首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Desaturases that introduce double bonds into the fatty acids are involved in the adaptation of membrane fluidity to changes in the environment. Besides, polyunsaturated fatty acids (PUFAs) are increasingly recognized as important pharmaceutical and nutraceutical compounds. To successfully engineer organisms with increased stress tolerance or the ability to synthesize valuable PUFAs, detailed knowledge about the complexity of the desaturase family as well as understanding of the coevolution of desaturases and their cytochrome b5 electron donors is needed. We have constructed phylogenies of several hundred desaturase sequences from animals, plants, fungi and bacteria and of the cytochrome b5 domains that are fused to some of these enzymes. The analysis demonstrates the existence of three major desaturase acyl-CoA groups that share few similarities. Our results indicate that the fusion of Δ6-desaturase-like enzymes with their cytochrome b5 electron donor was a single event that took place in the common ancestor of all eukaryotes. We also propose the Δ6-desaturase-like enzymes as the most probable donor of the cytochrome b5 domain found in fungal Δ9-desaturases and argue that the recombination most likely happened soon after the separation of the animal and fungal ancestors. These findings answer some of the previously unresolved questions and contribute to the quickly expanding field of research on desaturases.  相似文献   

3.
The biosynthetic pathway of polyunsaturated fatty acids (PUFAs) has been the subject of much interest over the last few years. Significant progress has been made in the identification of the enzymes required for PUFA synthesis; in particular, the fatty acid desaturases which are central to this pathway have now all been identified. These "front-end" desaturases are all members of the cytochrome b(5) fusion desaturase superfamily, since they contain an N-terminal domain that is orthologous to the microsomal cytochrome b(5). Examination of the primary sequence relationships between the various PUFA-specific cytochrome b(5) fusion desaturases and related fusion enzymes allows inferences regarding the evolution of this important enzyme class. More importantly, this knowledge helps underpin our understanding of polyunsaturated fatty acid biosynthesis.  相似文献   

4.
5.
Ilicicolin H is a broad spectrum antifungal agent showing sub micro g/mL MICs against Candida spp., Aspergillus fumigatus and Cryptococcus spp. It is a potent inhibitor (C50 2–3 ng/mL) of the mitochondrial cytochrome bc1 reductase with over 1000-fold selectivity against rat liver cytochrome bc1 reductase. Structure–activity relationship of semisynthetic derivatives by chemical modification of ilicicolin H and its 19-hydroxy derivative produced by biotransformation have been described. Basic 4′-esters and moderately polar N- and O-alkyl derivatives retained antifungal and the cytochrome bc1 reductase activities. 4′,19-Diacetate and 19-cyclopropyl acetate retained antifungal and enzyme activity and selectivity with over 20-fold improvement of plasma protein binding.  相似文献   

6.
Delta-9 desaturases, also known as stearoyl-CoA desaturases, are lipogenic enzymes responsible for the generation of vital components of membranes and energy storage molecules. We have identified a novel nuclear hormone receptor, NHR-80, that regulates delta-9 desaturase gene expression in Caenorhabditis elegans. Here we describe fatty acid compositions, lifespans, and gene expression studies of strains carrying mutations in nhr-80 and in the three genes encoding delta-9 desaturases, fat-5, fat-6, and fat-7. The delta-9 desaturase single mutants display only subtle changes in fatty acid composition and no other visible phenotypes, yet the fat-5;fat-6;fat-7 triple mutant is lethal, revealing that endogenous production of monounsaturated fatty acids is essential for survival. In the absence of FAT-6 or FAT-7, the expression of the remaining desaturases increases, and this ability to compensate depends on NHR-80. We conclude that, like mammals, C. elegans requires adequate synthesis of unsaturated fatty acids and maintains complex regulation of the delta-9 desaturases to achieve optimal fatty acid composition.  相似文献   

