首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Alloferon is a 13-amino acid peptide isolated from the bacteria-challenged larvae of the blow fly Calliphora vicina. The pharmaceutical value of the peptide has been well demonstrated by its capacity to stimulate NK cytotoxic activity and interferon (IFN) synthesis in animal and human models, as well as to enhance antiviral and antitumor activities in mice. Antiviral and the immunomodulatory effectiveness of alloferon have also been supported clinically proved in patients suffering with herpes simplex virus (HSV) and human papilloma virus (HPV) infections. To elucidate molecular response to alloferon treatment, we initially screened a model cell line in which alloferon enhanced IFN synthesis upon viral infection. Among the cell lines tested, Namalva was chosen for further proteomic analysis. Fluorescence difference gel electrophoresis (DIGE) revealed that the levels of a series of antioxidant proteins decreased after alloferon treatment, while at least three glycolytic enzymes and four heat-shock proteins were increased in their expression levels. Based on the result of our proteomic analysis, we speculated that alloferon may activate the NF-kappaB signaling pathway. IkappaB kinase (IKK) assay, Western blot analysis on IkappaBalpha and its phosphorylated form at Ser 32, and an NF-kappaB reporter assay verified our proteomics-driven hypothesis. Thus, our results suggest that alloferon potentiates immune cells by activating the NF-kappaB signaling pathway through regulation of redox potential. Since NF-kappaB activation is involved in IFN synthesis, our results provide further clues as to how the alloferon peptide may stimulate IFN synthesis.  相似文献   

3.
The aberrant activation of Notch-1 signaling pathway has been proven to be associated with the development and progression of cancers. However, the specific roles and the underlying mechanisms of Notch-1 signaling pathway on the malignant behaviors of breast cancer are poorly understood. In this study, using multiple cellular and molecular approaches, we demonstrated that activation of Notch-1 signaling pathway promoted the malignant behaviors of MDA-MB-231 cells such as increased cell proliferation, colony formation, adhesion, migration, and invasion, and inhibited apoptosis; whereas deactivation of this signaling pathway led to the reversal of the aforementioned malignant cellular behaviors. Furthermore, we found that activation of Notch-1 signaling pathway triggered the activation of NF-κB signaling pathway and up-regulated the expression of NF-κB target genes including MMP-2/-9, VEGF, Survivin, Bcl-xL, and Cyclin D1. These results suggest that Notch-1 signaling pathway play important roles in promoting the malignant phenotype of breast cancer, which may be mediated partly through the activation of NF-κB signaling pathway. Our results further suggest that targeting Notch-1 signaling pathway may become a newer approach to halt the progression of breast cancer.  相似文献   

4.
We studied the signal transduction pathways involved in NF-κB activation and the induction of the cytoprotective A20 gene by lipopolysaccharide (LPS) in human umbilical vein endothelial cells (HUVEC). LPS induced human A20 mRNA expression with a maximum level 2 h after stimulation. The proteasome inhibitorN-acetyl-leucinyl-leucinyl-norleucinal-H (ALLN) and the tyrosine kinase inhibitor herbimycin A (HMA) blocked A20 mRNA expression and partially inhibited NF-κB DNA-binding activity induced by LPS treatment. LPS induced IκBα degradation at 30–60 min after treatment, but did not induce IκBβ degradation up to 120 min. In contrast, TNF-α rapidly induced IκBα degradation within 5 min and IκBβ degradation within 15 min. Cycloheximide did not prevent LPS-induced IκBα degradation, indicating that newly synthesized proteins induced by LPS were not involved in LPS-stimulated IκBα degradation. LPS-induced IκBα degradation was inhibited by ALLN, confirming that ALLN inhibits NF-κB activation by preventing IκBα degradation. Of note, HMA also inhibited LPS-induced IκBα degradation. However, tyrosine phosphorylation of IκBα itself was not elicited by LPS stimulation, suggesting that tyrosine phosphorylation of a protein(s) upstream of IκBα is required for subsequent degradation. We conclude that in HUVEC, LPS induces NF-κB-dependent genes through degradation of IκBα, not IκBβ, and propose that this degradation is induced in part by HMA-sensitive kinase(s) upstream of IκBα.  相似文献   

