首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ObjectiveLNK is an adapter protein negatively regulating the JAK/STAT cell signaling pathway. In this study, we observed the correlation between variation in LNK gene and the clinical type of myeloproliferative neoplasms (MPN).MethodsA total of 285 MPN cases were recruited, including essential thrombocythemia (ET) 154 cases, polycythemia vera (PV) 76 cases, primary myelofibrosis (PMF) 19 cases, and chronic myeloid leukemia (CML) 36 cases. Ninety-three healthy individuals were used as normal controls. V617F mutation in JAK2 was identified by allele-specific PCR method, RT-PCR was used for the detection of BCR/ABL1 fusion gene, and mutations and variations in coding exons and their flanking sequences of LNK gene were examined by PCR-sequencing.ResultsMissense mutations of A300V, V402M, and R415H in LNK were found in 8 patients including ET (4 cases, all combined with JAK2-V617F mutation), PV (2 cases, one combined with JAK2-V617F mutation), PMF (one case, combined with JAK2-V617F mutation) and CML (one case, combined with BCR/ABL1 fusion gene). The genotype and allele frequencies of the three SNPs (rs3184504, rs111340708 and rs78894077) in LNK were significantly different between MPN patients and controls. For rs3184504 (T/C, in exon2), the T allele (p.262W) and TT genotype were frequently seen in ET, PV and PMF (P<0.01), and C allele (p.262R) and CC genotype were frequently seen in CML (P<0.01). For rs78894077 (T/C, in exon1), the T allele (p.242S) was frequently found in ET (P<0.05). For rs111340708 (TGGGGx5/TGGGGx4, in intron 5), the TGGGG x4 allele was infrequently found in ET, PMF and CML(P<0.01).ConclusionMutations in LNK could be found in some of MPN patients in the presence or absence of JAK2-V617F mutation. Several polymorphisms in LNK gene may affect the clinical type or the genetic predisposition of MPN.  相似文献   

2.
3.
The JAK2 mutation V617F is detectable in a majority of patients with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). Enforced expression of JAK2 V617F in mice induces myeloproliferation and bone marrow (BM) fibrosis, suggesting a causal role for the JAK2 mutant in the pathogenesis of MPNs. However, little is known about mechanisms and effector molecules contributing to JAK2 V617F-induced myeloproliferation and fibrosis. We show that JAK2 V617F promotes expression of oncostatin M (OSM) in neoplastic myeloid cells. Correspondingly, OSM mRNA levels were increased in the BM of patients with MPNs (median 287% of ABL, range 22-1450%) compared to control patients (median 59% of ABL, range 12-264%; P < 0.0001). OSM secreted by JAK2 V617F+ cells stimulated growth of fibroblasts and microvascular endothelial cells and induced the production of angiogenic and profibrogenic cytokines (HGF, VEGF, and SDF-1) in BM fibroblasts. All effects of MPN cell-derived OSM were blocked by a neutralizing anti-OSM antibody, whereas the production of OSM in MPN cells was suppressed by a pharmacologic JAK2 inhibitor or RNAi-mediated knockdown of JAK2. In summary, JAK2 V617F-mediated up-regulation of OSM may contribute to fibrosis, neoangiogenesis, and the cytokine storm observed in MPNs, suggesting that OSM might serve as a novel therapeutic target molecule in these neoplasms.  相似文献   

4.
JAK2 inhibition therapy is used to treat patients suffering from myeloproliferative neoplasms (MPN). Conflicting data on this therapy are reported possibly linked to the types of inhibitors or disease type. Therefore, we decided to compare in mice the effect of a JAK2 inhibitor, Fedratinib, in MPN models of increasing severity: polycythemia vera (PV), post‐PV myelofibrosis (PPMF) and rapid post‐essential thrombocythemia MF (PTMF). The models were generated through JAK2 activation by the JAK2V617F mutation or MPL constant stimulation. JAK2 inhibition induced a correction of splenomegaly, leucocytosis and microcytosis in all three MPN models. However, the effects on fibrosis, osteosclerosis, granulocytosis, erythropoiesis or platelet counts varied according to the disease severity stage. Strikingly, complete blockade of fibrosis and osteosclerosis was observed in the PPMF model, linked to correction of MK hyper/dysplasia, but not in the PTMF model, suggesting that MF development may also become JAK2‐independent. Interestingly, we originally found a decreased in the JAK2V617F allele burden in progenitor cells from the spleen but not in other cell types. Overall, this study shows that JAK2 inhibition has different effects according to disease phenotypes and can (i) normalize platelet counts, (ii) prevent the development of marrow fibrosis/osteosclerosis at an early stage and (iii) reduce splenomegaly through blockage of stem cell mobilization in the spleen.  相似文献   