7.
The biosynthesis of very-long-chain polyunsaturated fatty acids involves an alternating process of fatty acid desaturation and elongation catalyzed by complex series of enzymes. ω3 desaturase plays an important role in converting ω6 fatty acids into ω3 fatty acids. Genes for this desaturase have been identified and characterized in a wide range of microorganisms, including cyanobacteria, yeasts, molds, and microalgae. Like all fatty acid desaturases, ω3 desaturase is structurally characterized by the presence of three highly conserved histidine-rich motifs; however, unlike some desaturases, it lacks a cytochrome b5-like domain. Understanding the structure, function, and evolution of ω3 desaturases, particularly their substrate specificities in the biosynthesis of very-long-chain polyunsaturated fatty acids, lays the foundation for potential production of various ω3 fatty acids in transgenic microorganisms.  相似文献   

8.
Cytochrome b5 is the main electron acceptor of cytochrome b5 reductase. The interacting domain between both human proteins has been unidentified up to date and very little is known about its redox properties modulation upon complex formation. In this article, we characterized the protein/protein interacting interface by solution NMR and molecular docking. In addition, upon complex formation, we measured an increase of cytochrome b5 reductase flavin autofluorescence that was dependent upon the presence of cytochrome b5. Data analysis of these results allowed us to calculate a dissociation constant value between proteins of 0.5 ± 0.1 μM and a 1:1 stoichiometry for the complex formation. In addition, a 30 mV negative shift of cytochrome b5 reductase redox potential in presence of cytochrome b5 was also measured. These experiments suggest that the FAD group of cytochrome b5 reductase increase its solvent exposition upon complex formation promoting an efficient electron transfer between the proteins.  相似文献   

9.
哺乳动物因为缺乏Δ-12和ω-3脂肪酸脱氢酶,不能自身合成必需的多不饱和脂肪酸.目前,通过转基因技术在哺乳动物体内表达ω-3脂肪酸脱氢酶,能将长链的n-6多不饱和脂肪酸转化成n-3多不饱和脂肪酸,造成体内长链的n-6多不饱和脂肪酸含量显著减低.本研究通过自我剪切2A肽介导Δ-12和ω-3脂肪酸脱氢酶(FAT-2和FAT-1)以及人过氧化氢酶(human catalase,hCAT)在小鼠的肌肉同时表达.结果表明,转基因小鼠肌肉中长链n-3多不饱和脂肪酸含量提高2.6倍,长链n-6多不饱和脂肪酸含量没有显著变化,而n-6/n-3比例显著降低(P < 0.01).同时蛋白质印迹检测到人过氧化氢酶hCAT在小鼠的肌肉组织中表达,且过氧化氢酶活性比野生型小鼠显著提高(P < 0.01).  相似文献   

10.
The electron donors for the membrane-bound fatty acid desaturases of higher plants have not previously been identified. In order to assess the participation of cytochrome b5 in microsomal fatty acid desaturation, the cytoplasmic domain of microsomal cytochrome b5 was purified from Brassica oleracea, and murine polyclonal antibodies were prepared. The IgG fraction from ascites fluid inhibited 62% of NADH-dependent cytochrome c reduction in safflower (Carthamus tinctorius L.) microsomes. These antibodies also blocked desaturation of oleic acid to linoleic acid in lipids of C. tinctorius microsomes by 93%, suggesting that cytochrome b5 is the electron donor for the delta 12 desaturase.  相似文献   

11.
The biosynthesis of polyunsaturated fatty acids (PUFAs) in different organisms can involve a variety of pathways, catalyzed by a complex series of desaturation and elongation steps. A range of different desaturases have been identified to date, capable of introducing double bonds at various locations on the fatty acyl chain. Some recently identified novel desaturases include a delta4 desaturase from marine fungi, and a bi-functional delta5/delta6 desaturase from zebrafish. Using molecular genetics approaches, these desaturase genes have been isolated, identified, and expressed in variety of heterologous hosts. Results from these studies will help increase our understanding of the biochemistry of desaturases and the regulation of PUFA biosynthesis. This is of significance because PUFAs play critical roles in multiple aspects of membrane physiology and signaling mechanisms which impact human health and development.  相似文献   

