首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Understanding how critical sow live-weight and back-fat depth during gestation are in ensuring optimum sow productivity is important. The objective of this study was to quantify the association between sow parity, live-weight and back-fat depth during gestation with subsequent sow reproductive performance. Records of 1058 sows and 13 827 piglets from 10 trials on two research farms between the years 2005 and 2015 were analysed. Sows ranged from parity 1 to 6 with the number of sows per parity distributed as follows: 232, 277, 180, 131, 132 and 106, respectively. Variables that were analysed included total born (TB), born alive (BA), piglet birth weight (BtWT), pre-weaning mortality (PWM), piglet wean weight (WnWT), number of piglets weaned (Wn), wean to service interval (WSI), piglets born alive in subsequent farrowing and sow lactation feed intake. Calculated variables included the within-litter CV in birth weight (LtV), pre-weaning growth rate per litter (PWG), total litter gain (TLG), lactation efficiency and litter size reared after cross-fostering. Data were analysed using linear mixed models accounting for covariance among records. Third and fourth parity sows had more (P<0.05) TB, BA and heavier BtWT compared with gilts and parity 6 sow contemporaries. Parities 2 and 3 sows weaned more (P<0.05) piglets than older sows. These piglets had heavier (P<0.05) birth weights than those from gilt litters. LtV and PWM were greater (P<0.01) in litters born to parity 5 sows than those born to younger sows. Sow live-weight and back-fat depth at service, days 25 and 50 of gestation were not associated with TB, BA, BtWT, LtV, PWG, WnWT or lactation efficiency (P>0.05). Heavier sow live-weight throughout gestation was associated with an increase in PWM (P<0.01) and reduced Wn and lactation feed intake (P<0.05). Deeper back-fat in late gestation was associated with fewer (P<0.05) BA but heavier (P<0.05) BtWT, whereas deeper back-fat depth throughout gestation was associated with reduced (P<0.01) lactation feed intake. Sow back-fat depth was not associated with LtV, PWG, TLG, WSI or piglets born alive in subsequent farrowing (P>0.05). In conclusion, this study showed that sow parity, live-weight and back-fat depth can be used as indicators of reproductive performance. In addition, this study also provides validation for future development of a benchmarking tool to monitor and improve the productivity of modern sow herd.  相似文献   

2.
Feeding n-3 long-chain polyunsaturated fatty acids (LCPUFA) to gilts or sows has shown different responses to litter growth, pre-weaning mortality and subsequent reproductive performance of the sow. Two hypotheses were tested: (1) that feeding a marine oil-based supplement rich in protected n-3 LCPUFAs to gilts in established gestation would improve the growth performance of their litters; and (2) that continued feeding of the supplement during lactation and after weaning would offset the negative effects of lactational catabolism induced, using an established experimental model involving feed restriction of lactating primiparous sows. A total of 117 primiparous sows were pair-matched at day 60 of gestation by weight, and when possible, litter of origin, and were allocated to be either control sows (CON) fed standard gestation and lactation diets, or treated sows (LCPUFA) fed the standard diets supplemented with 84 g/day of a n-3 LCPUFA rich supplement, from day 60 of first gestation, through a 21-day lactation, and until euthanasia at day 30 of their second gestation. All sows were feed restricted during the last 7 days of lactation to induce catabolism, providing a background challenge against which to determine beneficial effects of n-3 LCPUFA supplementation on subsequent reproduction. In the absence of an effect on litter size or birth weight, n-3 LCPUFA tended to improve piglet BW gain from birth until 34 days after weaning (P = 0.06), while increasing pre-weaning mortality (P = 0.05). It did not affect energy utilization by the sow during lactation, thus not improving the catabolic state of the sows. Supplementation from weaning until day 30 of second gestation did not have an effect on embryonic weight, ovulation rate or early embryonic survival, but did increase corpora lutea (CL) weight (P = 0.001). Eicosapentaenoic acid and docosahexaenoic acid (DHA) levels were increased in sow serum and CL (P < 0.001), whereas only DHA levels increased in embryos (P < 0.01). In conclusion, feeding n-3 LCPUFA to gilts tended to improve litter growth, but did not have an effect on overall subsequent reproductive performance.  相似文献   

