首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 340 毫秒
1.
Protein kinase C has recently attracted considerable attention because of its importance in the control of cell division, cell differentiation, and signal transduction across the cell membrane. The activity of this enzyme is altered by several lipids such as diacylglycerol, free fatty acids, lipoxins, gangliosides, and sulfatides. These lipids may interact with protein kinase C either directly or through calcium ions and produce their regulatory effect (activation or inhibition) on the activities of the enzymes phosphorylated by this kinase. These processes widen our perspective of the regulation of intercellular and intracelluular communication.Abbreviations used (PK-C) Protein kinase C - (cAMP-PK) cAMP dependent protein kinase - (DAG) diacylglycerol - (PtdSer) phosphatidylserine - (InsP 3) inositol 1,4,5-trisphosphate - (PtdIns 4,5-P2) inositol 4,5 bisphosphate - (FFA) free fatty acid - (MBP) myelin basic protein - (ATP) adenosine triphosphate - (GTP) guanine triphosphate - (TPA) 12-tetradecanoylphorbol-13-acetate - (EGF) epidermal growth factor - (PDGF) platelet derived growth factor - (NeuNAc) and N-acetylneuraminic acid  相似文献   

2.
The sequential actions of phosphoinositide 4-kinase and 5-kinase and hydrolysis of phosphatidylinositol (PtdIns) 4,5-P2 are stimulated during platelet activation. Recently, a phosphoinositide 3-kinase has been implicated in signal transduction in several cell types. Stimulation of PtdIns(3,4)P2 synthesis has been shown in polyoma middle T-transformed and platelet-derived growth factor-stimulated cells, and this novel lipid has been implicated in signal transduction and regulation of cell proliferation. We demonstrate the formation of PtdIns(3,4)P2 in human platelets and show that the synthesis of this lipid (and of PtdIns(4,5)P2) is stimulated during activation of platelets by thrombin. This indicates the presence of phosphoinositide 3-kinase activity in platelets. We postulate that PtdIns(3,4)P2 is involved in signal transduction in platelets and discuss the possibility that this novel lipid is a substrate for phospholipase C.  相似文献   

3.
Guard cells sense various environmental and internal stimuli and, in response, modulate the stomatal aperture to a size optimal for growth and adaptation. Among the many factors involved in the fine regulation of stomata, we have focused our studies on the role of phosphoinositides. Our recent study published in the Plant Journal (52:803–16) provides evidence for an important role for phosphatidylinositol 4,5-bis-phosphate (PtdIns(4,5)P2) in inducing stomatal opening. Light induces translocation of a PtdIns(4,5)P2-binding protein from the cytosol to the plasma membrane and treatments that increase the intracellular PtdIns(4,5)P2 level induce stomatal opening in the absence of light irradiation. Inhibition of anion channel activity, a negative regulator for stomatal opening, was suggested as a mechanism of PtdIns(4,5)P2-induced stomatal opening. We also reported that phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 4-phosphate (PtdIns(4)P) regulate actin dynamics in guard cells. The effects of the phosphoinositides were specific, and were not induced by other lipids with similar structures. The roles of different interacting partners are likely to be important for these lipids to produce specific changes in guard cell activity.Key words: PtdIns(4,5)P2; PtdIns(4)P; Ins(1,4,5)P3; anion channel; PIP kinase; phospholipase C; stomatal opening; guard cells  相似文献   