12.
Biosynthesis of polyunsaturated fatty acids in C. elegans is initiated by the introduction of a double bond at the delta9 position of a saturated fatty acid. We identified three C. elegans fatty acid desaturase genes related to the yeast delta9 desaturase OLE1 and the rat stearoyl-CoA desaturase SCD1. Heterologous expression of all three genes rescues the fatty acid auxotrophy of the yeast delta9 desaturase mutant ole1. Examination of the fatty acid composition of the transgenic yeast reveals striking differences in the substrate specificities of these desaturases. Two desaturases, FAT-6 and FAT-7, readily desaturate stearic acid (18:0) and show less activity on palmitic acid (16:0). In contrast, the other desaturase, FAT-5, readily desaturates palmitic acid (16:0), but shows nearly undetectable activity on the common delta9 substrate stearic acid. This is the first report of a palmitoyl-CoA-specific membrane fatty acid desaturase.  相似文献   

13.
Male pigs are routinely castrated to prevent the accumulation of testicular 16-androstene steroids, in particular 5α-androst-16-en-3-one (5α-androstenone), which contribute to an off-odour and off-flavour known as boar taint. Cytochrome P450C17 (CYP17A1) catalyses the key regulatory step in the formation of the 16-androstene steroids from pregnenolone by the andien-β synthase reaction or the synthesis of the glucocorticoid and sex steroids via 17α-hydroxylase and C17,20 lyase pathways respectively. We have expressed CYP17A1, along with cytochrome P450 reductase (POR), cytochrome b5 reductase (CYB5R3) and cytochrome b5 (CYB5) in HEK-293FT cells to investigate the importance of the two forms of porcine CYB5, CYB5A and CYB5B, in both the andien-β synthase as well as the 17α-hydroxylase and C17,20 lyase reactions. Increasing the ratio of CYB5A to CYP17A1 caused a decrease in 17α-hydroxylase (p < 0.013), a transient increase in C17,20 lyase, and an increase in andien-β synthase activity (p < 0.0001). Increasing the ratio of CYB5B to CYP17A1 also decreased 17α-hydroxylase, but did not affect the andien-β synthase activity; however, the C17,20 lyase, was significantly increased. These results demonstrate the differential effects of two forms of CYB5 on the three activities of porcine CYP17A1 and show that CYB5B does not stimulate the andien-β synthase activity of CYP17A1.  相似文献   

14.
15.
Self-sufficient CYP102As possess outstanding hydroxylating activity to fatty acids such as myristic acid. Other CYP102 subfamily members share substrate specificity of CYP102As, but, occasionally, unusual characteristics of its own subfamily have been found. In this study, only one self-sufficient cytochrome P450 from Streptomyces cattleya was renamed from CYP102A_scat to CYP102G4, purified and characterized. UV–Vis spectrometry pattern, FAD/FMN analysis, and protein sequence comparison among CYP102s have shown that CYP102 from Streptomyces cattleya belongs to CYP102G subfamily. It showed hydroxylation activity toward fatty acids generating ω-1, ω-2, and ω-3-hydroxyfatty acids, which is similar to the general substrate specificity of CYP102 family. Unexpectedly, however, expression of CYP102G4 showed indigo production in LB medium batch flask culture, and high catalytic activity (kcat/Km) for indole was measured as 6.14 ± 0.10 min 1 mM 1. Besides indole, CYP102G4 was able to hydroxylate aromatic compounds such as flavone, benzophenone, and chloroindoles. Homology model has shown such ability to accept aromatic compounds is due to its bigger active site cavity. Unlike other CYP102s, CYP102G4 did not have biased cofactor dependency, which was possibly determined by difference in NAD(P)H binding residues (Ala984, Val990, and Tyr1064) compared to CYP102A1 (Arg966, Lys972 and Trp1046). Overall, a self-sufficient CYP within CYP102G subfamily was characterized using purified enzymes, which appears to possess unique properties such as an only prokaryotic CYP naturally producing indigo.  相似文献   