3.
Temporary confinement during parturition and early postpartum may provide an intermediary step preceding loose housing that offers improvement in sow and piglet welfare. Three experiments were conducted to investigate the implications of replacing farrowing crates (FCs) with an alternative housing system from 3 days postpartum until weaning. In each experiment sows farrowed in FCs and were randomly allocated at day 3 of lactation to either a FC or a pen with increased floor space (lactation pen (LP)) until weaning. In experiment 1, piglet growth and sow and piglet skin injuries were recorded for 32 sows and 128 focal piglets in these litters. Behaviour around nursing and piglet behavioural time budgets were also recorded for 24 of these litters (96 focal piglets for time budgets). In experiment 2, measures of skin injury and behavioural time budgets were conducted on 28 sows and 112 focal piglets. The behavioural response of sows to piglet vocalisation (maternal responsiveness test (MRT)) was also assessed. In experiment 3, piglet mortality from day 3 of lactation until weaning was recorded in 672 litters over 12 months. While housing did not affect piglet weight gain in experiment 1, or piglet skin injuries in experiments 1 or 2, sows in both experiments sustained more injuries in LP than FC (experiment 1, 2.9 v. 1.4; experiment 2, 2.5 v. 0.8 lesions/sow; P<0.05). Sow–piglet interactions were more frequent in LP than FC at days 11 and 18 postpartum in both experiment 1 (day 11, 1.4% v. 1.2%; day 18, 1.7% v. 1.0% of observations; P=0.05) and 2 (day 11, 1.0% v. 0.3%; and at day 18 were 1.0% v. 0.6% of observations; P<0.01), and LP sows were more responsive in the MRT in experiment 2 (2 v. 0 median number of tests in which sows react, P<0.01). In experiment 1 piglets played more (0.7% v. 0.3% of observations, P=0.05) and manipulated others less (0.3% v. 0.7% of observations, P=0.04) in LP, but more piglets missed nursing bouts (0.2 v. 0.1 piglets/bout, P<0.01) compared with FC. There was no effect of housing on piglet mortality from day 3 of lactation until weaning in experiment 3 (0.63 and 0.64 deaths/litter for LP and FC, respectively, P>0.05). Thus, housing sows and litters in LP from day 3 of lactation minimises piglet mortality while improving maternal behaviour in sows and social behaviour in piglets.  相似文献   

4.
To reduce mortality among suckling piglets, lactating sows are traditionally housed in farrowing crates. Alternatively, lactating sows can be housed in farrowing pens where the sow is loose to ensure more behavioural freedom and consequently a better welfare for the sow, although under commercial conditions, farrowing pens have been associated with increased piglet mortality. Most suckling piglets that die do so within the first week of life, so potentially lactating sows do not have to be restrained during the entire lactation period. Therefore, the aim of the current study was to investigate whether confinement of the sow for a limited number of days after farrowing would affect piglet mortality. A total of 210 sows (Danish Landrace × Danish Yorkshire) were farrowed in specially designed swing-aside combination farrowing pens measuring 2.6 m × 1.8 m (combi-pen), where the sows could be kept loose or in a crate. The sows were either: (a) loose during the entire experimental period, (b) crated from days 0 to 4 postpartum, (c) crated from days 0 to 7 postpartum or (d) crated from introduction to the farrowing pen to day 7 postpartum. The sows and their subsequent litters were studied from introduction to the combi-pen ∼1 week before expected farrowing and until 10 days postpartum. Confinement period of the sow failed to affect the number of stillborn piglets; however, sows that were crated after farrowing had fewer live-born mortality deaths (P < 0.001) compared with the sows that were loose during the experimental period. The increased piglet mortality among the loose sows was because of higher mortality in the first 4 days after farrowing. In conclusion, the current study demonstrated that crating the sow for 4 days postpartum was sufficient to reduce piglet mortality.  相似文献   

5.
The supplementing of sow diets with lipids during pregnancy and lactation has been shown to reduce sow condition loss and improve piglet performance. The aim of this study was to determine the effects of supplemental palm oil (PO) on sow performance, plasma metabolites and hormones, milk profiles and pre-weaning piglet development. A commercial sow ration (C) or an experimental diet supplemented with 10% extra energy in the form of PO, were provided from day 90 of gestation until weaning (24 to 28 days postpartum) in two groups of eight multiparous sows. Gestation length of PO sows increased by 1 day (P<0.05). Maternal BW changes were similar throughout the trial, but loss of backfat during lactation was reduced in PO animals (C: −3.6±0.8 mm; PO: −0.1±0.8 mm; P<0.01). Milk fat was increased by PO supplementation (C day 3: 8.0±0.3% fat; PO day 3: 9.1±0.3% fat; C day 7: 7.8±0.5% fat; PO day 7: 9.9±0.5% fat; P<0.05) and hence milk energy yield of PO sows was also elevated (P<0.05). The proportion of saturated fatty acids was greater in colostrum from PO sows (C: 29.19±0.31 g/100 g of fat; PO: 30.77±0.36 g/100 g of fat; P<0.01). Blood samples taken on 105 days of gestation, within 24 h of farrowing, day 7 of lactation and at weaning (28±3 days post-farrowing) showed there were no differences in plasma concentrations of triacylglycerol, non-esterified fatty acids, insulin or IGF-1 throughout the trial. However, circulating plasma concentrations of both glucose and leptin were elevated during lactation in PO sows (P<0.05 and P<0.005, respectively) and thyroxine was greater at weaning in PO sows (P<0.05). Piglet weight and body composition were similar at birth, as were piglet growth rates throughout the pre-weaning period. A period of 7 days after birth, C piglets contained more body fat, as indicated by their lower fat-free mass per kg (C: 66.4±0.8 arbitrary units/kg; PO: 69.7±0.8 arbitrary unit/kg; P<0.01), but by day 14 of life this situation was reversed (C: 65.8±0.6 arbitrary units/kg; PO: 63.6±0.6 arbitrary units/kg; P<0.05). Following weaning, PO sows exhibited an increased ratio of male to female offspring at their subsequent farrowing (C: 1.0±0.3; PO: 2.2±0.2; P<0.05). We conclude that supplementation of sow diets with PO during late gestation and lactation appears to increase sow milk fat content and hence energy supply to piglets. Furthermore, elevated glucose concentrations in the sow during lactation may be suggestive of impaired glucose homoeostasis.  相似文献   

