首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The biosynthesis of UDP-N-acetylmuramic acid (UDP-MurNAc) by reduction of UDP-N-acetylglucosamine-enolpyruvate (UDP-GlcNAc-EP) in an NADPH and FAD-dependent reaction in bacteria is one of the key steps in peptidoglycan biosynthesis catalyzed by UDP-N-acetylglucosamine-enolpyruvate reductase (MurB). Here, we present the crystal structure of Mycobacterium tuberculosis MurB (MtbMurB) with FAD as the prosthetic group at 2.0 Å resolution. There are six molecules in asymmetric unit in the form of dimers. Each protomer can be subdivided into three domains and the prosthetic group, FAD is bound in the active site between domain I and domain II. Comparison of MtbMurB structure with the structures of the Escherichia coli MurB (in complex with UDP-GlcNAc-EP) and Pseudomonas aeruginosa MurB (in complex with NADPH) showed all three structures share similar domain architecture and residues in the active site. The nicotinamide and the enol pyruvyl moieties are well aligned upon superimposition, both positioned in suitable position for hydride transfer to and from FAD. The comparison studies and MD simulations demonstrate that the two lobes of domain-III become more flexible. The substrates (NADPH and UDP-GlcNAc-EP) binding responsible for open conformation of MurB, suggesting that NADPH and UDP-GlcNAc-EP interactions are conformationally stable. Our findings provide a detail mechanism about the closed to open state by binding of NADPH and UDP-GlcNAc-EP induces the conformational changes of MurB structure that may trigger the MurB catalytic reaction.  相似文献   

2.
用生物标记的方法将色氨酸类似物标记在DsbA蛋白中的色氨酸位置,分析标记蛋白质的谱学性质、色氨酸结构环境和潜在应用前景.5-OH-Trp标记的DsbA蛋白具有315 nm激发的荧光发射光谱;19F-NMR 能分辨5-F-Trp标记的DsbA蛋白的两个F-Trp残基(Trp76和Trp126),Trp76化学位移变化反映二硫键交换引起的结构转化.进一步将利用标记蛋白的独特荧光和19F-NMR性质,研究DsbA蛋白的氧化还原及与底物蛋白的结合作用.  相似文献   

3.
A plasma membrane fraction prepared from human neutrophils had a fluorescence resembling that of a fluorescent flavoprotein, with emission maximum near 520nm and excitation maxima near 380 and 460nm. The fluorescence emission and excitation properties of Triton N-101-solubilized membrane fraction resembled those of FAD. FAD was present in the membranes at a concentration of 417pmol/mg of protein and cytochrome b−245 at a concentration of 407pmol/mg of protein. In a 110-fold purified preparation of cytochrome b−245 the ratio of FAD:cytochrome b was 1:1. Analytical gradient centrifugation of neutrophil homogenates shows a coincidence of two cytochrome b peaks and two peaks of fluorescence, corresponding with plasma membrane and specific granule fractions; most of the FAD was non-fluorescent and located in fractions lighter than the plasma membrane. Plasma membrane fractions prepared from neutrophils of patients suffering from the X-linked form of chronic granulomatous disease lacked cytochrome b and contained 194pmol of FAD/mg of protein; plasma membrane fractions prepared from neutrophils of patients with the autosomal recessive form of chronic granulomatous disease contained both cytochrome b−245 and FAD in the normal range of concentrations in a ratio of 1:1. Phagocytic vesicles were prepared from normal neutrophils and found to contain FAD and cytochrome b in a ratio 2.22:1, suggesting that activation of neutrophils many involve the incorporation of an additional flavin into the membrane. Under anaerobic conditions in the presence of EDTA to act as an electron donor to a flavin, the cytochrome b−245 of neutrophil membranes was partly (12%) photoreducible, an effect increased to 100% by the addition of FMN. The extent of reduction of cytochrome b in an anaerobic neutrophil homogenate containing NADH increased from 30% to 70% on illumination. We suggest that these results indicate a close association between FAD and cytochrome b−245 and support a scheme for electron transport thus: [Formula: see text]  相似文献   