5.
Alterations in the bone marrow niche induced by abnormal production of cytokines and other soluble factors have been associated with disease progression in classical BCR‐ABL1 negative myeloproliferative neoplasms (MPN). Variations in circulating proteins might reflect local disease processes and plasma proteome profiling could serve to identify possible diagnostic and prognostic biomarkers. We employed a human cytokine array to screen for 105 distinct analytes in pooled plasma samples obtained from untreated young MPN patients (<35 years) with different clinical phenotypes and driver mutations, as well as from healthy individuals. Among molecules that exhibited significantly increased levels in MPN patients versus controls, the top of the list was represented by Dickkopf‐related protein 1 (Dkk‐1), which also showed the highest potential for discrimination between MPN subtypes. In the next step, a quantitative ELISA was used to measure plasma Dkk‐1 levels in 30 young‐onset MPN—10 essential thrombocythemia (ET), 10 polycythemia vera (PV), 10 pre‐fibrotic primary myelofibrosis (pre‐PMF)—and 10 controls. The results suggested that plasma Dkk‐1 levels could differentiate ET from pre‐PMF, in JAK2 V617F‐positive as well as in CALR‐positive patients, and also ET from PV in JAK2 V617F‐positive patients.  相似文献   

6.
ABSTRACT: BACKGROUND: Secreted frizzled-related proteins (SFRPs) are antagonists of the Wnt signaling pathway, which plays a central role in stem cell maintenance and differentiation of stem cells and hematopoietic progenitors. Epigenetic downregulation of SFRPs by promoter hypermethylation has been described to be involved in the pathogenesis of hematopoietic malignancies. There is an association between aberrant Wnt signaling and the established cancer stem cell concept. In contrast to BCR-ABL1-positive chronic myeloid leukemia, BCR-ABL1-negative myeloproliferative neoplasms (Ph-MPN) are characterized by the frequent occurrence of an autoactivating mutation in the JAK2 tyrosine kinase (JAK2V617F) or other mutations in the JAK-STAT pathway. However, pathogenetic mechanisms of JAK2 mutated or unmutated Ph-MPN remain not completely understood.We determined the promoter methylation status of SFRP-1, -2, -4, and [MINUS SIGN]5 in 57 MPN patient samples by methylation-specific polymerase chain reaction (PCR) (MSP). JAK2V617F was assessed by allele-specific PCR. RESULTS: Aberrant methylation among primary MPN samples was 4% for SFRP-1, 25% for SFRP-2, 2% for SFRP-4, and 0% for SFRP-5. Hypermethylation of SFRP-2, which was the most frequently hypermethylated gene in our study, could not be correlated to any specific MPN subtype. However, we detected a significant correlation between SFRP-2 methylation and presence of a JAK2V617F mutation (P = 0.008). None of the 10 CML samples showed any SFRP-methylation. CONCLUSIONS: Our data indicate that epigenetic dysregulation of the Wnt signaling pathway is a common event in MPN with aberrant methylation of at least one SFRP being detected in 25% of the primary patient samples and in 30% if only accounting for Ph-MPN. A significant correlation between SFRP-2 methylation and presence of JAK2V617F in our data support the hypothesis that epigenetic dysregulation may be a complementary mechanism to genetic aberrations. Aberrant methylation of crucial stem cell maintenance genes seems to contribute to disease pathogenesis in Ph-MPN.  相似文献   