6.
Early life experiences can affect social behaviour in later life, but opportunities for socio-behavioural development are often overlooked in current husbandry practices. This experiment investigated the effects of rearing piglets in two-stage group lactation (GL) system from 7 or 14 days of age on piglet aggression at weaning. Three lactation housing treatments were applied to a total of 198 piglets from 30 litters of multiparous sows. All dams farrowed in standard farrowing crates (FCs). Group lactation litters were transferred with their dam at 7 (GL7) or 14 days (GL14) postpartum to GL pens (one pen of five sows at 8.4 m2/sow and one pen of seven sows at 8.1 m2/sow, per GL treatment). Farrowing crate litters remained with their dam in a single litter until weaning. At weaning, 10 to 14 piglets from two unfamiliar litters from the same housing treatment were mixed into pens (n=5 pens/treatment) and their behaviour was continuously recorded for 3.5 h. For each pen, the frequency of aggressive bouts (reciprocal and non-reciprocal aggression lasting <5 s), the frequency and duration of fights (reciprocal aggression lasting ⩾5 s) and bullying events (non-reciprocal aggression lasting ⩾5 s) were recorded, along with whether interactions involved familiar or unfamiliar piglets. Aggressive bouts delivered by FC piglets were approximately 1.5 and 3.0 times more frequent than that delivered by GL7 and GL14 piglets, respectively (40.5, 16.7 and 9.9 bouts/pig, respectively; P<0.05). Fighting was more frequent (1.6, 0.3 and 0.4 fights/pig, respectively; P<0.001) and fights were longer (83, 15 and 32 s fight/pig, respectively; P<0.001) between FC piglets than between GL7 or GL14 piglets. Bullying did not differ between housing treatments (P>0.05). GL7 and GL14 piglets engaged in a similar number of fights with unfamiliar as familiar piglets, but FC piglets had almost three times as many fights with unfamiliar than with familiar piglets (P<0.05). This experiment confirms the benefits of GL housing for pig social development. Further investigation is required to determine whether mixing before 14 days postpartum has implications for other indicators of animal welfare and productivity in a two-stage GL housing system.  相似文献   

7.
Selection for increased litter size have generated hyper-prolific sows that nurses large litters, however limited knowledge is available regarding the connection between milk production, feed intake and body mobilization of these modern sows. The aim of the current study was to determine what characterized sows with high milk production and nursing large litters, differences between sows of different parities and effects of lactational performance on next reproductive cycle. In total 565 sows (parity 1 to 4) were studied from 7 days before farrowing until weaning. On day 2 postpartum litters were standardized to 14 piglets. Weight and back fat thickness of sows were measured at day 7 prepartum, day 2 postpartum and at weaning. Litters were weighed at day 2 and at weaning. Pearson correlation coefficients between variables were calculated and regression models were developed. The average daily feed intake (ADFI) of the sows was 6.1±1.1 kg/day, average daily gain (ADG) of the litter was 2.92±0.53 kg/day and sows weaned 13.0±1.1 piglets. First parity sows generally had a lower ADFI and milk production and a decrease in total born piglets in next litter compared with parity 2 to 4 sows, which could be explained by a relatively higher proportion of their body reserves being mobilized compared with multiparous sows. The ADG of the litter was positively related by ADFI of the sows, litter size and BW loss and increasing the ADFI with 1 kg/day throughout lactation likely increased the ADG of the litter with 220 to 440 g/day in parity 1 to 4, respectively. Increasing the ADFI by 1 kg/day reduced the BW loss with 6.6 to 13.9 kg of parity 1 to 4 sows, respectively, during lactation, whereas increasing the average milk yield with 1 kg/day raised the BW loss with 4.3 to 21.0 kg of the four parities during lactation. The number of total born piglets in the next litter was positively related to the number of piglets born in the previous litter. In conclusion, both a high feed intake and a high mobilization of body reserves was a prerequisite for a high milk production. The sows might be very close to the physical limit of what they can ingest and future research should therefore, focus on optimizing the dietary energy and nutrient concentrations of diets for lactating hyper-prolific sows and herein distinguish between primiparous and multiparous sows.  相似文献   