4.
Biosynthesis of UDP-N-acetylmuramic acid in bacteria is a committed step towards peptidoglycan production. In an NADPH- and FAD-dependent reaction, the UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) reduces UDP-N-acetylglucosamine-enolpyruvate to UDP-N-acetylmuramic acid. We determined the three-dimensional structures of the ternary complex of Pseudomonas aeruginosa MurB with FAD and NADP+ in two crystal forms to resolutions of 2.2 and 2.1 Å, respectively, to investigate the structural basis of the first half-reaction, hydride transfer from NADPH to FAD. The nicotinamide ring of NADP+ stacks against the si face of the isoalloxazine ring of FAD, suggesting an unusual mode of hydride transfer to flavin. Comparison with the structure of the Escherichia coli MurB complex with UDP-N-acetylglucosamine-enolpyruvate shows that both substrates share the binding site located between two lobes of the substrate-binding domain III, consistent with a ping pong mechanism with sequential substrate binding. The nicotinamide and the enolpyruvyl moieties are strikingly well-aligned upon superimposition, both positioned for hydride transfer to and from FAD. However, flexibility of the substrate channel allows the non-reactive parts of the two substrates to bind in different conformations. A potassium ion in the active site may assist in substrate orientation and binding. These structural models should help in structure-aided drug design against MurB, which is essential for cell wall biogenesis and hence bacterial survival.  相似文献   

5.
Multi-color fluorescence emission from leaf tissues is presented as a powerful reporter on plant biochemistry and physiology that can be applied both at macro- and micro-scales. The blue–green fluorescence emission is typically excited by ultraviolet (UV) excitation. However, this approach cannot be applied in investigating intact leaf interior because the UV photons are largely absorbed in the epidermis of the leaf surface. This methodological barrier is eliminated by replacing the UV photon excitation by excitation with two infra-red photons of the same total energy. We demonstrate this approach by using two-photon excitation for microscopy of Arabidopsis thaliana leaves infected by pathogenic bacterium Pseudomonas syringae. The leaf structures are visualized by red chlorophyll fluorescence emission reconstructed in 3-D images while the bacteria are detected by the green emission of engineered fluorescence protein.  相似文献   

6.
W W Ward  S H Bokman 《Biochemistry》1982,21(19):4535-4540
The green-fluorescent protein (GFP) that functions as a bioluminescence energy transfer acceptor in the jellyfish Aequorea has been renatured with up to 90% yield following acid, base, or guanidine denaturation. Renaturation, following pH neutralization or simple dilution of guanidine, proceeds with a half-recovery time of less than 5 min as measured by the return of visible fluorescence. Residual unrenatured protein has been quantitatively removed by chromatography on Sephadex G-75. The chromatographed, renatured GFP has corrected fluorescence excitation and emission spectra identical with those of the native protein at pH 7.0 (excitation lambda max = 398 nm; emission lambda max = 508 nm) and also at pH 12.2 (excitation lambda max = 476 nm; emission lambda max = 505 nm). With its peak position red-shifted 78 nm at pH 12.2, the Aequorea GFP excitation spectrum more closely resembles the excitation spectra of Renilla (sea pansy) and Phialidium (hydromedusan) GFPs at neutral pH. Visible absorption spectra of the native and renatured Aequorea green-fluorescent proteins at pH 7.0 are also identical, suggesting that the chromophore binding site has returned to its native state. Small differences in far-UV absorption and circular dichroism spectra, however, indicate that the renatured protein has not fully regained its native secondary structure.  相似文献   

7.
The time dependence of the fluorescence of tryptophanyl and flavin residues in lipoamide dehydrogenase has been investigated with single-photon decay spectroscopy. When the two FAD molecules in the enzyme were directly excited the decay could only be analyzed in a sum of two exponentials with equal amplitudes. This phenomenon was observed at 4 degrees C (tau-1 = 0.8 ns, tau-2 = 4.7 ns) and at 20 degrees C (tau-1 = 0.8 ns, tau-2 = 3.4 ns) irrespective of the emission and excitation wavelengths. This result reveals a difference in the nature of the two FAD centers. By excitation at 290 nm the fluorescence decay curves of tryptophan and FAD were obtained. The decays are analyzed in terms of energy transfer from tryptophanyl to flavin residues. The results, which are in good agreement with those obtained previously with static fluorescence methods, show that one of the two tryptophanyl residues within the subunit transfers its excitation energy to the flavin located at a distance of 1.5 nm.  相似文献   