4.
Lysosome membranes contain diverse phosphoinositide (PtdIns) lipids that coordinate lysosome function and dynamics. The PtdIns repertoire on lysosomes is tightly regulated by the actions of diverse PtdIns kinases and phosphatases; however, specific roles for PtdIns in lysosomal functions and dynamics are currently unclear and require further investigation. It was previously shown that PIKfyve, a lipid kinase that synthesizes PtdIns(3,5)P2 from PtdIns(3)P, controls lysosome “fusion-fission” cycle dynamics, autophagosome turnover, and endocytic cargo delivery. Furthermore, INPP4B, a PtdIns 4-phosphatase that hydrolyzes PtdIns(3,4)P2 to form PtdIns(3)P, is emerging as a cancer-associated protein with roles in lysosomal biogenesis and other lysosomal functions. Here, we investigated the consequences of disrupting PIKfyve function in Inpp4b-deficient mouse embryonic fibroblasts. Through confocal fluorescence imaging, we observed the formation of massively enlarged lysosomes, accompanied by exacerbated reduction of endocytic trafficking, disrupted lysosome fusion-fission dynamics, and inhibition of autophagy. Finally, HPLC scintillation quantification of 3H-myo-inositol labeled PtdIns and PtdIns immunofluorescence staining, we observed that lysosomal PtdIns(3)P levels were significantly elevated in Inpp4b-deficient cells due to the hyperactivation of phosphatidylinositol 3-kinase catalytic subunit VPS34 enzymatic activity. In conclusion, our study identifies a novel signaling axis that maintains normal lysosomal homeostasis and dynamics, which includes the catalytic functions of Inpp4b, PIKfyve, and VPS34.  相似文献   

5.
Abstract: The coupling of muscarinic receptor-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis by phospholipase C to resynthesis of phosphatidylinositol (PtdIns) and the ability of Li+ to inhibit this after cellular inositol depletion were studied in 1321N1 astrocytoma cells cultured in medium ± inositol (40 µM). In inositol-replete cells, 1 mM carbachol/10 mM LiCl evoked an initial (0–30 min) ~≥20-fold activation of phospholipase C, whereas prolonged (>60 min) stimulation turned over Ptdlns equal to the cellular total mass, involving ~80% of the cellular Ptdlns pool without reducing PtdIns concentrations significantly. PtdIns resynthesis was achieved by a similar, initial agonist activation of PtdIns synthase. The dose dependency for carbachol stimulation of PtdIns synthase and phospholipase C was similar (EC50~ 20 µM) as was the relative intrinsic activity of muscarinic receptor partial agonists. This demonstrates the tight coupling of phosphoinositide hydrolysis to resynthesis and suggests this is achieved by a direct mechanism. In inositol-replete or depleted cells basal concentrations of inositol and CMP-phosphatidate were respectively ~20 mM or ≤100–500 µM and ~0.1 or ~≥1–10 pmol/mg of protein. Comparison of the effects of agonist ± Li+ on the concentrations of these cosubstrates for PtdIns synthase suggest that accelerated activity of this enzyme is differentially driven by stimulated increases in the amounts of CMP-phosphatidate or inositol in inositol-replete or depleted cells, respectively. Thus, the preferential capacity of Li+ to impair stimulated phosphoinositide turnover in systems expressing low cellular inositol can be attributed to its ability to attenuate the stimulated rise in inositol concentrations on which such systems selectively depend to trigger accelerated PtdIns resynthesis.  相似文献   

