首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species ranges have been shifting since the Pleistocene, whereby fragmentation, isolation, and the subsequent reduction in gene flow have resulted in local adaptation of novel genotypes and the repeated evolution of endemic species. While there is a wide body of literature focused on understanding endemic species, very few studies empirically test whether or not the evolution of endemics results in unique function or ecological differences relative to their widespread congeners; in particular while controlling for environmental variation. Using a common garden composed of 15 Eucalyptus species within the subgenus Symphyomyrtus (9 endemic to Tasmania, 6 non-endemic), here we hypothesize and show that endemic species are functionally and ecologically different from non-endemics. Compared to non-endemics, endemic Eucalyptus species have a unique suite of functional plant traits that have extended effects on herbivores. We found that while endemics occupy many diverse habitats, they share similar functional traits potentially resulting in an endemic syndrome of traits. This study provides one of the first empirical datasets analyzing the functional differences between endemics and non-endemics in a common garden setting, and establishes a foundation for additional studies of endemic/non-endemic dynamics that will be essential for understanding global biodiversity in the midst of rapid species extinctions and range shifts as a consequence of global change.  相似文献   

2.
Biogeography and genetic variation of freshwater organisms are influenced not only by current freshwater connections but also by past drainage networks. The Seto Inland Sea is a shallow enclosed sea in Japan, but geological evidence showed that a large freshwater drainage had intermittently appeared in this area between the late Pliocene and Pleistocene. Here, we demonstrated that this paleodrainage greatly affected the genetic variation of the East Asian freshwater snails, Semisulcospira spp. We found that the mtDNA haplotypes originated in the Lake Biwa endemic Semisulcospira species at the upstream side of the paleodrainage were frequently observed in the riverine Semisulcospira species at its downstream side. The genome‐wide DNA and morphological analyses consistently showed that there was no clear evidence of nuclear introgression between the Lake Biwa endemics and riverine species. These results suggest that the large paleodrainage had facilitated mitochondrial introgression and had broadly spread the introgressed mtDNA haplotypes to its downstream region around the Seto Inland Sea. Our study highlights the role of paleodrainages in shaping the genetic variation of freshwater organisms.  相似文献   

3.
The parasite fauna of prosobranch snails of the genus Semisulcospira was surveyed in Lake Biwa and the adjacent water system. One aspidogastrean and 28 digenetic trematode taxa were detected in 19209 snails consisting of 10 morphological species. There was no trematode species peculiar to members of the subgenus Biwamelania that is endemic to the Lake Biwa water system. However, one species, Notocotylus magniovatus, was found only in the non-endemic subgenus Semisulcospira. Of 23 digenean taxa detected in more than one host, 13 were distributed in both the lake and the tributaries. Seven of these had host taxa, more than 1% of which were infected with the parasite in both the lake and the tributaries, four had such hosts only in the tributaries, and two had no such hosts. Three species detected only in Lake Biwa were previously reported from other rivers in Japan. In the seven species detected only in the tributaries, two species had life cycles that could be maintained only in rivers. These results indicate that the core areas for the distribution of parasites of Semisulcospira are tributaries, and the lake is a sink for these species. These results contradict the expectation that the parasite fauna should be richer in the lake than in tributaries because the lake is a stable habitat over a geological time scale and has more divergent freshwater animals than the adjacent water system.  相似文献   

4.
Miracidia of Schistosoma mansoni penetrate into many kinds of snails, but development of normal sporocysts takes place only in certain species of Biomphalaria. Different populations of this snail vary greatly in laboratory infection rates with S. mansoni originating from diverse geographic localities. Cross-exposure experiments show that compatibility factors exist in both snails and parasites. Susceptibility of stocks of Biomphalaria to particular strains of S. mansoni is genetically determined and may be modified by selection in the laboratory. In a compatible snail, the sporocyst develops without host tissue reaction; in incompatible snails the early larvae are rapidly surrounded by amebocytes and fibroblasts, and destroyed. This reaction resembles the generalized host cellular response elicited by any foreign body. An individual snail exposed to many miracidia may have both developing and encapsulated sporocysts side by side within its tissues. The weight of current evidence suggests that elicitation or absence of this cellular response resides in the recognition or nonrecognition of the sporocyst as a foreign body. The sporocyst tegument surface, which forms within a few hours after miracidial penetration, may have a molecular conformation identical with that of the snail, or may be able to bind specific host molecules, so that detection and subsequent encapsulation by host cells are averted. Presuming genetic determination of the sporocyst surface structure and of the host cell detection capability, differing infection rates would result from the particular frequencies of relevant genes in the populations concerned.  相似文献   

