首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Musculo-skeletal modelling, 3D printing of bone models and also custom design of relevant prostheses starts from accurate STL files. These are obtained from medical imaging after careful segmentation and 3D reconstruction using specialized software, but most of these are very expensive. The aim of the present study is to assess and compare alternative software available for free. Three freeware software were selected from the most popular, and one standard platform was made available at the institute of the authors. Using each of these four software and starting from available DICOM files obtained previously by a CT scanner, three different bone models were reconstructed from each of five different human anatomical areas for a total of 60 bone model reconstructions. A young radiographer performed the bone reconstruction without specific technical training. 3D spatial matching of corresponding anatomical models was also performed to determine distance-maps for the assessment of final surface quality. In all four software many valuable features were available, with minimum differences, and bone models of good quality were obtained. Large differences in file sizes (mean range over the five anatomical models 66-338) and in the number of triangles (870-1350 thousands) were found, with triangles for MByte ratio ranging from about 4 to 20 thousands. The distance-map analysis revealed that root mean square deviation averaged over the five anatomical models ranged from 0.13 to 2.21 mm for the six spatial matches between the four software. These software are suitable for 3D bone model reconstruction, and do not require special training, and as such these can open up opportunities for biomechanical modelling and medical education.  相似文献   

2.
Visualization of spatiotemporal expression of a gene of interest is a fundamental technique for analyzing the involvements of genes in organ development. In situ hybridization (ISH) is one of the most popular methods for visualizing gene expression. When conventional ISH is performed on sections or whole-mount specimens, the gene expression pattern is represented in 2-dimensional (2D) microscopic images or in the surface view of the specimen. To obtain 3-dimensional (3D) data of gene expression from conventional ISH, the “serial section method” has traditionally been employed. However, this method requires an extensive amount of time and labor because it requires researchers to collect a tremendous number of sections, label all sections by ISH, and image them before 3D reconstruction. Here, we proposed a rapid and low-cost 3D imaging method that can create 3D gene expression patterns from conventional ISH-labeled specimens. Our method consists of a combination of whole-mount ISH and Correlative Microscopy and Blockface imaging (CoMBI). The whole-mount ISH-labeled specimens were sliced using a microtome or cryostat, and all block-faces were imaged and used to reconstruct 3D images by CoMBI. The 3D data acquired using our method showed sufficient quality to analyze the morphology and gene expression patterns in the developing mouse heart. In addition, 2D microscopic images of the sections can be obtained when needed. Correlating 2D microscopic images and 3D data can help annotate gene expression patterns and understand the anatomy of developing organs. These results indicated that our method can be useful in the field of developmental biology.  相似文献   

3.
近年来,根据三维软件虚拟复原的头骨来获取测量数据的方法被越来越多地应用在古生物,特别是古人类学的研究中,然而对于三维软件不同精度虚拟复原的头骨,其测量数值是否有差异,研究者并不是很清楚。本文以Mimics软件为例,根据其复原模型简化规则,选择未精简的最佳精度模型作为标准进行配对t检验或非参数检验,通过对43例云南人头骨的顶骨矢状弦长、颅周长、头盖部面积、乳突小房表面积、颅容量、乳突小房体积等六个测量项目的对比和分析,对Mimics软件低、中、高、最佳四种精度3D虚拟复原头骨间的测量差异进行了研究。结果显示:颅周长、头盖部面积、颅容量、乳突小房体积四项的所有简化精度模型的测量数据均与最佳精度模型测量数据的差异具有显著性;而除高精度组外,顶骨矢状弦长及乳突小房表面积的其余精度组测量数据均与最佳精度组差异具有显著性;此外,顶骨矢状弦长、颅周长、头盖部面积、颅容量的简化精度与最佳精度的测量差异占比均小于3%.而乳突小房表面积的低精度与最佳精度测量差异占比可超过50%,乳突小房体积的低精度与最佳精度测量差异占比可超过120%。这一结果提示我们,在测量Mimics复原的三维模型时,体量大差异小的测量项可以在较低精度的复原模型上进行测量;而对头骨内部腔窦这样体量小表面粗糙的结构,复原模型的精度选择及测量数据比较需要格外谨慎。  相似文献   