6.
Within the plant kingdom the stomatal guard cell is presented as a model system of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-mediated signal transduction. Despite this it is only recently that the phosphoinositide components of animal signal transduction pathways have been identified in stomatal guard cells. Interestingly, stomatal guard cells contain both 3- and 4-phosphorylated phosphatidylinositols though their relative contributions to signalling remain undefined. An appraisal of the routes of synthesis and rates of turnover of these phosphatidylinositols would appear timely as the in vivo biosynthesis of these components is a much neglected facet of the phosphoinositide-mediated signalling paradigm as purported to apply to plants. A non-equilibrium [32P]Pi labelling strategy and enzymic and chemical dissection of labelled phosphatidylinositols have been used to address not only the route of synthesis but also the rates of turnover of phosphatidylinositols in stomatal guard cells of Commelina communis L. The specific activity of the ATP pool of isolated guard cells was found to increase over a 4 h period when labelled from [32P]Pi. In separate experiments, isolated guard cells were labelled over a 40–240 min period, their lipids extracted, deacylated and resolved by HPLC. Glycerophosphoinositol phosphate (GroPInsP) and glycerophosphoinositol bisphosphate (GroPInsP2) peaks were desalted and enzymically cleaved with alkaline phosphatase and human erythrocyte ghosts, respectively. The monoester phosphate in phosphatidylinositol 4-monophosphate (PtdIns4P) accounted for 90–97% of the [32P]Pi label while the 4- and 5-monoester phosphates of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] accounted for typically 39% and 61% respectively. Therefore, the evidence is consistent with synthesis of PtdIns(4,5)P2 by successive 4- and 5-phosphorylation of phosphatidylinositol (PtdIns). This study therefore represents the first report of the pathway of the synthesis of 4- and 5-phosphorylated phosphatidylinositols in a single defined hormone-responsive plant cell type. The monoester phosphate in phosphatidylinositol 3-monophosphate (PtdIns3P) accounted for 83–95% of the 32P label. It was not possible, however, to determine the route of synthesis of phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2] owing to the rapid attainment of equilibrium between the 3- and 4-monoester phosphates of PtdIns(3,4)P2, each containing approximately 50% of the label at just 40 min of labelling. Turnover of PtdIns3P was quicker than that of PtdIns4P. Similarly, turnover of PtdIns(3,4)P2 was quicker than that of PtdIns(4,5)P2, and in mass terms PtdIns(3,4)P2 appeared to predominate over PtdIns(4,5)P2. By analogy with animal systems, in which signalling molecules such as PtdIns(4,5)P2 show considerable basal turnover, the evidence presented is consistent with signalling roles for PtdIns3P and PtdIns(3,4)P2 in addition to those previously indicated for PtdIns(4,5)P2 in stomatal guard cells.  相似文献   

7.
[3H]Inositol ([3H]Ins) labeling of phosphoinositides was studied in rat brain cortical membranes. [3H]Ins was incorporated into a common lipid pool through both CMP-dependent and independent mechanisms. These are as follows: (1) a reverse reaction catalyzed by phosphatidyl-inositol (PtdIns) synthase, and (2) the reaction performed by the PtdIns headgroup exchange enzyme, respectively. Membrane phosphoinositides prelabeled in either CMP-dependent or independent fashions were hydrolyzed by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)- and carbachol-stimulated phospholipase C. Unlike CMP-dependent labeling, however, CMP-independent incorporation of [3H]Ins into lipids was inhibited by 1 mM (0.04%) sodium deoxycholate. Thus, when PtdIns labeling and phospholipase C stimulation were studied in a concerted fashion, [3H]Ins was incorporated into lipids primarily through the PtdIns synthase-catalyzed reaction because of the presence of deoxycholate required to observe carbachol-stimulation of phospholipase C. Little direct breakdown of [3H]PtdIns was detected because production of myo-[3H]inositol 1-monophosphate was minimal and myo-[3H]inositol 1,4-bisphosphate was the predominant product. Although PtdIns labeling and 3H-polyphosphoinositide formation were unaffected by GTP gamma S and carbachol and had no or little lag period, GTP gamma S- and carbachol-stimulated appearance of 3H-Ins phosphates exhibited an appreciable lag (10 min). Also, flux of label from [3H]Ins to 3H-Ins phosphates was restricted to a narrow range of free calcium concentrations (10-300 nM). These results show the concerted activities of PtdIns synthase, PtdIns 4-kinase, and phospholipase C, and constitute a simple assay for guanine nucleotide-dependent agonist stimulation of phospholipase C in a brain membrane system using [3H]Ins as labeled precursor.  相似文献   