5.
Interleukin-17 (IL-17) is critically involved in the pathogenesis of various inflammatory disorders. IL-17 receptor (IL-17R)-proximal signaling complex (IL-17R-Act1-TRAF6) is essential for IL-17-mediated NF-κB activation, while IL-17-mediated mRNA stability is TRAF6 independent. Recently, inducible IκB kinase (IKKi) has been shown to phosphorylate Act1 on Ser 311 to mediate IL-17-induced mRNA stability. Here we show that TANK binding kinase 1 (TBK1), the other IKK-related kinase, directly phosphorylated Act1 on three other Ser sites to suppress IL-17R-mediated NF-κB activation. IL-17 stimulation activated TBK1 and induced its association with Act1. IKKi also phosphorylated Act1 on the three serine sites and played a redundant role with TBK1 in suppressing IL-17-induced NF-κB activation. Act1 phosphorylation on the three sites inhibited its association with TRAF6 and consequently NF-κB activation in IL-17R signaling. Interestingly, TRAF6, but not TRAF3, which is the upstream adaptor of the IKK-related kinases in antiviral signaling, was critical for IL-17-induced Act1 phosphorylation. TRAF6 was essential for IL-17-induced TBK1 activation, its association with Act1, and consequent Act1 phosphorylation. Our findings define a new role for the IKK-related kinases in suppressing IL-17-mediated NF-κB activation through TRAF6-dependent Act1 phosphorylation.  相似文献   

6.
Shigella flexneri has evolved the ability to modify host cell function with intracellular active effectors to overcome the intestinal barrier. The detection of these microbial effectors and the initiation of innate immune responses are critical for rapid mucosal defense activation. The guanine nucleotide exchange factor H1 (GEF-H1) mediates RhoA activation required for cell invasion by the enteroinvasive pathogen Shigella flexneri. Surprisingly, GEF-H1 is requisite for NF-κB activation in response to Shigella infection. GEF-H1 interacts with NOD1 and is required for RIP2 dependent NF-κB activation by H-Ala-D-γGlu-DAP (γTriDAP). GEF-H1 is essential for NF-κB activation by the Shigella effectors IpgB2 and OspB, which were found to signal in a NOD1 and RhoA Kinase (ROCK) dependent manner. Our results demonstrate that GEF-H1 is a critical component of cellular defenses forming an intracellular sensing system with NOD1 for the detection of microbial effectors during cell invasion by pathogens.  相似文献   

7.
W Cui  N Xiao  H Xiao  H Zhou  M Yu  J Gu  X Li 《Molecular and cellular biology》2012,32(19):3990-4000
Interleukin-1 (IL-1) receptor-associated kinase (IRAK1) is phosphorylated, ubiquitinated, and degraded upon IL-1 stimulation. IRAK1 can be ubiquitinated through both K48- and K63-linked polyubiquitin chains upon IL-1 stimulation. While the Pellino proteins have been shown to meditate K63-linked polyubiquitination on IRAK1, the E3 ligase for K48-linked ubiquitination of IRAK1 has not been identified. In this study, we report that the SCF (Skp1-Cullin1-F-box)-β-TrCP complex functions as the K48-linked ubiquitination E3 ligase for IRAK1. IL-1 stimulation induced the interaction of IRAK1 with Cullin1 and β-TrCP. Knockdown of β-TrCP1 and β-TrCP2 attenuated the K48-linked ubiquitination and degradation of IRAK1. Importantly, β-TrCP deficiency abolished the translocation TAK1-TRAF6 complex from the membrane to the cytosol, resulting in a diminishment of the IL-1-induced TAK1-dependent pathway. Taken together, these results implicate a positive role of β-TrCP-mediated IRAK1 degradation in IL-1-induced TAK1 activation.  相似文献   