4.
This study assessed three‐dimensional (3D) photogrammetry as a tool for capturing and quantifying human skull morphology. While virtual reconstruction with 3D surface scanning technology has become an accepted part of the paleoanthropologist's tool kit, recent advances in 3D photogrammetry make it a potential alternative to dedicated surface scanners. The principal advantages of photogrammetry are more rapid raw data collection, simplicity and portability of setup, and reduced equipment costs. We tested the precision and repeatability of 3D photogrammetry by comparing digital models of human crania reconstructed from conventional, 2D digital photographs to those generated using a 3D surface scanner. Overall, the photogrammetry and scanner meshes showed low degrees of deviation from one another. Surface area estimates derived from photogrammetry models tended to be slightly larger. Landmark configurations generally did not cluster together based upon whether the reconstruction was created with photogrammetry or surface scanning technology. Average deviations of landmark coordinates recorded on photogrammetry models were within the generally allowable range of error in osteometry. Thus, while dependent upon the needs of the particular research project, 3D photogrammetry appears to be a suitable, lower‐cost alternative to 3D imaging and scanning options. Am J Phys Anthropol 154:152–158, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

5.

Objectives

Rapid prototyping (RP) technology is becoming more affordable, faster, and is now capable of building models with a high resolution and accuracy. Due to technological limitations, 3D printing in biological anthropology has been mostly limited to museum displays and forensic reconstructions. In this study, we compared the accuracy of different 3D printers to establish whether RP can be used effectively to reproduce anthropological dental collections, potentially replacing access to oftentimes fragile and irreplaceable original material.

Methods

We digitized specimens from the Yuendumu collection of Australian Aboriginal dental casts using a high‐resolution white‐light scanning system and reproduced them using four different 3D printing technologies: stereolithography (SLA); fused deposition modeling (FDM); binder‐jetting; and material‐jetting. We compared the deviations between the original 3D surface models with 3D print scans using color maps generated from a 3D metric deviation analysis.

Results

The 3D printed models reproduced both the detail and discrete morphology of the scanned dental casts. The results of the metric deviation analysis demonstrate that all 3D print models were accurate, with only a few small areas of high deviations. The material‐jetting and SLA printers were found to perform better than the other two printing machines.

Conclusions

The quality of current commercial 3D printers has reached a good level of accuracy and detail reproduction. However, the costs and printing times limit its application to produce large sample numbers for use in most anthropological studies. Nonetheless, RP offers a viable option to preserve numerically constraint fragile skeletal and dental material in paleoanthropological collections.
  相似文献   

6.
Visual 3D reconstruction techniques provide rich ecological and habitat structural information from underwater imagery. However, an unaided swimmer or diver struggles to navigate precisely over larger extents with consistent image overlap needed for visual reconstruction. While underwater robots have demonstrated systematic coverage of areas much larger than the footprint of a single image, access to suitable robotic systems is limited and requires specialized operators. Furthermore, robots are poor at navigating hydrodynamic habitats such as shallow coral reefs. We present a simple approach that constrains the motion of a swimmer using a line unwinding from a fixed central drum. The resulting motion is the involute of a circle, a spiral‐like path with constant spacing between revolutions. We test this survey method at a broad range of habitats and hydrodynamic conditions encircling Lizard Island in the Great Barrier Reef, Australia. The approach generates fast, structured, repeatable, and large‐extent surveys (~110 m2 in 15 min) that can be performed with two people and are superior to the commonly used “mow the lawn” method. The amount of image overlap is a design parameter, allowing for surveys that can then be reliably used in an automated processing pipeline to generate 3D reconstructions, orthographically projected mosaics, and structural complexity indices. The individual images or full mosaics can also be labeled for benthic diversity and cover estimates. The survey method we present can serve as a standard approach to repeatedly collecting underwater imagery for high‐resolution 2D mosaics and 3D reconstructions covering spatial extents much larger than a single image footprint without requiring sophisticated robotic systems or lengthy deployment of visual guides. As such, it opens up cost‐effective novel observations to inform studies relating habitat structure to ecological processes and biodiversity at scales and spatial resolutions not readily available previously.  相似文献   