8.
TRPC3/C6/C7 channels, a subgroup of classical/canonical TRP channels, are activated by diacylglycerol produced via activation of phospholipase C (PLC)-coupled receptors. Recognition of the physiological importance of these channels has been steadily growing, but the mechanism by which they are regulated remains largely unknown. We recently used a membrane-resident danio rerio voltage-sensing phosphatase (DrVSP) to study TRPC3/C6/C7 regulation and found that the channel activity was controlled by PtdIns(4,5)P2-DAG signaling in a self-limiting manner (Imai Y et al., the Journal of Physiology, 2012). In this addendum, we present the advantages of using DrVSP as a molecular tool to study PtdIns(4,5)P2 regulation. DrVSP should be readily applicable for studying phosphoinositide metabolism-linked channel regulation as well as lipid dynamics. Furthermore, in comparison to other modes of self-limiting ion channel regulation, the regulation of TRPC3/C6/C7 channels seems highly susceptible to activation signal strength, which could potentially affect both open duration and the time to peak activation and inactivation. Dysfunction of such self-limiting regulation may contribute to the pathology of the cardiovascular system, gastrointestinal tract and brain, as these channels are broadly distributed and affected by numerous neurohormonal agonists.  相似文献   

9.
Phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2) pools that bind pleckstrin homology (PH) domains were visualized by cellular expression of a phospholipase C (PLC)δ PH domain–green fluorescent protein fusion construct and analysis of confocal images in living cells. Plasma membrane localization of the fluorescent probe required the presence of three basic residues within the PLCδ PH domain known to form critical contacts with PtdIns(4,5)P2. Activation of endogenous PLCs by ionophores or by receptor stimulation produced rapid redistribution of the fluorescent signal from the membrane to cytosol, which was reversed after Ca2+ chelation. In both ionomycin- and agonist-stimulated cells, fluorescent probe distribution closely correlated with changes in absolute mass of PtdIns(4,5)P2. Inhibition of PtdIns(4,5)P2 synthesis by quercetin or phenylarsine oxide prevented the relocalization of the fluorescent probe to the membranes after Ca2+ chelation in ionomycin-treated cells or during agonist stimulation. In contrast, the synthesis of the PtdIns(4,5)P2 imaged by the PH domain was not sensitive to concentrations of wortmannin that had been found inhibitory of the synthesis of myo-[3H]inositol– labeled PtdIns(4,5)P2. Identification and dynamic imaging of phosphoinositides that interact with PH domains will further our understanding of the regulation of such proteins by inositol phospholipids.  相似文献   

10.
Receptor-mediated endocytosis via clathrin-coated vesicles has been extensively studied and, while many of the protein players have been identified, much remains unknown about the regulation of coat assembly and the mechanisms that drive vesicle formation [1]. Some components of the endocytic machinery interact with inositol polyphosphates and inositol lipids in vitro, implying a role for phosphatidylinositols in vivo [2] and [3]. Specifically, the adaptor protein complex AP2 binds phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), PtdIns(3)P, PtdIns(3,4,5)P3 and inositol phosphates. Phosphatidylinositol binding regulates AP2 self-assembly and the interactions of AP2 complexes with clathrin and with peptides containing endocytic motifs [4] and [5]. The GTPase dynamin contains a pleckstrin homology (PH) domain that binds PtdIns(4,5)P2 and PtdIns(3,4,5)P3 to regulate GTPase activity in vitro [6] and [7]. However, no direct evidence for the involvement of phosphatidylinositols in clathrin-mediated endocytosis exists to date. Using well-characterized PH domains as high affinity and high specificity probes in combination with a perforated cell assay that reconstitutes coated vesicle formation, we provide the first direct evidence that PtdIns(4,5)P2 is required for both early and late events in endocytic coated vesicle formation.  相似文献   

