首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Authors index   总被引:1,自引:0,他引:1  
Lehmann  Johannes  Weigl  Doris  Peter  Inka  Droppelmann  Klaus  Gebauer  Gerhard  Goldbach  Heiner  Zech  Wolfgang 《Plant and Soil》1999,210(2):249-262
In a runoff irrigation system in Northern Kenya, we studied the nutrient interactions of sole cropped and alley cropped Sorghum bicolor (L.) Moench and Acacia saligna (Labill.) H.L. Wendl. The trees were pruned once before the cropping season and the biomass was used as fodder for animals. The nutrient contents in leaf tissue, soil and soil solution were monitored and the uptake of applied tracers (15N, Sr) was followed. The grain yield of alley cropped sorghum was similar to or slightly higher than in monoculture and did not decrease near the tree-crop interface. Foliar N and Ca contents of the crop were higher in the agroforestry combination than in monoculture, corresponding to higher soil N and Ca contents. Soil solution and soil mineral N dynamics indicate an increase of N under the tree row and unused soil N at the topsoil in the alley of the sole cropped trees as well as below 60 cm depth in the crop monoculture. The N use efficiency of the tree+crop combination was higher than the sole cropped trees or crops. Competition was observed for Zn and Mn of both tree and crop whereas for Ca only the tree contents decreased. P, K, Mg and Fe dynamics were not affected by alley cropping at our site. The lower uptake of applied Sr by trees in alley cropping compared to those of the monoculture stand suggested a lower competitiveness of the acacia than sorghum, which did not show lower Sr contents when intercropped. The study showed the usefulness of combining soil and plant analyses together with tracer techniques identifying nutrient competition, nutrient transfer processes and the complementary use of soil nutrients, as the main features of the tree-crop combination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Monoculture croplands are a major source of global anthropogenic emissions of nitrous oxide (N2O), a potent greenhouse gas that contributes to ozone depletion. Agroforestry has the potential to reduce N2O emissions. Presently, there is no systematic comparison of soil N2O emissions between cropland agroforestry and monoculture systems in Central Europe. We investigated the effects of converting the monoculture cropland system into the alley cropping agroforestry system on soil N2O fluxes at three sites (each site has paired agroforestry and monoculture) in Germany, where agroforestry combined crop rows and poplar short-rotation coppice (SRC). We measured soil N2O fluxes monthly over 2 years (March 2018–January 2020) using static vented chambers. Annual soil N2O emissions from agroforestry ranged from 0.21 to 2.73 kg N ha−1 year−1, whereas monoculture N2O emissions ranged from 0.34 to 3.00 kg N ha−1 year−1. During the rotation of corn crop, with high fertilization rates, agroforestry reduced soil N2O emissions by 9% to 56% compared to monocultures. This was mainly caused by low soil N2O emissions from the unfertilized agroforestry tree rows. Soil N2O fluxes were predominantly controlled by soil mineral N in both agroforestry and monoculture systems. Our findings suggest that optimized fertilizer input will further enhance the potential of agroforestry for mitigating N2O emissions.  相似文献   

3.
农林复合系统中物种间水肥光竞争机理分析与评价   总被引:25,自引:0,他引:25  
赵英  张斌  王明珠 《生态学报》2006,26(6):1792-1801
低丘红壤农林复合系统被认为能通过引入树木而利用土壤深层水分及防治水土流失,从而作为亚热带地区应对季节性干旱的有效利用方式。然而,复合也可引起光能、水分和养分的竞争,导致农作物减产。通过作物生长量的测定、利用多年监测的土壤水文数据、15N微区试验及光合有效辐射的测量,综合探讨了南酸枣-花生复合系统引起的物种间水肥光的变化;通过其交互作用形成的协同,竞争关系分析,较为全面地评价了农林复合系统水肥光竞争特征。研究表明:低丘红壤上南酸枣与花生复合,促进了南酸枣生长,却减小了20%~50%的花生产量和生物量。其原因不单是南酸枣遮荫引起复合花生光合有效辐射减弱,还与水、肥竞争有关。复合系统在旱季加大利用50~100cm土层土壤水分,从而缓冲了干旱造成的影响;但南酸枣与花生间作系统也存在着一定的水分竞争。复合使得南酸枣能够利用施于花生区及淋失到60cm深处的养分,提高了养分的利用率;但同时也导致养分的竞争并影响花生的生长。在花生产量、生物量受复合南酸枣竞争影响因子中,以光最大、养分其次、水分最小。农林复合系统水肥光交互作用因其组分类型与时空配置而异,需从生态、经济、社会效益方面对复合模式加以优化。  相似文献   