7.
  • Technical advances in 3D imaging have contributed to quantifying and understanding biological variability and complexity. However, small, dry‐sensitive objects are not easy to reconstruct using common and easily available techniques such as photogrammetry, surface scanning, or micro‐CT scanning. Here, we use cephalopod beaks as an example as their size, thickness, transparency, and dry‐sensitive nature make them particularly challenging. We developed a new, underwater, photogrammetry protocol in order to add these types of biological structures to the panel of photogrammetric possibilities.
  • We used a camera with a macrophotography mode in a waterproof housing fixed in a tank with clear water. The beak was painted and fixed on a colored rotating support. Three angles of view, two acquisitions, and around 300 pictures per specimen were taken in order to reconstruct a full 3D model. These models were compared with others obtained with micro‐CT scanning to verify their accuracy.
  • The models can be obtained quickly and cheaply compared with micro‐CT scanning and have sufficient precision for quantitative interspecific morphological analyses. Our work shows that underwater photogrammetry is a fast, noninvasive, efficient, and accurate way to reconstruct 3D models of dry‐sensitive objects while conserving their shape. While the reconstruction of the shape is accurate, some internal parts cannot be reconstructed with photogrammetry as they are not visible. In contrast, these structures are visible using reconstructions based on micro‐CT scanning. The mean difference between both methods is very small (10−5 to 10−4 mm) and is significantly lower than differences between meshes of different individuals.
  • This photogrammetry protocol is portable, easy‐to‐use, fast, and reproducible. Micro‐CT scanning, in contrast, is time‐consuming, expensive, and nonportable. This protocol can be applied to reconstruct the 3D shape of many other dry‐sensitive objects such as shells of shellfish, cartilage, plants, and other chitinous materials.
  相似文献   

8.
The experimental process of collecting images from macromolecules in an electron microscope is such that it does not allow for prior specification of the angular distribution of the projection images. As a consequence, an uneven distribution of projection directions may occur. Concerns have been raised recently about the behavior of 3D reconstruction algorithms for the case of unevenly distributed projections. It has been illustrated on experimental data that in the case of a heavily uneven distribution of projection directions some algorithms tend to elongate the reconstructed volumes along the overloaded direction so much as to make a quantitative biological analysis impossible. In answer to these concerns we have developed a strategy for quantitative comparison and optimization of 3D reconstruction algorithms. We apply this strategy to quantitatively analyze algebraic reconstruction techniques (ART) with blobs, simultaneous iterative reconstruction techniques (SIRT) with voxels, and weighted backprojection (WBP). We show that the elongation artifacts that had been previously reported can be strongly reduced. With our specific choices for the free parameters of the three algorithms, WBP reconstructions tend to be inferior to those obtained with either SIRT or ART and the results obtained with ART are comparable to those with SIRT, but at a very small fraction of the computational cost of SIRT.  相似文献   

9.
Angiogenesis plays a key role in tumour progression, and undergoes structural changes associated to tumour biology itself. Although vessel density can be easily evaluated in brain tumours using a traditional immuno-histochemical approach, other parameters of conceptual/biological interest, such as the complex patterns of vascular growth, cannot be fully understood using a traditional bi-dimensional evaluation. We use here surgical specimens derived from oligodendrogliomas as a model for a novel elucidative 3D reconstruction of the grade-dependent vascular arborisation in brain tumours.  相似文献   