8.
9.
Nurse sow strategies are used to manage large litters on commercial pig farms. However, new-born piglets transferred to nurse sows in late lactation might be compromised in terms of growth and survival. We investigated the effects of two nurse sow strategies on piglet growth, suckling behaviour and sow nursing behaviour. At 1-day post-farrowing, the four heaviest piglets from large litters were transferred to a nurse sow either 21 (1STEP21, n=9 litters) or 7 (2STEP7, n=10 litters) days into lactation. The remainder of the litter remained with their mother and was either kept intact (remain intact (RI), n=10 litters) or had some piglets cross-fostered to equalise birth weights (remain equalised (RE), n=9 litters). The 7-day-old piglets from 2STEP7 were transferred onto a sow 21 days into lactation (2STEP21, n=10 litters). The growth of new-born piglets on 1STEP21 and 2STEP7 nurse sows was initially lower than in RI litters (F3,33.8=4.61; P<0.01), but weaning weights did not significantly differ (F4,32.7=0.78; P>0.5). After the 1st week of lactation, the weights and growth rates did not differ between treatments. Fighting behaviour during nursing bouts decreased over time. The frequency of fights was higher in 1STEP21 and 2STEP21 litters compared with RI litters (t122=3.06 and t123=3.00, respectively, P<0.05). The 2STEP21 litters had shorter nursing bouts than RI and 1STEP21 litters (t107=−2.81 and t81.7=2.8, respectively, P<0.05), which were more frequently terminated by 2STEP21 than RI sows (t595=2.93; P<0.05). Transferring heaviest piglets from RI and RE litters to nurse sows reduced the percentage of teat changes during nursing bouts (RI: F1,275=16.61; RE: F1,308=43.59; P<0.001). In conclusion, nurse sow strategies do not appear to compromise piglet growth. However, new-born piglets transferred onto sows in late lactation experienced more competition at the udder, suggesting that the sows’ stage of lactation is of importance to how achievable nurse sow strategies are. Thus, the two-step nurse sow strategy is likely the best option (in relation to growth and suckling behaviour), as it minimises the difference between piglet age and sow stage of lactation.  相似文献   

10.
The profitability of pig production is constrained by high incidences of peri-parturient and pre-weaning piglet mortality. Supplementing sows with either progesterone or caffeine during the last week of gestation can reduce stillbirths and improve piglet performance. However, the consequences of combining these two substances has not been investigated. The aim of the current study was to determine the effect of oral supplementation of sows with progesterone (regumate) and caffeine at the end of gestation on the timing and progression of farrowing, as well as piglet survival and growth to weaning. From days 111 to 113 of gestation, 20 Large White pregnant sows (parity 3.0±0.45) received 5 ml of Regumate Porcine (0.4 w/v oral solution; MSD Animal Health) daily on top of their morning ration. Sows were stratified according to parity and predicted farrowing date, and allocated at random to receive a diet supplemented with either 0 g caffeine/kg diet (CONT) or 2.4 g of caffeine/kg diet (CAFF) from day 113 of gestation until parturition (n=10 sows/treatment). Treatment did not affect total litter size; however, CONT sows gave birth to more live and fewer dead piglets compared with CAFF sows; 14.5±0.73 v. 11.7±1.03 and 0.7±0.20 v. 3.2±0.77; P<0.05). Mean, minimum and maximum piglet birthweight were unaffected by treatment. Compared with the control, caffeine increased the proportion of piglets with a birthweight <1 kg (0.16±0.05 v. 0.05±0.02; P=0.072) and decreased the proportion of live born piglets surviving to day 5 postpartum (0.77±0.06 v. 0.90±0.02; P<0.05) and to weaning (0.74±0.06 v. 0.90±0.02; P<0.05). Overall, the current data provided the first evidence that caffeine supplementation of sows receiving progesterone to prevent premature farrowing impaired piglet survival during, and shortly after parturition. This negative outcome may be linked to extended farrowing durations and an increase in the proportion of very light piglets at birth. These data provide compelling, albeit preliminary, evidence that caffeine and progesterone should not be used together at the end of gestation.  相似文献   