5.
González  Exequiel R.  Watling  Les 《Hydrobiologia》2003,497(1-3):181-204
The amphipod genus Hyalella has its highest diversity in the Andean Lake Titicaca. This genus is the only epigean amphipod present in South America. Eleven endemic and one non-endemic species are known from Lake Titicaca. An additional endemic species, Hyalella nefrens n. sp. and one non-endemic species Hyalella tiwanaku n. sp. are described here. Hyalella cuprea(Faxon, 1876), Hyalella latimanus (Faxon, 1876), Hyalella montforti Chevreux, 1907, and Hyalella neveulemairei Chevreux, 1904 are redescribed. The high diversity of Hyalella in the lake is not well understood, and it has been compared with the spectacular diversity of Lake Baikal.  相似文献   

6.
Tapeworms of the genus Spirometra are pseudophyllidean cestodes endemic in Korea. At present, it is unclear which Spirometra species are responsible for causing human infections, and little information is available on the epidemiological profiles of Spirometra species infecting humans in Korea. Between 1979 and 2009, a total of 50 spargana from human patients and 2 adult specimens obtained from experimentally infected carnivorous animals were analyzed according to genetic and taxonomic criteria and classified as Spirometra erinaceieuropaei or Spirometra decipiens depending on the morphology. Morphologically, S. erinaceieuropaei and S. decipiens are different in that the spirally coiled uterus in S. erinaceieuropaei has 5-7 complete coils, while in S. decipiens it has only 4.5 coils. In addition, there is a 9.3% (146/1,566) sequence different between S. erinaceieuropaei and S. decipiens in the cox1 gene. Partial cox1 sequences (390 bp) from 35 Korean isolates showed 99.4% (388/390) similarity with the reference sequence of S. erinaceieuropaei from Korea (G1724; GenBank KJ599680) and an additional 15 Korean isolates revealed 99.2% (387/390) similarity with the reference sequences of S. decipiens from Korea (G1657; GenBank KJ599679). Based on morphologic and molecular databases, the estimated population ratio of S. erinaceieuropaei to S. decipiens was 35: 15. Our results indicate that both S. erinaceieuropaei and S. decipiens found in Korea infect humans, with S. erinaceieuropaei being 2 times more prevalent than S. decipiens. This study is the first to report human sparganosis caused by S. decipiens in humans in Korea.  相似文献   

7.
The cryptic diversity of trematodes was evaluated in the Nagayama-Shinkawa River, an artificial canal of the Ishikari River System of Hokkaido, Japan. Numerous migratory waterfowls use the canal as a stopover point in every spring season. The lymnaeid snail, Radix auricularia, and the semisulcospirid snail, Semisulcospira libertina, colonize the static and flowing water areas, respectively. The trematode fauna of the two snails was assessed by molecular phylogenetic and population genetic analyses. Each of distinctive clades in mitochondrial DNA trees was arbitrarily set as a species. In total, 14 species of the families Diplostomidae, Echinostomatidae, Notocotylidae, Plagiorchiidae, and Strigeidae occurred in R. auricularia, wherease S. libertina harbored 10 species of the families Echinochasmidae, Heterophyidae, Notocotylidae, and Lecithodendridae and Cercaria creta, an unclassified species whose adult stage is still unknown. The species diversity of the larval trematodes could be recognized as a “hot spot”, suggesting that the seasonal visit of waterfowls is very important to spread trematodes and to keep their diversity. A high intraspecific genetic diversity was observed in the echinostomatid, notocotylid, echinochasmid, and heterophyid species, whose definitive hosts include birds. It seems likely that each of the parasite populations is always disturbed by repeated visits of waterfowls.  相似文献   