4.
The purpose of this study was to test the hypothesis that soil water content would vary spatially with distance from a tree row and that the effect would differ according to tree species. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare soil water distribution and dynamics in a maize monoculture with that under maize (Zea mays L.) intercropped with a 3-year-old tree row of Grevillea robusta A. Cunn. Ex R. Br. (grevillea) and hedgerow of Senna spectabilis DC. (senna). Soil water content was measured at weekly intervals during one cropping season using a neutron probe. Measurements were made from 20 cm to a depth of 225 cm at distances of 75, 150, 300 and 525 cm from the tree rows. The amount of water stored was greater under the sole maize crop than the agroforestry systems, especially the grevillea-maize system. Stored soil water in the grevillea-maize system increased with increasing distance from the tree row but in the senna-maize system, it decreased between 75 and 300 cm from the hedgerow. Soil water content increased least and more slowly early in the season in the grevillea-maize system, and drying was also evident as the frequency of rain declined. Soil water content at the end of the cropping season was similar to that at the start of the season in the grevillea-maize system, but about 50 and 80 mm greater in the senna-maize and sole maize systems, respectively. The seasonal water balance showed there was 140 mm of drainage from the sole maize system. A similar amount was lost from the agroforestry systems (about 160 mm in the grevillea-maize system and 145 mm in the senna-maize system) through drainage or tree uptake. The possible benefits of reduced soil evaporation and crop transpiration close to a tree row were not evident in the grevillea-maize system, but appeared to greatly compensate for water uptake losses in the senna-maize system. Grevillea, managed as a tree row, reduced stored soil water to a greater extent than senna, managed as a hedgerow.  相似文献   

5.
农林复合系统作为一种土地综合利用体系,可以有效吸收和固定CO2、增加碳储量,在达到收获目的的同时,可有力减轻温室效应.农林复合系统对CO2的调控作用,使人们认识到农林复合系统较单一作物系统有着明显优势,因此,深入了解不同农林复合系统的碳汇功能及其影响因素,对全球碳循环研究及碳收支准确评估具有重要意义.本文综述了农林复合系统的概念与分类,探讨了农林复合系统不同组分的碳固存潜力及其影响因子,得出不同区域、不同类型农林复合系统内植被的固碳速率相差很大(0.59~11.08 t C·hm-2·a-1),其主要受到气候因子和农林复合系统自身特性(物种组成、林木密度和林龄)的影响.农林复合系统内土壤的固碳潜力受到系统内树木和非树木成分输入的生物量多少和质量、土壤质地、土壤结构的影响.不同地区的任何一个农林复合系统的碳储量多少主要依赖于复合系统中各组分的结构和功能.针对目前的研究现状,指出应重点加强农林复合系统优化结构的碳汇功能研究,以及加强农林复合系统碳储量的时空分布格局及其固碳机制的长期研究.  相似文献   