10.
Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models.  相似文献   

11.
Creating accurate 3D models of marine mammals is valuable for assessment of body condition, computational fluids dynamics models of locomotion, and for education. However, the methods for creating 3D models are not well-developed. We used photography and video to create 3D photogrammetry models of harbor porpoises (Phocoena phocoena). We accessed one live adult female (155.5 cm total length), and two dead animals, one juvenile (110 cm total length) and one calf (88 cm total length). We accessed the two dead individuals through a stranding network in Germany, and the live individual through the Fjord and Baelt research center in Denmark. For all porpoises, we used still photographs from hand-held cameras, drone video, and synchronized GoPro videos to create 3D photogrammetric models. We used Blender software, and other 3D reconstruction software, to recreate the 3D body meshes, and confirmed the accuracy of each of the 3D body meshes by comparing digital measures on the 3D models to original measures taken on the specimens. We also provide a colored, animated version of the live harbor porpoise for educational purposes. These open-access 3D models can be used to develop methods to study body morphometrics and condition, and to study bioenergetics and locomotion costs.  相似文献   

12.
X-rays and CT have been used to examine specimens such as human remains, mummies and formalin-fixed specimens. However, CT has not been used to study formalin-fixed wet specimens within their containers. The purpose of our study is firstly to demonstrate the role of CT as a non-destructive imaging method for the study of wet pathological specimens and secondly to use the CT data as a method for teaching pathological and radiological correlation. CT scanning of 31 musculoskeletal specimens from a pathology museum was carried out. Images were reconstructed using both soft-tissue and bone algorithms. Further processing of the data produced coronal and sagittal reformats of each specimen. The container and storage solution were manually removed using Volume Viewer Voxtool software to produce a 3D reconstruction of each specimen. Photographs of each specimen (container and close-up) were displayed alongside selected coronal, sagittal, 3D reconstructions and cine sequences in a specially designed computer program. CT is a non-destructive imaging modality for building didactic materials from wet specimens in a Pathology Museum, for teaching radiological and pathological correlation.  相似文献   

13.
打制石器是了解古人类认知、技术、行为等信息的重要物质载体之一,如何能够更加方便地观察绘制、测量以及展示石器是旧石器时代考古学中基础的研究内容。目前多视角影像三维重建技术在中国考古界应用越来越广泛,尤其是Agisoft PhotoScan软件的应用。相比其他类型遗物,石器的形制及片疤样式具有独特性,在建模过程难度较大。我们经过反复尝试,总结出了一套基于Agisoft PhotoScan软件,专门针对打制石器且易于掌握的建模方式,并从观察绘图、数字化、展示三个方面探讨了石器三维模型的应用。  相似文献   

14.
The large amount of image data necessary for high-resolution 3D reconstruction of macromolecular assemblies leads to significant increases in the computational time. One of the most time consuming operations is 3D density map reconstruction, and software optimization can greatly reduce the time required for any given structural study. The majority of algorithms proposed for improving the computational effectiveness of a 3D reconstruction are based on a ray-by-ray projection of each image into the reconstructed volume. In this paper, we propose a novel fast implementation of the "filtered back-projection" algorithm based on a voxel-by-voxel principle. Our version of this implementation has been exhaustively tested using both model and real data. We compared 3D reconstructions obtained by the new approach with results obtained by the filtered Back-Projections algorithm and the Fourier-Bessel algorithm commonly used for reconstructing icosahedral viruses. These computational experiments demonstrate the robustness, reliability, and efficiency of this approach.  相似文献   

15.
16.
Accurate image alignment is needed for computing three-dimensional reconstructions from transmission electron microscope tilt series. So far, the best results have been obtained by using colloidal gold beads as fiducial markers. If their use has not been possible for some reason, the only option has been the automatic cross-correlation-based registration methods. However, the latter methods are inaccurate and, as we will show, inappropriate for the whole problem. Conversely, we propose a novel method that uses the actual 3D motion model but works without any fiducial markers in the images. The method is based on matching and tracking some interest points of the intensity surface by first solving the underlying geometrical constraint of consecutive images in the tilt series. The results show that our method is near the gold marker alignment in the level of accuracy and hence opens the way for new opportunities in the analysis of electron tomography reconstructions, especially when markers cannot be used.  相似文献   