8.
The study of host–parasite coevolution is one of the cornerstones of evolutionary biology. The majority of fish ectoparasites belonging to the genus Dactylogyrus (Monogenea) exhibit a high degree of host specificity. Therefore, it is expected that their evolutionary history is primarily linked with the evolutionary history of their cyprinoid fish hosts and the historical formation of the landmasses. In the present study, we used a cophylogenetic approach to investigate coevolutionary relationships between endemic Cyprinoidea (Cyprinidae and Leuciscidae) from selected regions in southern Europe and their respective Dactylogyrus species. A total of 49 Dactylogyrus species including endemic and non-endemic species were collected from 62 endemic cyprinoid species in the Balkan and Apennine Peninsulas. However, 21 morphologically identified Dactylogyrus species exhibited different genetic variants (ranging from 2 to 28 variants per species) and some of them were recognized as cryptic species on the basis of phylogenetic reconstruction. Phylogenetic analyses revealed several lineages of endemic and non-endemic Dactylogyrus species reflecting some morphological similarities or host affinities. Using distance-based and event-based cophylogenetic methods, we found a significant coevolutionary signal between the phylogenies of parasites and their hosts. In particular, statistically significant links were revealed between Dactylogyrus species of Barbini (Cyprinidae) and their hosts belonging to the genera Aulopyge, Barbus and Luciobarbus. Additionally, a strong coevolutionary link was found between the generalist parasites D. alatus, D. sphyrna, D. vistulae, and their hosts, and between Dactylogyrus species of Pachychilon (Leuciscidae) and their hosts. Cophylogenetic analyses suggest that host switching played an important role in the evolutionary history of Dactylogyrus parasitizing endemic cyprinoids in southern Europe. We propose that the high diversification of phylogenetically related cyprinoid species in the Mediterranean area is a process facilitating the host switching of specific parasites among highly diverse congeneric cyprinoids.  相似文献   

9.
While the host immune system is often considered the most important physiological mechanism against parasites, precontact mechanisms determining exposure to parasites may also affect infection dynamics. For instance, chemical cues released by hosts can attract parasite transmission stages. We used the freshwater snail Lymnaea stagnalis and its trematode parasite Echinoparyphium aconiatum to examine the role of host chemical attractiveness, physiological condition, and immune function in determining its susceptibility to infection. We assessed host attractiveness through parasite chemo‐orientation behavior; physiological condition through host body size, food consumption, and respiration rate; and immune function through two immune parameters (phenoloxidase‐like and antibacterial activity of hemolymph) at an individual level. We found that, although snails showed high variation in chemical attractiveness to E. aconiatum cercariae, this did not determine their overall susceptibility to infection. This was because large body size increased attractiveness, but also increased metabolic activity that reduced overall susceptibility. High metabolic rate indicates fast physiological processes, including immune activity. The examined immune traits, however, showed no association with susceptibility to infection. Our results indicate that postcontact mechanisms were more likely to determine snail susceptibility to infection than variation in attractiveness to parasites. These may include localized immune responses in the target tissue of the parasite. The lack of a relationship between food consumption and attractiveness to parasites contradicts earlier findings that show food deprivation reducing snail attractiveness. This suggests that, although variation in resource level over space and time can alter infection dynamics, variation in chemical attractiveness may not contribute to parasite‐induced fitness variation within populations when individuals experience similar environmental conditions.  相似文献   

10.
The saxicolousStrigula fractanssp. nov. andS. rupestrissp. nov. are described from Lord Howe Island, New South Wales, Australia. A new combination,S. decipiens(Malme) P. M. McCarthy, is proposed forPorina decipiensMalme, and a key to the 17 saxicolous species ofStrigulais provided.  相似文献   

11.
Freshwater snails of the family Lymnaeidae are the intermediate hosts of the liver fluke Fasciola worldwide. While distinct species have been identified at the molecular level in other parts of the world such data have not been published for Thailand. In this study we collected Lymnaeidae from different localities across Thailand and analyzed their 16S rDNA sequences as a molecular signature for classification. In addition to the ubiquitous Radix rubiginosa, we have confirmed the presence of Austropeplea viridis and Radix swinhoei, for the latter of which the ribosomal rDNA sequences are reported for the first time, in North-Thailand. Based on the obtained 16S rDNA data three primer pairs were designed that allowed rapid identification of these snail species by PCR. To determine their infection status, PCR primers for F.gigantica cathepsin L were used in parallel with the snail 16S rDNA species-specific primers in multiplex PCR analyses. Western blot analysis of total snail protein with a monoclonal anti-F.gigantica cathepsin L antibody confirmed positive cathepsin L PCR results. The developed diagnostic PCR will be of use in risk assessment for transmission of fascioliasis in Thailand.  相似文献   