6.
Tree root systems may improve soil fertility through carbon inputs, uptake of leachable nutrients and maintenance of soil biomass, but can at the same time reduce crop yields by competition for water and nutrients. Quantitative information about the positive and negative effects of tree roots and their changes in space and time are necessary for the optimization of agroforestry associations. An alley cropping experiment was layed out as a randomized complete block design on a Plinthic Lixisol/Ferralic Cambisol with Gliricidia sepium hedgerows at 5 m distance, including a sole cropping control. The development of root systems was monitored by sequential soil coring (eight samplings) during one year, with maize and groundnut as crops. Additional information is presented from a single sampling for rice during the foregoing year. Pronounced fluctuations of live root length density indicated an important variability in the nutrient and water uptake capacity of the vegetation. At low total root length density, the hedgerows affected the root development in the agroforestry plots directly by the presence of their root systems. At high root length density, they affected root development mainly by improving crop root growth and influencing the composition of the spontaneous vegetation. The root length density of the hedgerows was too low to compete with the crops for soil resources. The hedgerows tended to increase root length densities in the subsoil when few roots were present, thus possibly reducing the risk of nutrient leaching. However, the length density of the perennial root systems decreased during the cropping season, presumably as an effect of repeated pruning, and attained minimum values almost at the same time as the crops. Trees with denser root systems which are less frequently pruned may be more efficient in achieving closer nutrient cycles, though at the cost of higher root competition with crops.  相似文献   

7.
The design of productive and efficient intercropping systems depends on achieving complementarity between component species resource capture niches. Spatiotemporal patterns of capture and use of pruning and urea nitrogen (N) by trees and intercrops were elucidated by isotopic tracing, and consequences for nitrogen use efficiency were examined. During the first cropping season after applying urea–15N, maize accounted for most of the plant 15N recovery in Peltophorum dasyrrachis (33.5%) and Gliricidia sepium (22.3%) hedgerow intercropping systems. Maize yield was greatest in monoculture, and maize in monoculture also recovered a greater proportion of urea 15N (42%) than intercropped maize. Nitrogen recovery during active crop growth will not be increased by hedgerow intercropping if hedgerows adversely affect crop growth through competition for other resources. However, hedgerows recovered substantial amounts of 15N during both cropping cycles (e.g. a total of 13–22%), showing evidence of spatio-temporal complementarity with crops in the spatial distribution of roots and the temporal distribution of Nuptake. The degree of complementarity was species-specific, showing the importance of selecting appropriate trees for simultaneous agroforestry. After the first cropping season 17–34% of 15N applied was unaccounted for in the plant-soil system. Urea and prunings N were recovered by hedgerows in similar amounts. By the end of the second (groundnut) cropping cycle, total plant 15N recovery was similar in all cropping systems. Less N was taken up by the maize crop from applications of labelled prunings (5–7%) than from labelled urea (22–34%), but the second crop recovered similar amounts from these two sources, implying that prunings N is more persistent than urea N. More 15N was recovered by the downslope hedgerow than the upslope hedgerow, demonstrating the interception of laterally flowing N by hedgerows.  相似文献   

8.
核桃-小麦复合系统中细根生长动态及竞争策略   总被引:3,自引:0,他引:3  
以核桃(Juglans regia)-小麦(Triticum aestivum)间作复合系统为研究对象,用微根窗和根钻相结合的方法采样,研究复合系统中核桃和小麦细根年内年际的生长动态和竞争适应策略,为农林复合系统的经营管理和竞争模型的建立提供理论依据和技术支持。结果表明,间作核桃和小麦根系均在上半年有一个大的生长高峰(5月和4月),在下半年有一个小的生长高峰(9月和11月),二者的竞争主要发生在上半年的大生长高峰期。在各年份各土层,间作核桃的根长密度均低于单作核桃,且在从第7年开始存在显著差异。在0—20 cm土层间作小麦根长密度在第3—7年间获得迅速提高,从第7年开始显著高于单作小麦,但在20 cm以下土层则相反。间作使核桃和小麦细根生态位实现了分离,11年的观察期内间作核桃比单作核桃细根的垂直分布中心下移了6.59 cm,间作小麦比单作小麦的上移了8.59 cm。在根系竞争策略方面,小麦根系是通过短期内的快速生长,迅速占据土壤空间获得竞争优势;而核桃根系是通过根系的逐年积累,逐步占据土壤空间从而获得竞争优势。可以干扰核桃根系积累过程的"竞争-干扰-再平衡"农林复合经营管理策略可以让复合系统中核桃和小麦保持各自竞争优势的情况下实现共存。在根系形态方面,自身细根直径较小者小麦在剧烈竞争区域以增加细根直径减小比根长来适应竞争,而自身细根直径较大者核桃则相反。  相似文献   