11.
Effects of a marine oil-based n-3 LCPUFA supplement (mLCPUFA) fed from weaning until the end of the next lactation to sows with a predicted low litter birth weight (LBW) phenotype on growth performance and carcass quality of litters born to these sows were studied, based on the hypothesis that LBW litters would benefit most from mLCPUFA supplementation. Sows were allocated to be fed either standard corn/soybean meal-based gestation and lactation diets (CON), or the same diets enriched with 0.5% of the mLCPUFA supplement at the expense of corn. The growth performance from birth until slaughter of the litters with the lowest average birth weight in each treatment (n=24 per treatment) is reported in this paper. At weaning, each litter was split between two nursery pens with three to six pigs per pen. At the end of the 5-week nursery period, two barrows and two gilts from each litter that had individual birth weights closest to their litter average birth weight, were moved to experimental grow–finish pens (barn A), where they were housed as two pigs per pen, sorted by sex within litter. Remaining pigs in each litter were moved to another grow–finish barn (barn B) and kept in mixed-sex pens of up to 10 littermates. After 8 weeks, one of the two pigs in each pen in barn A was relocated to the pens holding their respective littermates in barn B. The remaining barrows and gilts were individually housed in the pens in barn A until slaughter. Maternal mLCPUFA supplementation increased docosahexaenoic acid (DHA) concentration in the brain, liver and Semitendinosus muscle of stillborn pigs (P<0.01), did not affect eicosapentaenoic acid and DHA concentrations in sow serum at the end of lactation, and did not affect average daily gain, average daily feed intake or feed utilization efficiency of the offspring. BW was higher (P<0.01) in the second half of the grow–finish phase in pigs from mLCPUFA sows compared with controls in barn A, where space and competition for feed was minimal, but not barn B. Carcass quality was not affected by treatment for pigs from barn A, but maternal mLCPUFA supplementation negatively affected carcass quality in pigs from barn B. Collectively, these results suggest that nutritional supplementation of sows can have lasting effects on litter development, but that feeding mLCPUFA to sows during gestation and lactation was not effective in improving growth rates or carcass quality of LBW litters.  相似文献   

12.
Alternatives to farrowing crates with continuous confinement of the sow are urgently needed because the animal welfare is negatively impacted. Given the increase of herd sizes, practical experience with loose-housing is needed to force the implementation of these systems in the field. Next to aspects of labour efficiency, detrimental piglet mortality rates that may occur during the first days postpartum (pp) is a major criticism. Therefore, loose-housing after a crating period limited to the first days pp might be a feasible alternative to improve welfare under intensive production conditions. The aim was to investigate the effect of crating sows during lactation for different periods on their behaviour and integument alterations and on piglets’ performance. Gilts from a commercial herd were observed from 5 to 26 days pp and housed in farrowing crates (1.85×2.50 m) that could be altered between confinement crates and loose-housing pens. Animals were divided into three groups, that were either crated continuously from birth until weaning (Group A, n=55), until 14 days pp (Group B; n=54) or 7 days pp (Group C, n=59). The behaviour of six randomly selected gilts per group was video recorded from 5 to 26 days pp and analysed by time sampling technique. Lesions on the legs, shoulder and lumbar vertebra were scored on days 7, 14 and 25 pp. Piglets were weighed weekly, causes of losses recorded and weight losses of gilts measured. Not different between groups (P>0.05), animals spent 72 to 76% lying laterally, 14 to 17% lying in abdominal or semi-abdominal position, 9 to 10% standing and 1 to 3% sitting. B-sows were lying longer in week 3 and 4 of lactation compared to A- and C-sows (P<0.05). The incidence of slight shoulder lesions rose from <1% on day 7 to 4% on day 14 and 14% on day 25 pp. On day 25 pp, 5% of all studied gilts showed moderate shoulder lesions. Piglet mortality rates were 11.4%, 12.9% and 13.3% for groups A, B and C, respectively (P>0.05), whereas almost 90% of the losses occurred in the first week pp. In conclusion, loose-housing of lactating gilts after a reduced postnatal crating period of 7 days affected neither the activity level of the gilts and lesions on the integument nor pre-weaning mortality. Therefore, it is recommended to allow sows to move around to some extent during the later lactation period.  相似文献   

13.
The effects of a marine oil-based n-3 long-chain polyunsaturated fatty acid (mLCPUFA) supplement fed to the sow from weaning, through the rebreeding period, during gestation and until end of lactation on litter characteristics from birth until weaning were studied in sows with known litter birth weight phenotypes. It was hypothesized that low birth weight (LBW) litters would benefit more from mLCPUFA supplementation than high birth weight litters. A total of 163 sows (mean parity=4.9±0.9) were rebred after weaning. Sows were pair-matched by parity and litter average birth weight of the previous three litters. Within pairs, sows were allocated to be fed either standard corn/soyabean meal-based gestation and lactation diets (CON), or the same diets enriched with 0.5% of the mLCPUFA supplement at the expense of corn. Each litter between 9 and 16 total pigs born was classified as LBW or medium/high average birth weight (MHBW) litter and there was a significant correlation (P<0.001) between litter average birth weight of the current and previous litters within sows (r=0.49). Sow serum was harvested at day 113 of gestation for determination of immunoglobulin G (IgG) concentrations. The number of pigs born total and alive were lower (P=0.01) in mLCPUFA than CON sows, whereas the number of stillborn and mummified pigs were similar between treatments. Number of stillborns (trend) and mummies (P<0.01) were higher in LBW than MHBW litters. Tissue weights and brain : tissue weight ratios were similar between treatments, but LBW litters had decreased tissue weights and increased brain : tissue weight ratios compared with MHBW litters. Placental weight was lower (P=0.01) in LBW than MHBW litters, but was not different between treatments. Average and total litter weight at day 1 was similar between treatments. mLCPUFA increased weaning weight (P=0.08) and average daily gain (P<0.05) in MHBW litters, but not in LBW litters. Pre-weaning mortality was similar between treatments, but was higher (P<0.01) in LBW than MHBW litters. IgG concentration in sow serum was similar between treatments and litter birth weight categories. In conclusion, litter birth weight phenotype was repeatable within sows and LBW litters showed the benchmarks of intra-uterine growth retardation (lower placental weight and brain sparing effects). As maternal mLCPUFA supplementation decreased litter size overall, only improved litter growth rate until weaning in MHBW litters, and did not affect pre-weaning mortality, maternal mLCPUFA supplementation was not an effective strategy in our study for mitigating negative effects of a LBW litter phenotype.  相似文献   