11.
Eisosomes are multiprotein structures that generate linear invaginations at the plasma membrane of yeast cells. The core component of eisosomes, the BAR domain protein Pil1, generates these invaginations through direct binding to lipids including phosphoinositides. Eisosomes promote hydrolysis of phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) by functioning with synaptojanin, but the cellular processes regulated by this pathway have been unknown. Here, we found that PI(4,5)P2 regulation by eisosomes inhibits the cell integrity pathway, a conserved MAPK signal transduction cascade. This pathway is activated by multiple environmental conditions including osmotic stress in the fission yeast Schizosaccharomyces pombe. Activation of the MAPK Pmk1 was impaired by mutations in the phosphatidylinositol (PI) 5-kinase Its3, but this defect was suppressed by removal of eisosomes. Using fluorescent biosensors, we found that osmotic stress induced the formation of PI(4,5)P2 clusters that were spatially organized by eisosomes in both fission yeast and budding yeast cells. These cortical clusters contained the PI 5-kinase Its3 and did not assemble in the its3-1 mutant. The GTPase Rho2, an upstream activator of Pmk1, also co-localized with PI(4,5)P2 clusters under osmotic stress, providing a molecular link between these novel clusters and MAPK activation. Our findings have revealed that eisosomes regulate activation of MAPK signal transduction through the organization of cortical lipid-based microdomains.  相似文献   

12.
In the last decade a great deal of attention was awarded to a signal transduction pathway which is utilized primarily by Ca2+ mobilizing signal molecules and which involves the hydrolysis of a quantitatively minor phospholipid, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by a PtdIns-specific phospholipase C (PLC). The evidence for the existence of receptor-mediated GTP binding protein-coupled PLC in myocardium and its possible functions are briefly summarized. The minireview is concentrated on the following aspects: 1) cellular localization and synthesis of polyphospho-PtdIns from PtdIns, 2) desensitization of the 1-adrenergic agonist and endothelin-1 mediated PtdIns responses, 3) oscillatory Ca2+ transients initiated by Ptdlns(4,5)P2 hydrolysis, 4) polyunsaturated fatty acids as constituents of polyphospho-PtdIns and of the protein kinase C activator 1,2-diacylglycerol (DAG), 5) source other than Ptdlns(4,5)P2 contributing to the stimulated DAG, 6) role of the PtdIns pathway in cardiomyocyte growth and gene expression during the hypertrophic response. (Mol Cell Biochem116: 59–67, 1992)Abbreviations Phosphatidylinositol 4,5-bisphosphate PtdIns(4,5)P2 - Phosphatidylinositol 4-monophosphate PtdIns(4)P4 - Phosphatidylinositol PtdIns - Inositol 1,4,5-triphosphate Ins(1,4,5)P3 - Inositol 1,3,4,5-tetrakisphosphate Ins(1,3,4,5)P4 - Inositol 1-monophosphate Ins(1)P - Inositol 1,4-bisphosphate Ins(1,4)P2 - Inositol Ins - Inositolphosphates InsPn - Guanine 5'-triphosphate GTP - GTP binding protein G-protein - Phosphatidylinositolspecific phospholipase C PLC - Protein kinase C PKC - 1,2-Diacylglycerol DAG - Monoacylglycerol MAG - cytidyldiphoshate-diacylglycerol CDP-DAG - Sarcolemma SL - Sarcoplasmic reticulum SR - Stearic acid 18:0 - Polyunsaturated fatty acids PUFA - Arachidonic acid 20:4n-6 - Linoleic acid 18:2n-6 - Eicosapentaenoic acid 20:5n-3 - Docosahexaenoic acid 22:6n-3 - Phosphatidic acid PtdOH - Phospholipase D PLD - Phosphatidylcholine PtdChol  相似文献   