17.
Atomic-resolution structures have had a tremendous impact on modern biological science. Much useful information also has been gleaned by merging and correlating atomic-resolution structural details with lower-resolution (15-40 A), three-dimensional (3D) reconstructions computed from images recorded with cryo-transmission electron microscopy (cryoTEM) procedures. One way to merge these structures involves reducing the resolution of an atomic model to a level comparable to a cryoTEM reconstruction. A low-resolution density map can be derived from an atomic-resolution structure by retrieving a set of atomic coordinates editing the coordinate file, computing structure factors from the model coordinates, and computing the inverse Fourier transform of the structure factors. This method is a useful tool for structural studies primarily in combination with 3D cryoTEM reconstructions. It has been used to assess the quality of 3D reconstructions, to determine corrections for the phase-contrast transfer function of the transmission electron microscope, to calibrate the dimensions and handedness of 3D reconstructions, to produce difference maps, to model features in macromolecules or macromolecular complexes, and to generate models to initiate model-based determination of particle orientation and origin parameters for 3D reconstruction.  相似文献   

18.
Ion-abrasion scanning electron microscopy (IASEM) takes advantage of focused ion beams to abrade thin sections from the surface of bulk specimens, coupled with SEM to image the surface of each section, enabling 3D reconstructions of subcellular architecture at 30 nm resolution. Here, we report the first application of IASEM for imaging a biomineralizing organism, the marine diatom Thalassiosira pseudonana. Diatoms have highly patterned silica-based cell wall structures that are unique models for the study and application of directed nanomaterials synthesis by biological systems. Our study provides new insights into the architecture and assembly principles of both the “hard” (siliceous) and “soft” (organic) components of the cell. From 3D reconstructions of developmentally synchronized diatoms captured at different stages, we show that both micro- and nanoscale siliceous structures can be visualized at specific stages in their formation. We show that not only are structures visualized in a whole-cell context, but demonstrate that fragile, early-stage structures are visible, and that this can be combined with elemental mapping in the exposed slice. We demonstrate that the 3D architectures of silica structures, and the cellular components that mediate their creation and positioning can be visualized simultaneously, providing new opportunities to study and manipulate mineral nanostructures in a genetically tractable system.  相似文献   

19.
Assessments of scoliosis are routinely done by means of clinical examination and full spinal x-rays. Multiple exposure to ionization radiation, however, can be hazardous to the child and is costly. Here, we explain the use of a noninvasive imaging technique, based on laser optical scanning, for quantifying the three-dimensional (3D) trunk surface topography that can be used to estimate parameters of 3D deformity of the spine. The laser optical scanning system consisted of four BIRIS laser cameras mounted on a ring moving along a vertical axis, producing a topographical mapping of the entire torso. In conjunction with the laser scans, an accurate 3D reconstruction of the spine and rib cage were developed from the digitized x-ray images. Results from 14 scoliotic patients are reported. The digitized surfaces provided the foundation data to start studying concordance of trunk surface asymmetry and spinal shape in idiopathic scoliosis.  相似文献   

20.
Atomic-resolution structures have had a tremendous impact on modern biological science. Much useful information also has been gleaned by merging and correlating atomic-resolution structural details with lower-resolution (15–40 Å), three-dimensional (3D) reconstructions computed from images recorded with cryo-transmission electron microscopy (cryoTEM) procedures. One way to merge these structures involves reducing the resolution of an atomic model to a level comparable to a cryoTEM reconstruction. A low-resolution density map can be derived from an atomic-resolution structure by retrieving a set of atomic coordinates editing the coordinate file, computing structure factors from the model coordinates, and computing the inverse Fourier transform of the structure factors. This method is a useful tool for structural studies primarily in combination with 3D cryoTEM reconstructions. It has been used to assess the quality of 3D reconstructions, to determine corrections for the phase-contrast transfer function of the transmission electron microscope, to calibrate the dimensions and handedness of 3D reconstructions, to produce difference maps, to model features in macromolecules or macromolecular complexes, and to generate models to initiate model-based determination of particle orientation and origin parameters for 3D reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号