9.
Crop yield and water use efficiency (WUE) in a wheat-maize double cropping system are influenced by short and uneven rainfalls in the North China Plain (NCP). A 2-year experiment was conducted to investigate the effects of irrigation on soil water balance, crop yield and WUE to improve irrigation use efficiency in the cropping system. Soil water depletion (△SWS)by crop generally decreased with the increase of irrigation and rainfall, while △SWS for the whole rotation was relatively stable among these irrigation treatments. High irrigations in wheat season increased initial soil moisture and △SWS for subsequent maize especially in the drought season. Initial soil water influenced mainly by the irrigation and rainfall in the previous crop season, is essential to high yield in such cropping systems. Grain yield decreased prior to evapotranspiration(ET) when ET reached about 300 mm for wheat, while maize showed various WUEs with similar seasonal ET. For whole rotation, WUE declined when ET exceeded about 650 mm. These results indicate great potential for improving irrigation use efficiency in such wheat-maize cropping system in the NCP. Based on the present results, reasonable irrigation schedules according to different annual rainfall conditions are presented for such a cropping system.  相似文献   

10.
吴骏恩  刘文杰 《广西植物》2016,36(7):859-867
当前,西双版纳地区大面积橡胶单一种植林已引发了诸多的生态环境问题,为解决这些问题同时协调当地的经济发展,农林复合系统被生态学者们认为是最好的解决办法。然而目前关于不同间作模式下橡胶树水分利用效率研究还很少。因此,于2013-2014年的雨季中期(8月)和末期(11月)、雾凉季(1月)、干热季(3月),分别测定了中国科学院西双版纳热带植物园内四种不同胶农(林)复合系统(橡胶—叶茶、橡胶—咖啡、橡胶—大叶千斤拔、橡胶—可可复合系统)及单层橡胶林的土壤含水量、橡胶树及其林下间作植物的枝条凌晨水势和正午水势,以及它们植物叶片的δ13 C值,分析了各胶农(林)复合系统内橡胶树的水分利用效率,以期遴选出水分关系配置合理的复合橡胶林栽培模式,为环境友好型橡胶种植林的建设和推广提供相关的参考依据和理论支持。结果表明:除橡胶—可可复合系统以外,其余胶农(林)复合系统内的橡胶树水分利用效率值均高于单层橡胶林;橡胶—大叶千斤拔复合系统的土壤含水量显著高于其它复合系统;橡胶—叶茶复合系统的土壤含水量虽然低于橡胶—大叶千斤拔复合系统,但其最为稳定、季节变化小;橡胶—咖啡复合系统的水分利用效率最高最稳定,即使受到寒害也没有引起明显变化;而橡胶—可可复合系统的作用不明显,所有特征都与单层橡胶林相似。这表明除了橡胶—可可复合系统外,其他3种胶农(林)复合系统都显著地缓解了橡胶树在旱季所遭受的水分胁迫,同时也能有效地抵御突发性天气灾害。  相似文献   

11.
Crop yield and water use efficiency (WUE) in a wheat-maize double cropping system are influenced by short and uneven rainfalls in the North China Plain (NCP), A 2-year experiment was conducted to investigate the effects of irrigation on soil water balance, crop yield and WUE to improve irrigation use efficiency in the cropping system, Soil water depletion (~SWS) by crop generally decreased with the increase of irrigation and rainfall, while ASWS for the whole rotation was relatively stable among these irrigation treatments, High irrigations in wheat season increased initial soil moisture and ASWS for subsequent maize especially in the drought season, Initial soil water influenced mainly by the irrigation and rainfall in the previous crop season, is essential to high yield in such cropping systems, Grain yield decreased prior to evapotranspiraUon (ET) when ET reached about 300mm for wheat, while maize showed various WUEs with similar seasonal ET, For whole rotation, WUE declined when ET exceeded about 650 mm, These results indicate great potential for improving irrigation use efficiency in such wheat-maize cropping system in the NCP, Based on the present results, reasonable irrigation schedules according to different annual rainfall conditions are presented for such a cropping system.  相似文献   