12.
Prevalence and intensity of Gyrodactylus colemanensis and G. salmonis (Monogenea) parasitizing juvenile/adult brook trout Salvelinus fontinalis, rainbow trout Oncorhynchus mykiss, brown trout Salmo trutta, and Atlantic salmon Salmo salar at 3 localities over an 8 km stretch in the South River, Nova Scotia, Canada, were calculated 4 times over a 9 mo period (October 2009, December 2009, March 2010, June 2010). G. colemanensis was on all 4 salmonids (endemic and non-endemic), while G. salmonis parasitized mostly S. fontinalis (endemic) and occasionally S. trutta (non-endemic). At an upstream locality, beyond a waterfall barrier, in a small tributary of the main river, G. colemanensis was more common than G. salmonis. In the main river, 7 km downstream, prevalence of G. colemanensis on S. fontinalis was comparable, or higher, than that of G. salmonis, while intensity of G. salmonis was higher than that of G. colemanensis. Downstream a further 1 km, in a tributary of the main river, both prevalence and intensity of G. salmonis on brook trout were higher than those of G. colemanensis. Stocks at a local trout hatchery had only G. colemanensis. The present study reports on a method by which exit water from such farms can be monitored for gyrodactylid parasites through a simple settling procedure. We estimated that up to 230,000 dislodged, live G. colemanensis exit the hatchery daily in discharge water entering the river. It is suggested that such systems are ideal for studying the impact of such parasite export on the nature of local parasite populations.  相似文献   

13.
A robust food web is one in which few secondary extinctions occur after removing species. We investigated how parasites affected the robustness of the Carpinteria Salt Marsh food web by conducting random species removals and a hypothetical, but plausible, species invasion. Parasites were much more likely than free-living species to suffer secondary extinctions following the removal of a free-living species from the food web. For this reason, the food web was less robust with the inclusion of parasites. Removal of the horn snail, Cerithidea californica, resulted in a disproportionate number of secondary parasite extinctions. The exotic Japanese mud snail, Batillaria attramentaria, is the ecological analogue of the native California horn snail and can completely replace it following invasion. Owing to the similarities between the two snail species, the invasion had no effect on predator–prey interactions. However, because the native snail is host for 17 host-specific parasites, and the invader is host to only one, comparison of a food web that includes parasites showed significant effects of invasion on the native community. The hypothetical invasion also significantly reduced the connectance of the web because the loss of 17 native trematode species eliminated many links.  相似文献   

14.
Current and past parasite transmission may depend on the overlap of host distributions, potentially affecting parasite specificity and co-evolutionary processes. Nonetheless, parasite diversification may take place in sympatry when parasites are transmitted by vectors with low mobility. Here, we test the co-speciation hypothesis between lizard final hosts of the Family Lacertidae, and blood parasites of the genus Schellackia, which are potentially transmitted by haematophagous mites. The effects of current distributional overlap of host species on parasite specificity are also investigated. We sampled 27 localities on the Iberian Peninsula and three in northern Africa, and collected blood samples from 981 individual lizards of seven genera and 18 species. The overall prevalence of infection by parasites of the genus Schellackia was ~35%. We detected 16 Schellackia haplotypes of the 18S rRNA gene, revealing that the genus Schellackia is more diverse than previously thought. Phylogenetic analyses showed that Schellackia haplotypes grouped into two main monophyletic clades, the first including those detected in host species endemic to the Mediterranean region and the second those detected in host genera Acanthodactylus, Zootoca and Takydromus. All but one of the Schellackia haplotypes exhibited a high degree of host specificity at the generic level and 78.5% of them exclusively infected single host species. Some host species within the genera Podarcis (six species) and Iberolacerta (two species) were infected by three non-specific haplotypes of Schellackia, suggesting that host switching might have positively influenced past diversification of the genus. However, the results supported the idea that current host switching is rare because there existed a significant positive correlation between the number of exclusive parasite haplotypes and the number of host species with current sympatric distribution. This result, together with significant support for host–parasite molecular co-speciation, suggests that parasites of the genus Schellackia co-evolved with their lizard hosts.  相似文献   