16.
Mammalian lipoxygenases (LOX) have been implicated in cell differentiation and in the pathogenesis of inflammatory, hyperproliferative and neurological diseases. Although the reaction specificity of mammalian LOX with n  6 fatty acids (linoleic acid, arachidonic acid) has been explored in detail little information is currently available on the product patterns formed from n  3 polyenoic fatty acids, which are of particular nutritional importance and serve as substrate for the biosynthesis of pro-resolving inflammatory mediators such as resolvins and maresins. Here we expressed the ALOX15 orthologs of eight different mammalian species as well as human ALOX12 and ALOX15B as recombinant his-tag fusion proteins and characterized their reaction specificity with the most abundantly occurring polyunsaturated fatty acids (PUFAs) including 5,8,11,14,17-eicosapentaenoic acid (EPA) and 4,7,10,13,16,19-docosahexaenoic acid (DHA). We found that the LOX isoforms tested accept these fatty acids as suitable substrates and oxygenate them with variable positional specificity to the corresponding n  6 and n  9 hydroperoxy derivatives. Surprisingly, human ALOX15 as well as the corresponding orthologs of chimpanzee and orangutan, which oxygenates arachidonic acid mainly to 15S-H(p)ETE, exhibit a pronounced dual reaction specificity with DHA forming similar amounts of 14- and 17-H(p)DHA. Moreover, ALOX15 orthologs prefer DHA and EPA over AA when equimolar concentrations of n  3 and n  6 PUFA were supplied simultaneously. Taken together, these data indicate that the reaction specificity of mammalian LOX isoforms is variable and strongly depends on the chemistry of fatty acid substrates. Most mammalian ALOX15 orthologs exhibit dual positional specificity with highly unsaturated n  3 polyunsaturated fatty acids.  相似文献   

17.
The facile abstraction of bis-allylic hydrogens from polyunsaturated fatty acids (PUFAs) is the hallmark chemistry responsible for initiation and propagation of autoxidation reactions. The products of these autoxidation reactions can form cross-links to other membrane components and damage proteins and nucleic acids. We report that PUFAs deuterated at bis-allylic sites are much more resistant to autoxidation reactions, because of the isotope effect. This is shown using coenzyme Q-deficient Saccharomyces cerevisiae coq mutants with defects in the biosynthesis of coenzyme Q (Q). Q functions in respiratory energy metabolism and also functions as a lipid-soluble antioxidant. Yeast coq mutants incubated in the presence of the PUFA α-linolenic or linoleic acid exhibit 99% loss of colony formation after 4 h, demonstrating a profound loss of viability. In contrast, coq mutants treated with monounsaturated oleic acid or with one of the deuterated PUFAs, 11,11-D2-linoleic or 11,11,14,14-D4-α-linolenic acid, retain viability similar to wild-type yeast. Deuterated PUFAs also confer protection to wild-type yeast subjected to heat stress. These results indicate that isotope-reinforced PUFAs are stabilized compared to standard PUFAs, and they protect coq mutants and wild-type yeast cells against the toxic effects of lipid autoxidation products. These findings suggest new approaches to controlling ROS-inflicted cellular damage and oxidative stress.  相似文献   

18.
《Small Ruminant Research》2010,89(2-3):89-96
Aim of this study was to evaluate the effects of grazing on Trifolium subterraneum and Lolium multiflorum, as pure or associated crops, on the chemical composition and on the fatty acid profile of the intramuscular lipids of the meat of lambs. Forty Comisana male lambs, on average weighing 13.75 ± 1.90 kg, were divided into four homogenous groups of ten and called, in relation to the diet: group T those grazing on T. subterraneum; Group L on L. multiflorum; Group TL on adjacent monocultures of T. subterraneum and L. multiflorum (66.6 and 33.3% of surface, respectively); Group LT on adjacent monocultures of T. subterraneum and L. multiflorum (33.3 and 66.6% of surface, respectively). Every 10 days, samples of forage species ingested by grazing lambs were collected and analysed. At 90 days of age, with an average live weight of 25.44, 23.44, 24.69 and 24.75 kg for T, L, TL and LT group, respectively, all lambs were slaughtered and a sample of Longissimus dorsi muscle for each animal was collected to study the chemical and acidic composition. No significant differences among the groups were observed for the growth performance and for the chemical composition of the meat. As regards the fatty acid classes, significant differences (P < 0.05) were observed for the monounsaturated fatty acids, which were lower in the group T (35.46%) than those of the groups L (38.24%), TL (38.63%) and LT (38.59%), whereas, significant higher values for the group T were observed for the polyunsaturated fatty acids of the n-3 (4.49%) and n-6 (8.26%) series than those of the n-6 series for group L (6.79%; P < 0.05) and than those of both series for group LT (n-3 = 3.64%; P < 0.05 and n-6 = 6.43%; P < 0.05). The fatty acids that have significantly determined the modifications of the acidic classes were: oleic acid, which showed significant (P < 0.05) lower values in the group T (26.70%) than the levels observed in the groups L (30.33%), TL (30.39%) and LT (30.63%) and the linoleic, linolenic and rumenic acids which were significantly (P < 0.05) higher in the groups T (linoleic = 5.13%; linolenic = 1.97%; rumenic = 0.46%) and TL (linoleic = 4.75%; linolenic = 1.82%; rumenic = 0.41%) than those of the groups L (linoleic = 4.10%; linolenic = 1.52%; rumenic = 0.26%) and LT (linoleic = 3.95%; linolenic = 1.42%; rumenic = 0.33%). These differences could be due to the different dynamic activity of the cellulolytic bacteria in the rumen, related to the different levels of fibrous fractions of the diets. No significant difference was observed for saturated fatty acid, unsaturated/saturated fatty acids ratio and Atherogenic and Thrombogenic indices among the groups, whereas, PUFA/SFA ratio showed significant (P < 0.05) higher value in group T than that in the group LT.T. subterraneum monoculture grazed as monoculture (T) and in mixture with L. multiflorum (66/33, TL) increased the linoleic, linolenic and rumenic acids improving the dietetic-nutritional characteristics of the lamb meat.  相似文献   