8.
Excitation of the major photosynthetic antenna complex of plants, LHCII, with blue light (470 nm) provides an advantage to plants, as it gives rise to chlorophyll a fluorescence lifetimes shorter than with excitation with red light (635 nm). This difference is particularly pronounced in fluorescence emission wavelengths longer than 715 nm. Illumination of LHCII preparation with blue light additionally induces fluorescence quenching, which develops on a minute timescale. This effect is much less efficient when induced by red light, despite the equalized energy absorbed in both the spectral regions. Simultaneous analysis of the fluorescence and photoacoustic signals in LHCII demonstrated that the light-driven fluorescence quenching is not associated with an increase in heat emission. Instead, a reversible light-induced conformational transformation of the protein takes place, as demonstrated by the FTIR technique. These findings are discussed in terms of the blue-light-specific excitation energy quenching in LHCII, which may have photoprotective applications.  相似文献   

9.
10.
Respiratory NADH dehydrogenase-2 (NDH-2) of Escherichia coli is a peripheral membrane-bound flavoprotein. By eliminating its C-terminal region, a water soluble truncated version was obtained in our laboratory. Overall conformation of the mutant version resembles the wild-type protein. Considering these data and the fact that the mutant was obtained as an apo-protein, the truncated version is an ideal model to study the interaction between the enzyme and its cofactor. Here, the FAD binding properties of this version were characterized using far-UV circular dichroism (CD), differential scanning calorimetry (DSC), limited proteolysis, and steady-state and dynamic fluorescence spectroscopy. CD spectra, thermal unfolding and DSC profiles did not reveal any major difference in secondary structure between apo- and holo-protein. In addition, digestion site accessibility and tertiary conformation were similar for both proteins, as seen by comparable chymotryptic cleavage patterns. FAD binding to the apo-protein produced a parallel increment of both FAD fluorescence quantum yield and steady-state emission anisotropy. On the other hand, addition of FAD quenched the intrinsic fluorescence emission of the truncated protein, indicating that the flavin cofactor should be closely located to the protein Trp residues. Analysis of the steady-state and dynamic fluorescence data confirms the formation of the holo-protein with a 1:1 binding stoichiometry and an association constant KA = 7.0(± 0.8) × 104 M− 1. Taken together, the FAD–protein interaction is energetically favorable and the addition of FAD is not necessary to induce the enzyme folded state. For the first time, a detailed characterization of the flavin:protein interaction was performed among alternative NADH dehydrogenases.  相似文献   

11.
Exposure to blue light has previously been shown to induce the reversible quenching of fluorescence in cyanobacteria, indicative of a photoprotective mechanism responsible for the down regulation of photosynthesis. We have investigated the molecular mechanism behind fluorescence quenching by characterizing changes in excitation energy transfer through the phycobilin pigments of the phycobilisome to chlorophyll with steady-state and time-resolved fluorescence excitation and emission spectroscopy. Quenching was investigated in both a photosystem II-less mutant, and DCMU-poisoned wild-type Synechocystis sp. PCC 6803. The action spectra for blue-light-induced quenching was identical in both cell types and was dominated by a band in the blue region, peaking at 480 nm. Fluorescence quenching and its dark recovery was inhibited by the protein cross-linking agent glutaraldehyde, which could maintain cells in either the quenched or the unquenched state. We found that high phosphate concentrations that inhibit phycobilisome mobility and the regulation of energy transfer by the light-state transition did not affect blue-light-induced fluorescence quenching. Both room temperature and 77 K fluorescence emission spectra revealed that fluorescence quenching was associated with phycobilin emission. Quenching was characterized by a decrease in the emission of allophycocyanin and long wavelength phycobilisome terminal emitters relative to that of phycocyanin. A global analysis of the room-temperature fluorescence decay kinetics revealed that phycocyanin and photosystem I decay components were unaffected by quenching, whereas the decay components originating from allophycocyanin and phycobilisome terminal emitters were altered. Our data support a regulatory mechanism involving a protein conformational change and/or change in protein-protein interaction which quenches excitation energy at the core of the phycobilisome.  相似文献   