8.
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 genome encodes the Tax protein that plays essential regulatory roles in HTLV-1 replication and oncogenic transformation of T lymphocytes. Despite intensive study of Tax, how Tax interfaces with host signaling pathways to regulate virus replication and drive T-cell proliferation and immortalization remains poorly understood. To gain new insight into the mechanisms of Tax function and regulation, we used tandem affinity purification and mass spectrometry to identify novel cellular Tax-interacting proteins. This screen identified heat shock protein 90 (HSP90) as a new binding partner of Tax. The interaction between HSP90 and Tax was validated by coimmunoprecipitation assays, and colocalization between the two proteins was observed by confocal microscopy. Treatment of HTLV-1-transformed cells with the HSP90 inhibitor 17-DMAG elicited proteasomal degradation of Tax in the nuclear matrix with concomitant inhibition of NF-κB and HTLV-1 long terminal repeat (LTR) activation. Knockdown of HSP90 by lentiviral shRNAs similarly provoked a loss of Tax protein in HTLV-1-transformed cells. Finally, treatment of HTLV-1-transformed cell lines with 17-DMAG suppressed HTLV-1 replication and promoted apoptotic cell death. Taken together, our results reveal that Tax is a novel HSP90 client protein and HSP90 inhibitors may exert therapeutic benefits for ATL and HAM/TSP patients.  相似文献   

9.
10.
11.
Localization of Toll-like receptors (TLR) in subcellular organelles is a major strategy to regulate innate immune responses. While TLR4, a cell-surface receptor, signals from both the plasma membrane and endosomal compartments, less is known about the functional role of endosomal trafficking upon TLR2 signaling. Here we show that the bacterial TLR2 ligands Pam3CSK4 and LTA activate NF-κB-dependent signaling from endosomal compartments in human monocytes and in a NF-κB sensitive reporter cell line, despite the expression of TLR2 at the cell surface. Further analyses indicate that TLR2-induced NF-κB activation is controlled by a clathrin/dynamin-dependent endocytosis mechanism, in which CD14 serves as an important upstream regulator. These findings establish that internalization of cell-surface TLR2 into endosomal compartments is required for NF-κB activation. These observations further demonstrate the need of endocytosis in the activation and regulation of TLR2-dependent signaling pathways.  相似文献   

12.
W Zhang  Q Shi  X Xu  H Chen  W Lin  F Zhang  X Zeng  X Zhang  D Ba  W He 《PloS one》2012,7(8):e41644
Auto-reactive B lymphocytes and its abnormal CD40 signaling play important roles in the pathogenesis of systemic lupus erythematosus (SLE). In this study, we analyzed CD40 expression and CD40/CD154 induced activation of NF-κB signaling pathway in B cells from SLE patients. B cells from healthy volunteers and tonsilar B cells from chronic tonsillitis were used as negative and positive controls. Results showed CD40-induced NF-κB signaling was constitutively activated in B cells from active lupus patients, including decreased CD40 in raft portion, increased phosphorylation and degradation of IκBα, phosphorylation of P65, as well as increased nuclear translocation of P65, P50, c-Rel, which could be blocked by anti-CD154. CD154 stimulation could induce further phosphorylation and degradation of IκBα, as well as phosphorylation of P65 and nuclear translocation of P65. In addition, CD40-induced kinase activities in B cells from lupus patients mimicked that of tonsil B cells, in that IKKα/β were more activated compared to normal B cells. CD40-induced NF-κB activity was blocked by both IκB phosphorylation and proteosome degradation inhibitors in both lupus and normal B cells. All together, our findings revealed that canonical NF-κB signaling is constitutively activated in active lupus and is mediated by CD154/CD40. CD40 induced NF-κB activation is different in human lupus B lymphocytes compared with normal B cells.  相似文献   