7.
During tumor development, loss of heterozygosity (LOH) often occurs. When LOH is preceded by an oncogene activating mutation, the mutant allele may be further potentiated if the wild-type allele is lost or inactivated. In myeloproliferative neoplasms (MPN) somatic acquisition of JAK2V617F may be followed by LOH resulting in loss of the wild type allele. The occurrence of LOH in MPN and other proliferative diseases may lead to a further potentiating the mutant allele and thereby increasing morbidity. A real time PCR based SNP profiling assay was developed and validated for LOH detection of the JAK2 region (JAK2LOH). Blood of a cohort of 12 JAK2V617F-positive patients (n=6 25-50% and n=6>50% JAK2V617F) and a cohort of 81 patients suspected of MPN was stored with EDTA and subsequently used for validation. To generate germ-line profiles, non-neoplastic formalin-fixed paraffin-embedded tissue from each patient was analyzed. Results of the SNP assay were compared to those of an established Short Tandem Repeat (STR) assay. Both assays revealed JAK2LOH in 1/6 patients with 25-50% JAK2V617F. In patients with >50% JAK2V617F, JAK2LOH was detected in 6/6 by the SNP assay and 5/6 patients by the STR assay. Of the 81 patients suspected of MPN, 18 patients carried JAK2V617F. Both the SNP and STR assay demonstrated the occurrence of JAK2LOH in 5 of them. In the 63 JAK2V617F-negative patients, no JAK2LOH was observed by SNP and STR analyses. The presented SNP assay reliably detects JAK2LOH and is a fast and easy to perform alternative for STR analyses. We therefore anticipate the SNP approach as a proof of principle for the development of LOH SNP-assays for other clinically relevant LOH loci.  相似文献   

8.
The majority of polycythemia vera (PV) patients harbor a unique somatic mutation (V617F) in the pseudokinase domain of JAK2, which leads to constitutive signaling. Here we show that the homologous mutations in JAK1 (V658F) and in Tyk2 (V678F) lead to constitutive activation of these kinases. Their expression induces autonomous growth of cytokine-dependent cells and constitutive activation of STAT5, STAT3, mitogen-activated protein kinase, and Akt signaling in Ba/F3 cells. The mutant JAKs exhibit constitutive signaling also when expressed in fibrosarcoma cells deficient in JAK proteins. Expression of the JAK2 V617F mutant renders Ba/F3 cells hypersensitive to insulin-like growth factor 1 (IGF1), which is a hallmark of PV erythroid progenitors. Upon selection of Ba/F3 cells for autonomous growth induced by the JAK2 V617F mutant, cells respond to IGF1 by activating STAT5, STAT3, Erk1/2, and Akt on top of the constitutive activation characteristic of autonomous cells. The synergic effect on proliferation and STAT activation appears specific to the JAK2 V617F mutant. Our results show that the homologous V617F mutation induces activation of JAK1 and Tyk2, suggesting a common mechanism of activation for the JAK1, JAK2, and Tyk2 mutants. JAK3 is not activated by the homologous mutation M592F, despite the presence of the conserved GVC preceding sequence. We suggest that mutations in the JAK1 and Tyk2 genes may be identified as initial molecular defects in human cancers and autoimmune diseases.  相似文献   

9.
ABSTRACT: Splenomegaly is a common sign of primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (post-PV MF), and post-essential thrombocythemia myelofibrosis (post-ET MF) that is associated with bothersome symptoms, which have a significant negative impact on patients' quality of life. It may also be present in patients with advanced polycythemia vera (PV) or essential thrombocythemia (ET). Until recently, none of the therapies used to treat MF were particularly effective in reducing splenomegaly. The discovery of an activating Janus kinase 2 (JAK2) activating mutation (JAK2V617F) that is present in almost all patients with PV and in about 50-60?% of patients with ET and PMF led to the initiation of several trials investigating the clinical effectiveness of various JAK2 (or JAK1/JAK2) inhibitors for the treatment of patients with ET, PV, and MF. Some of these trials have documented significant clinical benefit of JAK inhibitors, particularly in terms of regression of splenomegaly. In November 2011, the US Food and Drug Administration approved the use of the JAK1- and JAK2-selective inhibitor ruxolitinib for the treatment of patients with intermediate or high-risk myelofibrosis, including PMF, post-PV MF, and post-ET MF. This review discusses current therapeutic options for splenomegaly associated with primary or secondary MF and the treatment potential of the JAK inhibitors in this setting.  相似文献   

10.
Therapeutically validated oncoproteins in myeloproliferative neoplasms (MPN) include BCR-ABL1 and rearranged PDGFR proteins. The latter are products of intra- ( e.g. FIP1L1-PDGFRA) or inter-chromosomal ( e.g. ETV6-PDGFRB ) gene fusions. BCR-ABL1 is associated with chronic myelogenous leukaemia (CML) and mutant PDGFR with an MPN phenotype characterized by eosinophilia and in addition, in case of FIP1L1-PDGFRA, bone marrow mastocytosis. These genotype-phenotype associations have been effectively exploited in the development of highly accurate diagnostic assays and molecular targeted therapy. It is hoped that the same will happen in other MPN with specific genetic alterations: polycythemia vera ( JAK2 V617F and other JAK2 mutations), essential thrombocythemia ( JAK2 V617F and MPL5 15 mutations), primary myelofibrosis ( JAK2 V617F and MPL515 mutations), systemic mastocytosis ( KIT D816V and other KIT mutations) and stem cell leukaemia/lymphoma ( ZNF198-FGFR1 and other FGFR1 fusion genes). The current review discusses the above-listed mutant molecules in the context of their value as drug targets.  相似文献   