14.
Determining best practices for managing free farrowing systems is crucial for uptake. Cross-fostering, the exchange of piglets between litters, is routinely performed amongst crate-housed sows. However, cross-fostering can increase fighting amongst the litter and may be more challenging within free farrowing systems as sows have more freedom to respond to cross-fostered piglets. This study compared the effect of either cross-fostering (FOS), or a control of sham-fostering (CON), of four focal piglets per litter on Day 6 postpartum in crates (CRATE) and free farrowing pens (PEN). The post-treatment behavioural responses of sows were recorded (Day 6 = 60 min; Day 7 = 300 min; n = 48), as were the average daily gain (ADG; g/day), total weight gain (TWG; kg) and body lesion scores of focal piglets and their littermates throughout lactation (Day 6, Day 8, Day 11 and Day 26; n = 539) and the post-weaning period (Day 29, Day 32 and Day 60; n = 108). On Day 6, though post-reunion latency to nursing did not differ, latency to successful nursing was longer amongst FOS than CON litters (P < 0.001), more so amongst CRATE FOS than PEN FOS (P < 0.01). On Day 7, PEN FOS sows had fewer successful nursing bouts (P < 0.05) and exhibited decreased lateral (P < 0.01) and increased ventral lying frequencies (P < 0.01) compared to all other housing and treatment combinations. Focal piglet ADG was lower for FOS than CON in the CRATE during Day 6 to Day 8 (P < 0.01) and lower in the PEN during Day 6 to Day 8 (P < 0.001), Day 8 to Day 11 (P < 0.01) and Day 11 to Day 26 (P < 0.05). The TWG of pre-weaned focal piglets (Day 6 to Day 26) was higher amongst CON than FOS litters (P = 0.01). Post-weaning, piglet ADG was higher for PEN than CRATE during Day 26 to Day 29 (P < 0.01) and higher for FOS than CON during Day 26 to Day 29 (P < 0.05), Day 29 to Day 32 (P < 0.001) and Day 32 to Day 60 (P < 0.01); thus, TWG was higher for FOS than CON during the weaner (P = 0.001) and the combined lactation and weaner periods (P = 0.09). In conclusion, sow behaviour was disrupted by cross-fostering in the crates and pens and continued to be disturbed on the following day amongst penned sows. FOS piglets exhibited reduced ADG after cross-fostering, which extended throughout lactation in the pens. However, the increased post-weaning weight gain of FOS piglets meant that their TWG was higher than CON piglets, irrespective of the farrowing system used.  相似文献   

15.
Loose farrowing pens have been considered as alternatives to crates to enhance sow welfare. A major concern with pen systems is often higher piglet pre-weaning mortality, especially due to crushing by the sow. An optimal management of light and mat surface temperature may promote greater piglet use of the creep, which has been associated with reduced piglet crushing. A total of 108 sows and their piglets were studied in sow welfare and piglet protection pens on a commercial piggery, across two replicates. Sows were randomly assigned to pens arranged within two creep treatments (bright creep: 300 lx v. dark creep: 4 lx), considering mat temperature as a covariate. Twelve sows and their litters in each treatment (24 in total) had their behaviour continuously recorded for 72-h postpartum (pp), and four focal piglets per litter were weighed on the first and third days pp. In situ behaviour observations were performed daily (from 0800 to 1700 h) on all sows and their litters, every 15 min over 72-h pp to record piglet time spent in the creep, latency to enter the creep for the first time, latency for the litter to remain in the creep for at least 10 min, and piglet and sow use of pen areas immediately in front of (A2) and farthest from the creep (A3). Piglets with access to bright creeps spent on average 7.2% more time (P<0.01) in the creeps than piglets in pens with Dark creeps. In addition, for each degree increase in mat temperature, piglets spent on average 2.1% more time (P<0.01) in the creep. Piglets in pens with bright creeps spent less time in A2 (P=0.04) and the least time in A3 (P=0.01). Light or mat temperature did not affect sow use of pen areas or piglet weight gain. Piglets with bright creeps tended (P=0.06) to take longer to enter the creep for the first time after birth, but the latency for 30.0% of the litter to remain clustered for 10 min tended (P=0.08) to be shorter in bright compared to dark creeps. Overall, piglet use of the creep increased with warm mat temperatures and brightness, which should be further investigated as potential strategies to promote piglet safety and reduce crushing in pen farrowing systems.  相似文献   