19.
《Cryobiology》2013,66(3):224-229
The very large acrosome of Pteropus species spermatozoa is prone to damage during cooling procedures. Cryogenic succuss has been linked to membrane composition, therefore the lipid composition of five Pteropus species sperm acrosomal and plasma membranes were investigated to provide insight into reasons for cold shock susceptibility. Rapid chilling and re-warming of spermatozoa from three Pteropus species resulted in a decrease (P < 0.05) in acrosomal integrity. Biochemical analysis of lipids revealed that stearic acid (18:0) was the predominant saturated fatty acid and oleic acid (18:1, n-9) the predominant unsaturated fatty acid in both acrosomal and plasma membranes. Linolenic acid (18:3, n-3) was only detected in plasma membranes of Pteropus hypomelanus and was detected in acrosomal membranes of all Pteropus spp. studied (except Pteropus giganteus). Although detected in both plasma and acrosomal membranes of Pteropus vampyrus, docosahexaenoic acid (22:6) was not detected at all in Pteropus poliocephalus, only in trace levels in the acrosomal and plasma membranes of P. giganteus and P. hypomelanus and not in acrosomal membranes of Pteropus rodricensis. No difference was seen in the levels of polyunsaturated fatty acids (PUFAs) within plasma membranes, however PUFAs were lower (P < 0.05) in acrosomal membranes of P. giganteus compared with P. vampyrus. Pteropus spp. spermatozoa have a very low ratio of unsaturated/saturated membrane fatty acids (<0.5). Membranes containing more PUFAs are more fluid, so the use of cryogenic media which improves membrane fluidity should improve Pteropus spp. spermatozoal viability post-thaw.  相似文献   

20.
Since Saccharomyces cerevisiae contains Δ9 fatty acid desaturase (OLE1) as a sole fatty acid desaturase, it produces saturated and monounsaturated fatty acids of 16- and 18-carbon compounds. We showed earlier that Kluyveromyces lactis Δ12 (KlFAD2) and ω3 (KlFAD3) fatty acid desaturase genes enabled S. cerevisiae to make also polyunsaturated fatty acids (PUFAs), linoleic (18:2n-6), and α-linolenic (18:3n-3) acids. Unlike Δ9 fatty acid desaturase Ole1p, the two added fatty acid desaturases (KlFAD2and KlFAD3) do not contain a cytochrome b5 domain, and we now report on effects of the overexpression of K. lactis and S. cerevisiae cytochrome b5 (CYB5) genes as well as temperature effects on PUFA synthesis. Without extra cytochrome b5, while PUFA synthesis is significant at low temperature (20 °C), it was marginal at 30 °C. Overexpression of cytochrome b5 at 20 °C did not affect the fatty acid synthesis so much, but it significantly enhanced the synthesis of PUFA at 30 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号