12.
Sphingolipids function as cell membrane components and as signaling molecules that regulate critical cellular processes. To study unacylated and acylated sphingolipids in cells with fluorescence microscopy, the fluorophore in the analog must be located within the sphingoid backbone and not the N-acyl fatty acid side chain. Although such fluorescent sphingosine analogs have been reported, they either require UV excitation or their emission overlaps with that of the most common protein label, green fluorescent protein (GFP). We report the synthesis and use of a new fluorescent sphingolipid analog, borondipyrromethene (BODIPY) 540 sphingosine, which has an excitation maximum at 540 nm and emission that permits its visualization in parallel with GFP. Mammalian cells readily metabolized BODIPY 540 sphingosine to more complex fluorescent sphingolipids, and subsequently degraded these fluorescent sphingolipids via the native sphingolipid catabolism pathway. Visualization of BODIPY 540 fluorescence in parallel with GFP-labeled organelle-specific proteins showed the BODIPY 540 sphingosine metabolites were transported through the secretory pathway and were transiently located within lysosomes, mitochondria, and the nucleus. The reported method for using BODIPY 540 sphingosine to visualize sphingolipids in parallel with GFP-labeled proteins within living cells may permit new insight into sphingolipid transport, metabolism, and signaling.  相似文献   

13.
Two-photon (2P) ratiometric redox fluorometry and microscopy of pyridine nucleotide (NAD(P)H) and flavoprotein (FP) fluorescence, at 800-nm excitation, has been demonstrated as a function of mitochondrial metabolic states in isolated adult dog cardiomyocytes. We have measured the 2P-excitation spectra of NAD(P)H, flavin adenine dinucleotide (FAD), and lipoamide dehydrogenase (LipDH) over the wavelength range of 720-1000 nm. The 2P-excitation action cross sections (sigma2P) increase rapidly at wavelengths below 800 nm, and the maximum sigma2P of LipDH is approximately 5 and 12 times larger than those of FAD and NAD(P)H, respectively. Only FAD and LipDH can be efficiently excited at wavelengths above 800 nm with a broad 2P-excitation band around 900 nm. Two autofluorescence spectral regions (i.e., approximately 410-490 nm and approximately 510-650 nm) of isolated cardiomyocytes were imaged using 2P-laser scanning microscopy. At 750-nm excitation, fluorescence of both regions is dominated by NAD(P)H emission, as indicated by fluorescence intensity changes induced by mitochondrial inhibitor NaCN and mitochondria uncoupler carbonyl cyanide p-(trifluoromethoxy) phenyl hydrazone (FCCP). In contrast, 2P-FP fluorescence dominates at 900-nm excitation, which is in agreement with the sigma2P measurements. Finally, 2P-autofluorescence emission spectra of single cardiac cells have been obtained, with results suggesting potential for substantial improvement of the proposed 2P-ratiometric technique.  相似文献   