12.
三峡库区花岗岩坡耕地不同种植方式下水土流失定位研究   总被引:14,自引:0,他引:14  
对三峡库区花岗岩坡耕地不同种植方式下水土流失规律的定位研究表明,库区雨季主要集中在5~8月,降雨量约占全年总降雨量的60%以上;此期间的土壤侵蚀量也占全年总侵蚀量的60%以上,其中6、7月土壤侵蚀量约占全年的1/2.不同种植方式下地面覆盖率差异较大,三熟制下或与多年生植物(牧草、黄花菜)间作时地面的覆盖率明显大于两熟制,夏季作物为花生时雨季的地面覆盖高于夏作为红薯,其土壤及养分流失量亦相对较低.不同种植方式下土壤及养分流失的大小顺序为油(麦)红薯>油菜(小麦)玉米红薯>油菜(小麦)玉米花生>油菜(小麦)金荞麦花生,油菜(小麦)黄花花生.研究结果还表明,在良好的种植与管理方式下,坡耕地土壤流失量仍可被控制在允许范围内.  相似文献   

13.
Fine root turnover of irrigated hedgerow intercropping in Northern Kenya   总被引:3,自引:0,他引:3  
Lehmann  Johannes  Zech  Wolfgang 《Plant and Soil》1998,198(1):19-31
Fine root turnover (<2 mm) was determined from repeated measurements of root distribution up to 120 cm soil depth by core sampling in four month intervals. Sole cropped Sorghum bicolor and Acacia saligna were compared with the agroforestry combination in an alley cropping system in semiarid Northern Kenya. Three methods for the calculation of root production were used: the max-min, balancing-transfer and compartment-flow method. The highest root biomass was found in the topsoil for all cropping systems, though trees had a deeper root system. Trees and crops had a similar amount of below-ground biomass during the vegetation period (0.3 and 0.4 Mg DM ha-1 120 cm-1), but in the agroforestry combination root biomass was more than the sum of the sole cropped systems (1.1 Mg DM ha-1 120 cm-1). The tree system showed a very static root development with little fluctuation between seasons, whereas root biomasses were very dynamic in the crop and tree + crop systems. Root production was highest in the tree + crop combination with 2.1 Mg DM ha-1 a-1, with about 50% less in sole cropped trees and crops. Root N input to soil decreased in the order tree + crop>tree>crop system with 13.5, 11.0 and 3.2 kg N ha-1 a-1, and cannot be estimated from total below-ground biomass or carbon turnover, as N is accumulated in senescing roots. Such low N input to soil stresses the need for investigating other processes of nutrient input from roots to soil. Areas of highest N input were identified in the topsoil under the tree row in the tree system. Resource utilisation and C and N input to soil were highest with a combination of annual and perennial crops.  相似文献   

14.
In an alley cropping system, prunings from the hedgerow legume are expected to supply nitrogen (N) to the associated cereal. However, this may not be sufficient to achieve maximum crop yield. Three field experiments with alley-cropped maize were conducted in a semi-arid environment in northern Australia to determine: (1) the effect of N fertilizer on maize growth in the presence of fresh leucaena prunings; (2) the effect of incorporation of leucaena and maize residues on maize yield and the fate of plant residue15N in the alley cropping system; and (3) the15N recovery by maize from15N-labelled leucaena, maize residues and ammonium sulphate fertilizer.Leucaena residues increased maize crop yield and N uptake although they did not entirely satisfy the N requirement of the alley crop. Additional N fertilizer further increased the maize yield and N uptake in the presence of leucaena residues. Placement of leucaena residues had little effect on the availability of N to maize plants over a 2 month period. The incorporation of leucaena residues in the soil did not increase the recovery of leucaena15N by maize compared with placement of the residues on the soil surface. After 2 months, similar proportions of the residue15N were recovered by maize from mulched leucaena (6.3%), incorporated leucaena (6.1%) and incorporated maize (7.6%). By the end of one cropping season (3 months after application) about 9% of the added15N was taken up by maize from either15N-labelled leucaena as mulch or15N-labelled maize residues applied together with unlabelled fresh leucaena prunings as mulch. The recovery of the added15N was much higher (42.7%) from the15N-labelled ammonium sulphate fertilizer at 40 kg N ha-1 in the presence of unlabelled leucaena prunings. Most of the added15N recovered in the 200 cm soil profile was distributed in the top 25 cm soil with little leached below that. About 27–41% of the leucaena15N was apparently lost, largely through denitrification from the soil and plant system, in one cropping season. This compared with 35% of the fertilizer15N lost when the N fertilizer was applied in the presence of prunings. ei]H Lambers  相似文献   