11.
12.
13.
A high percentage of patients with the myeloproliferative disorder polycythemia vera (PV) harbor a Val617→Phe activating mutation in the Janus kinase 2 (JAK2) gene, and both cell culture and mouse models have established a functional role for this mutation in the development of this disease. We describe the properties of MRLB-11055, a highly potent inhibitor of both the WT and V617F forms of JAK2, that has therapeutic efficacy in erythropoietin (EPO)-driven and JAK2V617F-driven mouse models of PV. In cultured cells, MRLB-11055 blocked proliferation and induced apoptosis in a manner consistent with JAK2 pathway inhibition. MRLB-11055 effectively prevented EPO-induced STAT5 activation in the peripheral blood of acutely dosed mice, and could prevent EPO-induced splenomegaly and erythrocytosis in chronically dosed mice. In a bone marrow reconstituted JAK2V617F-luciferase murine PV model, MRLB-11055 rapidly reduced the burden of JAK2V617F-expressing cells from both the spleen and the bone marrow. Using real-time in vivo imaging, we examined the kinetics of disease regression and resurgence, enabling the development of an intermittent dosing schedule that achieved significant reductions in both erythroid and myeloid populations with minimal impact on lymphoid cells. Our studies provide a rationale for the use of non-continuous treatment to provide optimal therapy for PV patients.  相似文献   

14.
Essential thrombocythemia (ET) is an entity of classic Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), characterized by thrombocytosis with megakaryocytic hyperplasia and thrombocytes are increased with abnormal functions. Discovery of the protein tyrosine kinase JAK2 V617F allele contributed to better understanding of the pathogenetic mechanisms of MPNs. Acquired single point mutation in the JAK2 V617F was determined approximately 50–60 % of patients with ET. In this study we aimed to investigate the relationship between JAK2 V617F gene mutation, hematologic, biochemical markers and the complications in the ET patients. A total of 268 patients diagnosed with ET and 219 of those studied for JAK2 gene mutation were followed at the hematology clinics of three major hospitals between 2008 and 2013 were screened retrospectively. Laboratory, clinical and hematologic parameters were compared for JAK2 V617F positive and JAK2 V617F negative patients with ET. 102 (46 %) patients were positive with the JAK2 V617F mutation. The complications were observed in 61 (28 %) patients and 38 (62 %) of them had JAK2 V617F mutation. The levels of white blood cells, neutrophil, basophil, red blood cells, hemoglobin, hematocrit, mean platelet volume, thrombocytes, eosinophil; urea, creatinine were significantly different in patients with the JAK2 V617F mutation (P < 0.05). Presence of the JAK2 V617F mutation supports the diagnosis of ET. It would be useful to investigate the JAK2 V617F mutation and the hematologic and biochemical markers at diagnosis with respect to consider the risk of developing complications and to take the precautions against these complications.  相似文献   

15.
An activating mutation of Janus kinase 2 (JAK2-V617F) was previously described in chronic myeloproliferative disorders (MPD). In previously published studies, the frequency of the JAK2-V617F mutation was determined to be 80-90 % for patients with polycythemia vera (PV) and 40-70 % for essential thrombocythemia (ET). In this study, we analyzed the relationship between the JAK2-V617F mutation and clinical-hematological parameters in Turkish patients with MPD and compared these findings with published studies from other geographic regions. A total of 148 patients were studied; of which, 70 were diagnosed with PV and 78 with ET. The mutation status of JAK2 was determined using a tetra-primer polymerase chain reaction. We found that 80 % of the PV group and 42 % of the ET group were positive for the JAK2-V617F mutation. When all patients were analyzed, the levels of white blood cells, hemoglobin and splenomegaly were significantly different in patients with the JAK2-V617F mutation (p < 0.05). To our knowledge, this study is the first to evaluate the relationship between MPD and JAK2-V617F in Turkish patients. The JAK2-V617F mutation is frequently detected in the Turkish patients with MPD, and especially in patients with PV. Hence, it would be useful to include JAK2 mutation screening in the initial evaluation of patients suspected to have MPD.  相似文献   