14.
《Gene》1996,173(1):19-23
The green fluorescent protein (GFP) from the jellyfish, Aequorea victoria, has become a versatile reporter for monitoring gene expression and protein localization in a variety of cells and organisms. GFP emits bright green light (λmax = 510 nm) when excited with ultraviolet (UV) or blue light (λmax = 395 nm, minor peak at 470 nm). The chromophore in GFP is intrinsic to the primary structure of the protein, and fluorescence from GFP does not require additional gene products, substrates or other factors. GFP fluorescence is stable, species-independent and can be monitored noninvasively using the techniques of fluorescence microscopy and flow cytometry [Chalfie et al., Science 263 (1994) 802–805; Stearns, Curr. Biol. 5 (1995) 262–264]. The protein appears to undergo an autocatalytic reaction to create the fluorophore [Heim et al., Proc. Natl. Acad. Sci. USA 91 (1994) 12501–12504] in a process involving cyclization of a Tyr66 aa residue. Recently [Delagrave et al., Bio/Technology 13 (1995) 151–154], a combinatorial mutagenic strategy was targeted at aa 64 through 69, which spans the chromophore of A. victoria GFP, yielding a number of different mutants with redshifted fluorescence excitation spectra. One of these, RSGFP4, retains the characteristic green emission spectra (λmax = 505 nm), but has a single excitation peak (λmax = 490 nm). The fluorescence properties of RSGFP4 are similar to those of another naturally occurring GFP from the sea pansy, Renilla reniformis [Ward and Cormier, Photobiochem. Photobiol. 27 (1978) 389–396]. In the present study, we demonstrate by fluorescence microscopy that selective excitation of A. victoria GFP and RSGFP4 allows for spectral separation of each fluorescent signal, and provides the means to image these signals independently in a mixed population of bacteria or mammalian cells.  相似文献   

15.
Some physiological and biochemical changes in the marine eukaryotic red tide alga Heterosigma akashiwo (Hada) were investigated during the alleviation from iron limitation. Chlorophyll a/carotenoid ratio increases as a result of iron alleviation. In vivo absorption spectra of iron-limited cells showed a chlorophyll (Chl) absorption peak at 630 nm, 2 nm blue-shifted from the normal position. Low-temperature fluorescence emission spectra of the cells have one prominent Chl emission peak at 685 nm. The cells showed a decrease in fluorescence yield from 685 nm band during alleviation from iron limitation. Low-temperature fluorescence excitation spectra and room-temperature fluorescence spectra indicated an efficient excitation energy transfer in the cells alleviated from iron limitation. Photosynthetic efficiency and carbohydrate content per cell increased after alleviation from iron limitation. Total protein decreased in iron-limited cells, while iron deficiency induced the appearance of specific soluble proteins (17 and 55 kDa).  相似文献   

16.
Novák K 《Annals of botany》2011,107(4):709-715

Background

Fluorescent tagging of nodule bacteria forming symbioses with legume host plants represents a tool for vital tracking of bacteria inside the symbiotic root nodules and monitoring changes in gene activity. The constitutive expression of heterologous fluorescent proteins, such as green fluorescent protein (GFP), also allows screening for nodule occupancy by a particular strain. Imaging of the fluorescence signal on a macro-scale is associated with technical problems due to the robustness of nodule tissues and a high level of autofluorescence.

Scope

These limitations can be reduced by the use of a model species with a fine root system, such as Vicia tetrasperma. Further increases in the sensitivity and specificity of the detection and in image resolution can be attained by the use of a fluorescence scanner. Compared with the standard CCD-type cameras, the availability of a laser source of a specified excitation wavelength decreases non-specific autofluorescence while the photomultiplier tubes in emission detection significantly increase sensitivity. The large scanning area combined with a high resolution allow us to visualize individual nodules during the scan of whole root systems. Using a fluorescence scanner with excitation wavelength of 488 nm, a band-pass specific emission channel of 532 nm and a long-pass background channel of 555 nm, it was possible to distinguish nodules occupied by a rhizobial strain marked with one copy of cycle3 GFP from nodules colonized by the wild-type strain.