15.
There is increasing interest in the ecology of tree-based intercropping systems, particularly alley cropping, in temperate settings. Shoot pruning of the tree component is an integral practice to alley cropping. Shoot pruning likely results in an input of belowground C and N to soil, with potential, but unknown impacts on the time pattern of N availability. We evaluated the impacts of pruning of Amorpha fruticosa L. on (a) its root dynamics; (b) mineral N and microbial N, and (c) the fate of root-derived N and its importance in determining N availability. For this, we conducted repeated partial pruning and foliar labeling with 15N under field conditions in Georgia, USA. Pruning altered root dynamics by initially decreasing biomass and later preventing increases, likely due to root death. Pruning modified the time pattern of mineral N by substantially increasing concentrations during the 3?months following pruning. 15N labeling indicated that root-derived N was an important source of this extra N and that pruning caused the availability of root-derived N to microbes to be extended until the following growing season. Greater concentrations of mineral N, a greater pool of microbial N and prolonged microbial access and storage of root-derived N with pruning has the potential to positively impact system productivity.  相似文献   

16.
Smith  D.M.  Jackson  N.A.  Roberts  J.M.  Ong  C.K. 《Plant and Soil》1999,211(2):191-205
Limited knowledge of root distributions in agroforestry systems has resulted in assumptions that various tree species are more suited to agroforestry than others, because they are presumed to have few superficial lateral roots. This assumption was tested for Grevillea robusta when grown with maize (Zea mays) in an agroforestry system in a semi-arid region of Kenya. At a site with a shallow soil, root lengths of both species between the soil surface and bedrock were quantified by soil coring, at intervals over four cropping seasons, in plots containing sole stands and mixtures of the trees and crop; the trees were 4–6 years old and they were severely pruned before the third season. Profiles of soil water content were measured using a neutron probe. Prior to pruning of the trees, recharge of soil water below the deepest maize roots did not occur, resulting in significant (P<0.05) suppression of maize root lengths and downward root growth. Maximum root length densities for both species occurred at the top of the soil profile, reaching 1.1–1.7 cm cm-3 for G. robusta, but only 0.5 cm cm-3 for maize grown with trees. Root populations in mixed plots were dominated by G. robusta at all times, all depths and all distances from trees and maize and, thus, there was no spatial separation of the rooting zones of the trees and crop. Competition between G. robusta and maize for soil water stored near the surface was unavoidable, although pruning reduced its impact; complementary use of water by the trees and crop would only have been possible if alternative sources of water were available. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The quantity and patterns of net mineralization of soil nitrogen (N) were studied in Vertisols under different cropping systems in the semi-arid tropical areas. Eight cropping systems were selected; three contained pigeonpea (PP), one contained PP and cowpea (COP), and two contained chickpea (CP) as legume component crops, one included sequence cropping with nonlegumes during the rainy and postrainy seasons, and one system was kept fallow (F) during the rainy season and sown to sorghum (S) during the postrainy season. Cropping systems with PP as a component crop increased mineralizable N(N o ) content two-fold in the soil compared with fallow + sorghum (F+S)–F+S system. The N mineralization rate constant (k) was not significantly affected by previous cropping history of the soil; however, a numerically higher rate constant was observed in the COP/PP intercrop, followed by sequential S+safflower (SF) system as compared to the other soils. Mineral N accumulation curves for six soils were more accurately described by the exponential model than the linear model. The active N fraction (N o /Ntot %) varied between 8 and 16% for different systems and a direct relationship was observed between N o /Ntot and total N for the soils under diverse cropping systems.ICRISAT JA (1638)  相似文献   