15.
We investigated the genetic diversity and structure of Aechmea winkleri Reitz, an endemic bromeliad found in Southern Brazilian Atlantic rainforest. Seven nuclear microsatellite markers were used to analyze 162 samples from four localities sampled throughout the entire geographic distribution of the species. Results indicate relatively high levels of genetic diversity with an average of allelic richness of 3.57, and observed and expected heterozygosity of 0.559 and 0.608, respectively. The within-inbreeding coefficient was low, ranging from −0.011 to 0.094. All localities significantly deviated from Hardy–Weinberg equilibrium with three of them showing heterozygosites deficiency. Most of the genetic variation (96.64%) was found within localities. No reduction in population size (bottleneck) was detected. Low levels of genetic differentiation among localities were found with pairwise FST comparisons varying from 0.021 to 0.075. Bayesian analyses revealed that A. winkleri is composed by two genetic groups. The number of migrants per generation was high (>1), which maintain localities' cohesion and gene flow. Despite genetic erosion was not detected in the present study, our results revealed that the four localities sampled actually represent one population, the only known so far in nature. Management strategies for A. winkleri conservation should be undertaken as it is an endemic species which occurs in a biome that has gone through major deforestation and fragmentation. This would avoid the increase of inbreeding rates and the loss of genetic diversity.  相似文献   

16.
This study was carried out to provide information on the taxonomic classification and analysis of mitochondrial genomes of Spirometra theileri. One strobila of S. theileri was collected from the intestine of an African leopard (Panthera pardus) in the Maswa Game Reserve, Tanzania. The complete mtDNA sequence of S. theileri was 13,685 bp encoding 36 genes including 12 protein genes, 22 tRNAs and 2 rRNAs with absence of atp8. Divergences of 12 protein-coding genes were as follow: 14.9% between S. theileri and S. erinaceieuropaei, 14.7% between S. theileri and S. decipiens, and 14.5% between S. theileri with S. ranarum. Divergences of 12 proteins of S. theileri and S. erinaceieuropaei ranged from 2.3% in cox1 to 15.7% in nad5, while S. theileri varied from S. decipiens and S. ranarum by 1.3% in cox1 to 15.7% in nad3. Phylogenetic relationship of S. theileri with eucestodes inferred using the maximum likelihood and Bayesian inferences exhibited identical tree topologies. A clade composed of S. decipiens and S. ranarum formed a sister species to S. erinaceieuropaei, and S. theileri formed a sister species to all species in this clade. Within the diphyllobothridean clade, Dibothriocephalus, Diphyllobothrium and Spirometra formed a monophyletic group, and sister genera were well supported.  相似文献   

17.
Aim We investigated how the spatial distribution of parasites, measured as either their geographical range size or their frequency of occurrence among localities, relates to either their average local abundance or the variance in their abundance among localities where they occur. Location We used data on the abundance of 46 metazoan parasite species in 66 populations of threespine sticklebacks, Gasterosteus aculeatus, from Europe and North America. Methods For each parasite species, frequency of occurrence was calculated as the proportion of stickleback populations in which it occurred, and geographical range size as the area within the smallest possible polygon delimited using the coordinates of the localities where it occurred. Generalized linear models were used to assess how these two measures of spatial distribution were influenced by several predictor variables: geographical region (North America or Europe), life cycle (simple or complex), average local abundance, the coefficient of variation in abundance across localities, and median prevalence (proportion of infected hosts within a locality). Results Our analyses uncovered four patterns. First, parasites in North America tend to have higher frequencies of occurrence among surveyed localities, but not broader geographical ranges, than those in Europe. Second, parasite species with simple life cycles have wider geographical ranges than those with complex cycles. Third, there was a positive relationship between average abundance of the different parasite species and their frequency of occurrence, but not between average abundance and geographical range size. Fourth, the coefficient of variation in abundance covaried positively with both the frequency of occurrence and geographical range size across the different parasite species. Thus, all else being equal, parasites showing greater site‐to‐site variability in abundance occur in a greater proportion of localities and over a broader geographical area than those with a more stable abundance among sites. Main conclusions Local infection patterns are linked with large‐scale distributional patterns in fish parasites, independently of host effects, such that local commonness translates into regional commonness. The mechanisms linking parasite success at both scales remain unclear, but may include those that maintain the continuum between specialist and generalist parasites. Regardless, the observed patterns have implications for the predicted changes in the geographical distributions of many parasites in response to climate change.  相似文献   