Conclusions

The main limitation of the current plant model and GFP with the wild-type emission peak at 409 nm is a sharp increase in root autofluorescence below 550 nm. The selectivity of the technique can be enhanced by the use of red-shifted fluorophores and the contrasting labelling of the variants, provided that the excitation (482 nm) and emission (737 nm) maxima corresponding to root chlorophyll are respected.  相似文献   

17.
We isolated and characterized a green fluorescent protein (GFP) from the sea cactus Cavernularia obesa. This GFP exists as a dimer and has absorption maxima at 388 and 498 nm. Excitation at 388 nm leads to blue fluorescence (456 nm maximum) at pH 5 and below, and green fluorescence (507 nm maximum) at pH 7 and above, and the GFP is remarkably stable at pH 4. Excitation at 498 nm leads to green fluorescence (507 nm maximum) from pH 5 to pH 9. We introduced five amino acid substitutions so that this GFP formed monomers rather than dimers and then used this monomeric form to visualize intracellular pH change during the phagocytosis of living cells by use of fluorescence microscopy. The intracellular pH change is visualized by use of a simple long‐pass emission filter with single‐wavelength excitation, which is technically easier to use than dual‐emission fluorescent proteins that require dual‐wavelength excitation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Fluorescence emission spectra excited at 514 and 633 nm were measured at ?196 °C on dark-grown bean leaves which had been partially greened by a repetitive series of brief xenon flashes. Excitation at 514 nm resulted in a greater relative enrichment of the 730 nm emission band of Photosystem I than was obtained with 633 nm excitation. The difference spectrum between the 514 nm excited fluorescence and the 633 nm excited fluorescence was taken to be representative of a pure Photosystem I emission spectrum at ?196 °C. It was estimated from an extrapolation of low temperature emission spectra taken from a series of flashed leaves of different chlorophyll content that the emission from Photosystem II at 730 nm was 12% of the peak emission at 694 nm. Using this estimate, the pure Photosystem I emission spectrum was subtracted from the measured emission spectrum of a flashed leaf to give an emission spectrum representative of pure Photosystem II fluorescence at ?196 °C. Emission spectra were also measured on flashed leaves which had been illuminated for several hours in continuous light. Appreciable amounts of the light-harvesting chlorophyll a/b protein, which has a low temperature fluorescence emission maximum at 682 nm, accumulate during greening in continuous light. The emission spectra of Photosystem I and Photosystem II were subtracted from the measured emission spectrum of such a leaf to obtain the emission spectrum of the light-harvesting chlorophyll a/b protein at ?196 °C.  相似文献   

19.
The demonstration that the green fluorescent protein (GFP) from the jellyfish Aequorea victoria required no jellyfish-specific cofactors and could be expressed as a fluorescent protein in heterologous hosts including both prokaryotes and eukaryotes sparked the development of GFP as one of the most common reporters in use today. Over the past several years, the utility of GFP as a reporter has been optimized through the isolation and engineering of variants with increased folding rates, different in vivo stabilities and colour variants with altered excitation and emission spectral properties. One of the great utilities of GFP is as a probe for characterizing spatial and temporal dynamics of gene expression, protein localization and protein-protein interactions in living cells. The innovative application of GFP as a reporter in bacteria has made a significant contribution to microbial cell biology. This review will highlight recent studies that demonstrate the potential of GFP for real-time analysis of gene expression, protein localization and the dynamics of signalling transduction pathways through protein-protein interactions.  相似文献   

20.
The change in fluorescence emission at 520 nm after excitation at 365 nm was used to investigate the effect of pH and ionic strength on the dissociation of flavin cofactors from microsomal NADPH/cytochrome c (P-450) reductase. In the unmodified enzyme both the FAD and FMN moieties appeared to dissociate at a similar rate and followed first-order kinetics. The rate constant for the dissociation was increased by low pH and high ionic strength, particularly in the range pH 4.4-3.8 (0.02 M acetate buffer) where the rate constants increased 80-fold. Modification of the enzyme by treatment with p-chloromercuribenzoate enhanced the rate of flavin dissociation and, in the region of pH 4, resulted in a biphasic increase in fluorescence consistent with two simultaneous parallel first-order dissociations. It was concluded that p-chloromercuribenzoate treatment modified the protein so that the two flavin cofactors dissociated at different rates. Using the measured rate constants for the dissociations, and the known variation in fluorescence of flavin nucleotides with pH, an analogue computer simulation of the dissociation as well as a manual curve-fitting procedure showed that the biphasic response could be explained as a simultaneous rapid dissociation of FAD and a slower loss of FMN from the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号