18.
农田向农林复合系统转变过程中土壤物理性质的变化   总被引:2,自引:0,他引:2  
以渭北黄土区农林实践中被广泛采用的核桃-小麦间作复合模式为研究对象,以两物种的单作系统为对照,研究单作农田向农林复合系统转变对土壤物理性质的影响,为农林复合系统经营管理和模型的建立提供理论依据.结果表明: 核桃-小麦间作对土壤物理性质的改善作用主要发生在0~40 cm土层.核桃-小麦间作可以避免表层(0~20 cm)土壤容重升高,同时在20~40 cm土层对单作农田形成的犁底层也有显著的改善作用.核桃-小麦间作对各土层田间持水量均表现出持续的改善作用,除在20~40 cm土层略低于核桃单作外,其他从第5年开始均高于两单作系统.核桃-小麦间作对各土层土壤孔隙度均存在持续的改善作用,在0~20 和20~40 cm土层与两单作系统相比存在显著差异,同时也能提高毛管空隙度的比例.农田向农林复合系统转变过程中对土壤容重、田间持水量、土壤孔隙度均有持续的改善作用,且对浅层土壤的改善作用强于深层土壤.  相似文献   

19.
严正升  郭忠升  宁婷  张文文 《生态学报》2016,36(21):6872-6878
为了研究枝条覆盖对林地土壤水分的影响,提高土壤水分利用效率。2013年5—9月,以半干旱黄土丘陵区平茬柠条林为对象,采用中子水分仪对未覆盖和枝条覆盖林地土壤水分进行定位观测,研究了枝条覆盖对林地土壤水分的影响。研究期间共观测到降雨28次,总降雨量达495.9 mm。未覆盖和覆盖林地降雨补给量与降雨量之间均呈极显著正相关关系。枝条覆盖使林地降水入渗补给系数由0.50增加至0.70,明显提高了林地次降水补给量和入渗深度。覆盖林地各月土壤水分消耗量均高于对照林地,整个生长季,前者比后者多消耗了37.56 mm土壤水分,仅相当于所增加的降雨补给量的1/3。在丰水年,覆盖一直表现出对林地土壤水分的正效应,剖面0—260 cm范围内土壤水分条件有明显改善。  相似文献   

20.
油蒿灌丛群落浅层土壤水分对不同降雨格局的响应   总被引:2,自引:0,他引:2  
以库布齐沙漠东缘典型分布的油蒿灌丛为对象,使用微气象观测系统连续监测2016—2018年生长季降雨及多层次土壤含水量(0~10、10~30、30~50 cm),研究不同降雨格局下荒漠土壤水分的时空动态变化,分析降雨事件对土壤水分的补给作用和水分入渗特征。结果表明: 油蒿灌丛浅层土壤含水量在降雨脉动下产生明显的季节和垂直变化,雨量和雨前土壤含水量是影响土壤水分补给和入渗的主控因素。0~10 cm土层土壤对降雨反馈迅速,>3.8 mm降雨对该层产生补给作用;10~30 cm土层土壤对降雨反馈稍显迟滞,需8.6 mm以上降雨才能产生有效补给;30~50 cm土层土壤对降雨反馈更加滞后,降雨量超过11.8 mm后才能达到该补给深度。水分入渗速率随雨量增大而升高,随土层加深而减弱,入渗深度与雨量和雨前土壤含水量均呈显著正相关。研究期间,降雨事件以<10 mm降雨为主,占总降雨次数的78.4%,降雨对土壤的补给主要作用于30 cm以内土层,对深层土壤的补给十分有限,不利于深根性植物生长,降雨格局直接影响和改变了研究区植物群落的构成、分布和演替。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号