geographical origin within the United States. Cross-regional comparison of toxin profiles was not possible with the other three species; however, within each region, distinct species-conserved profiles for isolates of D. fortii, D. ovum, and D. caudata were observed. Historical and recent data from various State and Tribal monitoring programs were compiled and compared, including maximum recorded cell abundances of Dinophysis spp., maximum concentrations of OA/DTXs recorded in commercial shellfish species, and durations of harvesting closures, to provide perspective regarding potential for DSP impacts to regional public health and shellfish industry.  相似文献   

18.
The species Dinophysis tripos is a widely distributed marine dinoflagellate associated with diarrheic shellfish poisoning (DSP) events, which has been recently identified as a pectenotoxin (PTX) producer. In two sampling expeditions carried out during austral autumns 2012 and 2013 along the Argentine Sea (≈38–56° S), lipophilic phycotoxins were measured by tandem mass spectrometry coupled to liquid chromatography (LC–MS/MS) in size-fractionated plankton samples together with microscopic analyses of potentially toxic phytoplankton. PTX-2, PTX-11 and PTX-2sa were recurrently detected in the 50–200 μm fractions, in association to D. tripos. PTX-2 was also widely distributed among the 20–50 μm fractions, mostly related to Dinophysis acuminata. Okadaic acid or its analogs were not detected in any sample. This is the first report of D. tripos related to PTX in the Argentine Sea and the first record of PTX-11 and PTX-2sa for this area. The morphological variability of D. tripos, including the presence of intermediate, small and dimorphic cells, is described. Also, the micro- and mesoplanktonic potential grazers of Dinophysis spp. were explored.  相似文献   

19.
The variability of toxigenic phytoplankton and the consequent uptake and loss of toxins by the mussel Choromytilus meridionalis was investigated in the southern Benguela at the event scale (3–10 days) in response to the upwelling–downwelling cycle. Phytoplankton and mussel samples were collected daily (20 March–11 April 2007) from a mooring station (32.04°S; 18.26°E) located 3.5 km offshore of Lambert's Bay, within the St Helena Bay region. Rapid changes in phytoplankton assemblages incorporated three groups of toxigenic phytoplankton: (1) the dinoflagellate Alexandrium catenella; (2) several species of Dinophysis, including Dinophysis acuminata, Dinophysis fortii, Dinophysis hastata and Dinophysis rotundata; and (3) members of the diatom genus Pseudo-nitzschia. Analysis of phytoplankton concentrates by LC–MS/MS or LC-FD provided information on the toxin composition and calculated toxicity of each group. Several additional in vitro assays were used for the analysis of toxins in mussels (ELISA, RBA, MBA for PSP toxins; and ELISA for DSP toxins). Good correspondence was observed between methods except for the MBA, which provided significantly lower (approximately 2-fold) estimates of PSP toxins. PSP and DSP toxins both exceeded the regulatory limits in Choromytilis meridionalis, but ASP toxins were undetected. Differences were observed in the composition of both PSP and DSP toxins in C. meridionalis from that of the ingested dinoflagellates (PSP toxins showed an increase in STX, C1,2, and traces of dcSTX and GTX1,4 and a decrease in NEO; DSP toxins showed an increased in DTX1, and traces of PTX2sa, and a decrease in OA). The rate of loss of PSP toxins following dispersal of the A. catenella boom was 0.12 d−1. Variation in the loss rates of different PSP toxins contributed to the change in toxin profile in C. meridionalis. Prediction of net toxicity in shellfish of the nearshore environment in the southern Benguela is limited due to rapid phytoplankton community changes, high variability in cellular toxicity, and the selective uptake and loss of toxins, and/or transformation of toxins.  相似文献   

20.
Dinoflagellate species of Dinophysis, in particular D. acuminata and D. acuta, produce lipophilic toxins that pose a threat to human health when concentrated in shellfish and jeopardize shellfish exploitations in western Europe. In northwestern Iberia, D. acuminata has a long growing season, from spring to early autumn, and populations develop as soon as shallow stratification forms when the upwelling season begins. In contrast, D. acuta blooms in late summer, when the depth of the pycnocline is maximal and upwelling pulses are moderate. In situ observations on the hydrodynamic regimes during the two windows of opportunity for Dinophysis species led us to hypothesize that D. acuta should be more sensitive to turbulence than D. acuminata.To test this hypothesis, we studied the response of D. acuminata and D. acuta to three realistic turbulence levels low (LT), ε ≈ 10−6 m2 s-3; medium (MT), ε ≈ 10-5 m2 s-3 and high (HT), ε ≈ 10-4 m2 s-3 generated by Turbogen, a highly reproducible, computer-controlled system. Cells of both species exposed to LT and MT grew at rates similar to the controls. Marked differences were found in the response to HT: D. acuminata grew slowly after an initial lag phase, whereas D. acuta cell numbers declined. Results from this study support the hypothesis that turbulence may play a role in shaping the spatio-temporal distribution of individual species of Dinophysis. We also hypothesize that, in addition to cell disturbance affecting division, sustained high shear generated by microturbulence may cause a decline in Dinophysis numbers due to decreased densities of ciliate prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号