16.
Aberrant JAK2 signalling plays a central role in myeloproliferative neoplasms (MPN). JAK2 inhibitors have proven to be clinically efficacious, however, they are not mutation‐specific and competent enough to suppress neoplastic clonal haematopoiesis. We hypothesized that, by simultaneously targeting multiple activated signalling pathways, MPN could be more effectively treated. To this end we investigated the efficacy of BEZ235, a dual PI3K/mTOR inhibitor, alone and in combination with the JAK1/JAK2 inhibitor ruxolitinib, in different preclinical models of MPN. Single‐agent BEZ235 inhibited the proliferation and induced cell cycle arrest and apoptosis of mouse and human JAK2V617F mutated cell lines at concentrations significantly lower than those required to inhibit the wild‐type counterpart, and preferentially prevented colony formation from JAK2V617F knock‐in mice and patients' progenitor cells compared with normal ones. Co‐treatment of BEZ235 and ruxolitinib produced significant synergism in all these in‐vitro models. Co‐treatment was also more effective than single drugs in reducing the extent of disease and prolonging survival of immunodeficient mice injected with JAK2V617F‐mutated Ba/F3‐EPOR cells and in reducing spleen size, decreasing reticulocyte count and improving spleen histopathology in conditional JAK2V617F knock‐in mice. In conclusion, combined inhibition of PI3K/mTOR and JAK2 signalling may represent a novel therapeutic strategy in MPN.  相似文献   

17.

Background

Non-reactive platelet counts elevation occurs mainly in myeloproliferative disorders (MPDs), which have been reported to be closely associated with JAK2 V617F mutation. Complete blood cell count (CBC) is essential in diagnosis of MPDs, however, the impact of JAK2 V617F mutation on the patients’ hemogram variation remains not clear.

Methods

JAK2 V617F mutation was detected by allele specific real-time quantitative fluorescence PCR (AS-qPCR).

Results

Of the 402 non-reactive platelet elevating patients, JAK2 V617F mutation was detected in 222 (55.2%) patients. RBC counts, WBC counts, platelet-large contrast ratio (P-LCR), platelet distribution width (PDW) and mean platelet volume (MPV) were much higher in JAK2 V617F mutated patients, except platelet counts. In addition, when the patients were classified into subgroups by blood cell counts, it was found that JAK2 V617F mutation rate increased progressively with the increase of RBC counts and WBC counts, other than platelet counts. Furthermore, trilineage hyperplasia group showed highest JAK2 V617F mutation rate (93.26%), followed by the bilineage hyperplasia groups. Lastly, JAK2 V617F mutant allele burden was found much higher in polycythemia vera (PV) patients [median(P25–P75): 45.02%(35.12%–54.22%)] than in essential thrombocythemia (ET) patients [median(P25–P75): 28.23%(17.77%–41.66%)], and that it increased with WBC counts (r = 0.393, p = 0.000) and RBC counts(r = 0.215, p = 0.001), other than platelet counts (r = −0.051, p = 0.452). Further analysis revealed that in ET patients, JAK2 V617F mutant allele burden correlated with WBC counts and platelet counts positively, other than RBC counts, while in PV patients, it correlated with WBC counts and RBC counts positively, but not platelet counts.

Conclusions

JAK2 V617F mutation occurs frequently in patients with non-reactive elevated platelet counts. The presence of JAK2 V617F mutation has great impact on hemogram variation, including RBC counts, WBC counts, platelet parameters and lineage hyperplasia, but not on platelet counts. Besides, JAK2 V617F mutant allele burden affects the blood cell proliferation pattern.  相似文献   

18.
19.
20.
Over the last years, we have witnessed significant improvement in our ability to elucidate the genetic events, which contribute to the pathogenesis of acute and chronic leukemias, and also in patients with myeloproliferative neoplasms (MPN). However, despite significant insight into the role of specific mutations, including the JAK2V617F mutation, in MPN pathogenesis, the precise mechanisms by which specific disease alleles contribute to leukemic transformation in MPN remain elusive. Here we review recent studies aimed at understanding the role of downstream signaling pathways in MPN initiation and phenotype, and discuss how these studies have begun to lead to novel insights with biologic, clinical, and therapeutic relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号