18.
Schistosomiasis is a parasitic disease that is highly prevalent, especially in developing countries. Biomphalaria tenagophila is an important invertebrate host of Schistosoma mansoni in Brazil, with some strains (e.g. Cabo Frio) being highly susceptible to the parasite, whereas others (e.g. Taim) are completely resistant to infection. Therefore, B. tenagophila is an important research model for studying immune defense mechanisms against S. mansoni. The internal defense system (IDS) of the snail comprises hemocytes and hemolymph factors acting together to recognize self from non-self molecular patterns to eliminate the threat of infection. We performed experiments to understand the cellular defenses related to the resistance and/or susceptibility of B. tenagophila to S. mansoni. During the early stages of infection, fibrous host cells of both snail strains were arranged as a thin layer surrounding the sporocysts. However, at later stages of infection, the cellular reactions in resistant snails were increasingly more intense, with thicker layers surrounding the parasites, in contrast to susceptible strains. All parasites were damaged or destroyed inside resistant snails after 10 h of infection. By contrast, parasites inside susceptible snails appeared to be morphologically healthy. We also performed experiments using isolated hemocytes from the two strains interacting with sporocysts. Hemocyte attachment started as early as 1 h after initial infection in both strains, but the killing of sporocysts was exclusive to hemocytes from the resistant strain and was time course dependent. The resistant strain was able to kill all sporocysts. In conclusion, our study revealed important aspects of the initial process of infection related to immune defense responses of strains of B. tenagophila that were resistant to S. mansoni compared with strains that were susceptible. Such information is relevant for the survival or death of the parasites and so is important in the development of control measures against this parasite.  相似文献   

19.
A fundamental goal of parasite evolutionary ecology is to elucidate patterns of host use and determine the underlying mechanisms of parasite colonisation. In order to distinguish the relative contributions of host encounter rates and host compatibility to infection outcomes, we compared host use in both field and experimental laboratory settings. Two years of bi-weekly snail sampling at a freshwater pond demonstrated fluctuating availability among three potential second intermediate snail host species and suggested that two trematode species (Echinostoma revolutum and Echinoparyphium sp.) did not colonise the three potential snail host species, Lymnaea elodes, Physa gyrina and Helisoma trivolvis, differentially. However, a series of experimental infections demonstrated that both parasites colonised H. trivolvis more so than the other two host species. Thus, more echinostome parasites utilised snail hosts that cannot serve as their first intermediate host. In experimental infections, host size and vagility were not strong determinants of infection. By utilising field and laboratory approaches, we were able to compare the strength of host compatibility under controlled conditions with patterns of infection in nature. Based on the results from these studies, it appears that host encounter is the primary mechanism dictating infection outcomes in the field.  相似文献   

20.
The systematics of tapeworms in the genus Spirometra has been progressing with the accumulation of molecular genetics data, but the taxonomic status of many nominal species remains under debate. We report morphological and molecular-phylogenetic data for a Spirometra species collected from a domestic cat (Felis silvestris catus) in Chiloé Island, Chile. The Spirometra species was shown to be genetically conspecific with Spirometra decipiens complex 1 found in a Pampas fox (Lycalopex gymnocercus) from Argentina, and was closely related to a Hoary fox (Lycalopex vetulus) and rattlesnake (Crotalus durissus) from Brazil. Therefore, the presence of S. decipiens complex 1 was molecularly confirmed for the first time in Chile. The findings of the present study add useful information for the systematics of poorly known Spirometra species in South America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号