13.
In rat cardiac sarcolemmal membranes a phosphoinositide-specific phospholipase C (PLC) was found to be present. The enzyme hydrolysed exogenous [3H-]phosphatidylinositol 4,5-biphosphate ([3H-]PtdIns(4,5)P 2) in an optimized assay mixture containing 15 leg SL protein, 100 mM NaCl, 1 mM free Ca2+,14 mM Na-cholate and 20 AM [3H-]PtdIns (4,5)P 2 (400–500 dpm/gm-l) in 30 mM HEPES-Tris buffer (pH 7.0). The average specific activity was 9.14±0.55 nmol-mg–1·2.5 min–1. The addition of Mg2+ to the assay mixture did not change PLC activity but increased the relative amounts of dephosphorylated inositol products. In the absence of Na+ and at a low Ca2+ concentration (0.3 M), Mg2+ also enhanced the intraSL levels of PtdIns4P and PtdIns, and, moreover, inhibited PLC activity (IC500.07 mM). PtdIns4P seemd to be a good substrate for the rat SL PLC (23.07 ± 1.57 nmol·mg–1·2.5 min–1) whereas PtdIns was hydrolysed at a very low rate (0.36 ± 0.08 nmol·mg–1·2.5 min–1). Unlike PtdIns(4,5)P 2, PLC-dependent PtdIns4P and PtdIns hydrolysis was not inhibited by Ca2+ concentrations over 1 mM. The possibility of distinct isozymes being responsible for the different hydrolytic activities is discussed. (Mol Cell Biochem116: 27–31, 1992).Abbreviations DAG sn-1,2-diacylglycerol - EGTA ethyleneglycol-O,O-bis(aminoethyl)-N,N,N,N,-tetraacetic acid - Ins(1,4,5)P 3 inositol 1,4,5-trisphosphate - InsP inositol monophosphate (unidentified isomer) - InsP 2 inositol bisphosphate (unidentified isomer) - InsP 3 inositol trisphosphate (unidentified isomer) - InsP x any inositol phosphate - PLC phospholipase C - PtdIns phosphatidylinositol - PtdIns(4,5)P 2 phosphatidylinositol 4,5-bisphosphate - PtdIns4P phosphatidylinositol 4-monophosphate - SL sarcolemma  相似文献   

14.
The mechanism of stomatin-induced differentiation of Tetrahymena vorax was investigated by in vivo protease degradation of cell surface proteins, the direct measurement of products formed from the activation of phospholipase C, and the use of an array of signal transduction inhibitors/activators. The data indicate that a surface-exposed protein is required for stomatin to signal the cells to differentiate and that the cells are committed to the differentiation pathway within two hours after exposure to stomatin. Analysis of radiolabeled polyphosphoinositols and inositol lipids from control and stomatin-treated populations in the presence of 10 mM LiCl were consistent with a rapid activation of phospholipase C. Within five min following addition of stomatin, this resulted in an increase in polyphosphoinositols and a concomitant decrease in the relative amounts of phosphatidylinositol bisphosphate and phosphatidylinositol trisphosphate.  相似文献   

15.
16.
Many lipids or lipid-derived products generated by phospholipases acting on phospholipids in membranes are implicated as mediators and second messengers in signal transduction. Our current understanding of the primary sequence relationships within the class of extracellular phospholipase A2's and among the numerous forms of the mammalian phosphatidylinositol-specific phospholipase C's is reviewed. New results suggesting roles for these phospholipases as well as other phospholipases such as phospholipase C and D acting on phosphatidlycholine in generating arachidonic acid for eicosanoid biosynthesis, inositol phosphates for Ca2+ mobilization, and diglyceride for protein kinase C activation through receptor-mediated processes, are discussed. In addition, the possible role of phospholipases acting on sphingolipids such as sphinglomyelinase in generating lipid mediators is considered.  相似文献   

17.
Alcohols induce mating-structure activation in Chlamydomonas eugametos gametes. From the effect of ethanol on the 32P-labelling of polyphosphoinositides, we conclude that the synthesis of these lipids is stimulated. Biologically inactive concentrations of ethanol (<6%) had no effect on synthesis, but 6–8% ethanol stimulated synthesis for upto 60 min. The 32P incorporated into polyphosphoinositides and phosphatidic acid during ethanol treatment was readily chased out when 1 mM unlabelled Na3PO4 was added. Using a binding assay for inositol 1,4,5-trisphosphate, we show that the production of this phospholipid constituent is dramatically increased after ethanol treatment. This effect, coupled to a rise in intracellular calcium concentration, could explain gamete activation. The significance of these results in explaining other ethanol-induced phenomena in algae is discussed.Abbreviations Ins(1,4,5)P3 inositol 1,4,5-trisphosphate - PtdA phosphatidic acid - PtdIns phosphatidylinositol - PtdIns(4)P phosphatidylinositol 4-phosphate - PtdIns(4,5)P2 phosphatidylinositol 4,5-bisphosphate To whom correspondence should be addressedWe thank Dr. P. van Haastert (Biochemistry, University of Groningen, The Netherlands) and his colleagues for introducing us to their Ins(1,4,5)P3 assay, and Ben ten Brink (Molecular Cell Biology, University of Amsterdam, The Netherlands) for information about contractile vacuoles. We also thank Bas Nagelkerken, Marcel van der Vaart, Pieter van der Schoor, Gyuri Fenyvesi and Susan Kenter for their help.  相似文献   