16.
A high proportion of piglets fail to adapt to the changing composition of their diet at weaning, resulting in weight loss and increased susceptibility to pathogens. Polyamines are present in sow milk and promote neonatal maturation of the gut. We hypothesised that oral spermine and spermidine supplementation before weaning would increase piglet growth and promote gastrointestinal development at weaning. In Experiment One, one pair of liveweight (LW)-matched piglets per litter from first and third lactation sows received 2 ml of a 0 (Control) or 463 nmol/ml spermine solution at 14, 16, 18, 20 and 22 days of age (n=6 piglets/treatment per parity). Villus height and crypt depth in the duodenum and jejunum were measured at weaning (day 23 postpartum). In Experiment Two, piglets suckling 18 first and 18 third lactation sows were used. Within each litter, piglets received 2 ml of either water (Control), 463 nmol/ml spermine solution or 2013 nmol/ml spermidine solution at 14, 16, 18, 22 and 24 days of age (n=54 piglets/treatment per sow parity). Piglets were weighed individually at 14, 18, 24 (weaning) and 61 days of age. In Experiment One, oral spermine supplementation resulted in a 41% increase in villus height, a 21% decrease in crypt depth and 79% decrease in the villus height : crypt depth ratio compared with control piglets (P<0.01). In Experiment Two, spermine and spermidine-supplemented piglets suckling first lactation sows grew faster (P<0.05) between days 14 and 18 postpartum than control piglets: 0.230±0.011 and 0.227±0.012 v. 0.183±0.012 kg/day, respectively. Spermine supplementation tended (P<0.1) to increase piglet LW gain from weaning to day 37 post-weaning compared with control piglets (0.373±0.009 v. 0.341±0.010 kg/day). In conclusion, spermine supplementation increased villus height at weaning, and appears to have the potential to improve the pre- and post-weaning growth of conventionally weaned piglets.  相似文献   

17.
Genetic parameters were estimated for haemoglobin (Hb) levels in sows and piglets as well as sow reproductive performance and piglet survival. Reproductive traits were available between 2005 and 2014 for 7857 litters from 1029 Large White and 858 Landrace sows. In 2012 and 2013, Hb levels, sow BW and sow back fat depth were measured on 348 sows with 529 litters 5 days prior to farrowing. In addition, Hb levels were available for 1127 one-day-old piglets from 383 litters (a maximum of three piglets per litter) of 277 sows with Hb levels. The average Hb levels in sows (sow Hb), their litters (litter Hb, based on average Hb of three piglets) and individual piglets (piglet Hb) were 112 ± 12.6 g/l, 103 ± 15.3 g/l and 105 ± 21.7 g/l, respectively. Heritabilities for Hb levels were 0.09 ± 0.07 for sow Hb, 0.19 ± 0.11 for litter Hb and 0.08 ± 0.05 for piglet Hb. Estimates for the permanent environment effect of sows were 0.09 ± 0.09 for sow Hb, 0.11 ± 0.12 for litter Hb and 0.12 ± 0.03 for piglet Hb. In comparison, heritabilities for both number of stillborn piglets and pre-weaning survival were lower (0.05 ± 0.01 and 0.04 ± 0.01). Sow BW had no significant heritability, while sow back fat depth was lowly heritable (0.10 ± 0.08). Positive genetic correlations were found between sow Hb and litter Hb (0.64 ± 0.47) and between litter Hb and sow back fat depth (0.71 ± 0.53). Higher litter Hb was genetically associated with lower number of stillborn piglets (−0.78 ± 0.35) and higher pre-weaning survival (0.28 ± 0.33). Negative genetic correlations between sow Hb and average piglet birth weight of the litter (−0.60 ± 0.34) and between piglet Hb and birth weight of individual piglets (−0.37 ± 0.32) indicate that selection for heavier piglets may reduce Hb levels in sows and piglets. Similarly, selection for larger litter size will reduce average piglet birth weight (rg: −0.40 ± 0.12) and pre-weaning survival (−0.57 ± 0.13) and may lead to lower litter Hb (−0.48 ± 0.27). This study shows promising first results for the use of Hb levels as a selection criterion in pig breeding programs, and selection for higher Hb levels may improve piglet survival and limit further reduction in Hb levels in sows and piglets due to selection for larger and heavier litters.  相似文献   