18.
During the last few years a growing amount of data has accumulated showing phospholipid participation in nuclear signal transduction. Very recent data strongly support the hypothesis that signal transduction in the nucleus is autonomic. Local production of inositol polyphosphates, beginning with the activation of phospholipase C is required for their specific function in the nucleus. Enzymes which modify polyphosphoinositols may control gene expression. Much less information is available about the role of other lipids in nuclear signal transduction. The aim of this minireview is to stress what is currently known about nuclear lipids with respect to nuclear signal transduction.  相似文献   

19.
Abstract: Extracellular ATP has neurotransmitter-like properties in the CNS and PNS that are mediated by a cell-surface P2 purinergic receptor. In the present study, we have extensively characterized the signal transduction pathways that are associated with activation of a P2U receptor in a cultured neuroblastoma × glioma hybrid cell line (NG108-15 cells). The addition of ≥1 μM ATP to NG108-15 cells caused a transient increase in [Ca2+]i that was inhibited by 40% when extracellular calcium was chelated by EGTA. ATP concentrations ≥500 μM also elicited a sustained increase in [Ca2+]i that was inhibited when extracellular calcium was chelated by EGTA. The increase in [Ca2+]i elicited by ATP occurred concomitantly with the hydrolysis off [32P]-phosphatidylinositol 4,5-bisphosphates and an increase in the level of inositol 1,4,5-trisphosphate. ATP also caused a time- and dose-dependent increase in levels of [3H]inositol monophosphates in lithium-treated cells. Separation of the inositol monophosphate isomers by ion chromatography revealed a specific increase in the level of inositol 4-monophosphate. The magnitude of the increase in [Ca2+]i elicited by ATP correlated with the concentration of the fully ionized form of ATP (ATP4-) in the medium and not with the concentration of magnesium-ATP (MgATP2-). Similar to ATP, UTP also induced polyphosphoinositide breakdown, inositol phosphate formation, and an increase in [Ca2+]i. ADP, ITP, TTP, GTP, ATP-γS, 2-methylthio ATP, β,γ-imidoATP or 3′-O-(4-benzoyl)benzoylATP, but not CTP, AMP, β,γ-methylene ATP, or adenosine, also caused an increase in [Ca2+]i. In cells labeled with [32P]Pi or [14C]-arachidonic acid, ATP caused a transient increase in levels of labeled phosphatidic acids, but had no effect on levels of arachidonic acid. The increase in phosphatidic acid levels elicited by ATP apparently was not due to activation of a phospholipase D because ATP did not induce the formation of phosphatidylethanol in [14C]myristic acid-labeled cells incubated in the presence of ethanol. These findings support the hypothesis that a P2 nucleotide receptor in NG108-15 cells is coupled to a signal transduction pathway involving the activation of a phospholipase C and a plasma membrane calcium channel, but not the activation of phospholipases A2 and D.  相似文献   

20.
Phosphorylation of the phosphatidylinositol headgroup generates seven varieties of phosphoinositide of which PtdIns(4,5)P2, PtdIns3P and PtdIns (3,5)P2 have established roles on the endocytic pathway. In this review, we discuss the enzymes responsible for generation and turnover of these lipids, which are keys to determining compartmental identity and the flux of material through the endocytic system. The enzymatic generation of lipids serves as an amplification mechanism through which a wide variety of effector molecules can be recruited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号