18.
A commercial pig spends nearly half of its life in utero and its nutrition during this time can influence birth weight and postnatal growth. We hypothesised that postnatal growth is increased in pigs raised by sows with a high backfat depth and high level of energy intake during gestation compared with sows with a low backfat depth and low level of energy intake during gestation. This was tested in a 2×3 factorial design experiment with 2 factors for gilt backfat depth (Thin and Fat) and 3 factors for gestation feed allowance (Restricted, Control and High). Between d 25 and d 90 of gestation, Thin gilts (n=68; 12±0.6 mm P2 backfat) and Fat gilts (n=72; 19±0.6 mm P2 backfat) were randomly allocated, as individuals, to a gestation diet (6.19 g/kg lysine, 13.0 MJ DE/kg) at the following feed allowances: 1.8 kg/day (Restricted); 2.5 kg/day (Control) and 3.5 kg/day (High). For the remainder of gestation and during lactation all gilts were treated similarly. At weaning (day 28), 155 piglets were sacrificed and 272 were individually housed and followed through to slaughter (day 158). At day 80 of gestation, fasted Thin Restricted gilts had lower serum IGF-1 concentrations than Thin High or Thin Control fed gilts (P<0.001). Pigs born from Fat gilts had greater backfat depths (P<0.05), a lower lean meat yield (P<0.05) and were heavier (P<0.05) at slaughter than pigs born from Thin gilts. Gilt gestation feed allowance had only transitory effects on average daily gain and feed conversion efficiency and had no effect on pig weight at slaughter (P>0.05) or lean meat yield (P>0.05). In conclusion, gilts with a backfat depth of ~19 mm at insemination produced pigs that were heavier and fatter at ~158 days of age than those born from gilts with ~12 mm backfat depth at insemination. Maternal body condition during gestation had a more predominant influence on growth parameters of the offspring, such as weight at slaughter and backfat depth, than did feed level during gestation.  相似文献   

19.
This study was conducted to investigate the effects of konjac flour (KF) inclusion in gestation diets of sows on nutrients digestibility, lactation feed intake, reproductive performance of sows and preweaning performance of piglets. Two isoenergetic and isonitrogenous gestation diets were formulated: a control diet and a 2.1% KF-supplemented diet (KF diet). Both diets had the same NDF and insoluble fiber (ISF) levels, but the KF diet had higher soluble fiber (SF) level. The day after breeding, 96 multiparous sows were assigned to the two dietary treatments. Restrict-fed during gestation, in contrast, all sows were offered the same lactation diet ad libitum. Response criteria included sow BW, backfat depth, lactation feed intake, weaning-to-estrus interval, litter size and piglet’s weight at parturition and day 21 of lactation. On day 60 of gestation, 20 sows were used to measure nutrient digestibility. Results showed that the digestibility of dry matter, gross energy, crude fiber and ADF were not affected by the dietary treatments. The inclusion of KF in gestation diets increased NDF digestibility (P<0.05) and tended to increase the digestibility of CP (P=0.05) compared with the control diet group. In addition, dietary treatment during gestation did not affect litter size, BW and backfat gain during gestation, lactation weight, backfat loss or weaning-to-estrus interval of sows. However, sows fed the KF diet consumed more (P<0.05) lactation diet per day than sows in the control group. Accordingly, sows fed the KF diet showed greater average piglet weights on day 21 of lactation (P=0.09), and the litter weight of sows fed the KF diet on day 21 of lactation increased by 3.95 kg compared with sows fed the control diet (not significant). In conclusion, the inclusion of KF in gestation diets increased lactation feed intake of sows and tended to improve litter performance.  相似文献   

20.
The objectives of this study were to determine the effects of maize distillers dried grains with solubles (DDGS) during late gestation and lactation on sow and piglet performance, and on colostrum and milk composition. Thirty-six second- and third-parity (2.43 parity) sows (Yorkshire) were allotted to 1 of 3 groups and fed diets containing 0 (control), 200 or 400 g DDGS/kg during the last 20 d of gestation and throughout a 21 d of lactation. Experimental diets contained 12.9 MJ metabolizable energy/kg and 9.7 g lysine/kg. The colostrum and milk samples were obtained on d 0 (farrowing) and d 21 (weaning). There were no differences (P>0.05) in the sows’ average gestation lengths, weaning-to-estrus interval, average daily feed intake, and the lactation backfat and body weight change between dietary treatments. There were no dietary effects (P>0.05) of DDGS on the numbers of total, born alive piglets, average birth weights, piglets per litter at weaning or piglets average daily gain during lactation. No differences (P>0.05) were observed in total solids, protein, fat and lactose among the sows fed the DDGS diets compared with the control. The composition of total solids and protein of sows colostrum and milk were higher at farrowing (d 0) than at weaning (d 21) (P<0.001). However, the fat and lactose content of sows colostrum and milk were increased (P<0.001) from d 0 (farrowing) to d 21 (weaning). In conclusion, the results suggest that 400 g DDGS/kg (87 g lysine/kg) supplemented with 5.2 g lysine/kg included in late gestation and lactation diets is sufficient to replace all the dietary soybean meal without significantly affecting sow and litter performance or colostrum and milk composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号