13.
14.
15.
16.
Acute HIV-1 infection of CD4 T cells often results in apoptotic death of infected cells, yet it is unclear what evolutionary advantage this offers to HIV-1. Given the independent observations that acute T cell HIV-1 infection results in (1) NF-κB activation, (2) caspase 8 dependent apoptosis, and that (3) caspase 8 directly activates NF-κB, we questioned whether these three events might be interrelated. We first show that HIV-1 infected T cell apoptosis, NF-κB activation, and caspase 8 cleavage by HIV-1 protease are coincident. Next we show that HIV-1 protease not only cleaves procaspase 8, producing Casp8p41, but also independently stimulates NF-κB activity. Finally, we demonstrate that the HIV protease cleavage of caspase 8 is necessary for optimal NF-κB activation and that the HIV-1 protease specific cleavage fragment Casp8p41 is sufficient to stimulate HIV-1 replication through NF-κB dependent HIV-LTR activation both in vitro as well as in cells from HIV infected donors. Consequently, the molecular events which promote death of HIV-1 infected T cells function dually to promote HIV-1 replication, thereby favoring the propagation and survival of HIV-1.  相似文献   

17.
Imiquimod is known to exert its effects through Toll-like receptor 7 (TLR7) and/or TLR8, resulting in expression of proinflammatory cytokines and chemokines. Keratinocytes have not been reported to constitutively express TLR7 and TLR8, and the action of imiquimod is thought to be mediated by the adenine receptor, not TLR7 or TLR8. In this study, we revealed the expression of TLR7 in keratinocytes after calcium-induced differentiation. After addition of calcium to cultured keratinocytes, the immunological responses induced by imiquimod, such as activation of NF-κB and induction of TNF-α and IL-8, were more rapid and stronger. In addition, imiquimod induced the expression TLR7, and acted synergistically with calcium to induce proinflammatory cytokines. We confirmed that the responses induced by imiquimod were significantly inhibited by microRNAs suppressing TLR7 expression. These results suggest that TLR7 expressed in keratinocytes play key roles in the activation of NF-κB signaling by imiquimod, and that their modulation in keratinocytes could provide therapeutic potential for many inflammatory skin diseases.  相似文献   

18.
19.
WC Lin  YC Chuang  YS Chang  MD Lai  YN Teng  IJ Su  CC Wang  KH Lee  JH Hung 《PloS one》2012,7(7):e39120

Background

Induction of apoptosis by endoplasmic reticulum (ER) stress is implicated as the major factor in the development of multiple diseases. ER stress also appears to be a potentially useful major response to many chemotherapeutic drugs and environmental chemical compounds. A previous study has indicated that one major apoptotic regulator, p53, is significantly increased in response to ER stress, and participates in ER stress-induced apoptosis. However, the regulators of p53 expression during ER stress are still not fully understood.

Principal Findings

In this report, we demonstrate that induction of p53 expression is mediated through NF-κB signaling pathways during ER stress in MCF-7 cells. Tunicamycin or brefeldin A, two ER stress inducers, increased p53 expression in MCF-7 and Hela cells. We found p53 nuclear localization, activity, and phosphorylation at serine 15 on p53 increased during ER stress. Nuclear translocation of NF-κB and activity of NF-κB were also observed during ER stress. ER stress-induced p53 expression was significantly inhibited by coincubation with the NF-κB inhibitor, Bay 11-7082 and downregulation of NF-κB p65 expression. The role of p53 in mediating Brefeldin A-induced apoptosis was also investigated. Induction of p53 expression by Brefeldin A was correlated to Brefeldin A-induced apoptosis. Furthermore, downregulation of p53 expression by p53 siRNA significantly reduced Brefeldin A-induced apoptosis in MCF-7 cells.

Significance

Taken together, NF-κB activation and induction of p53 expression is essential for ER stress-induced cell death which is important for therapeutic effects of clinical cancer drugs. Our results may provide insight into the mechanism of cancer chemotherapy efficacy that is associated with induction of ER stress.  相似文献   

20.
BST2 (CD317, tetherin, HM1.24) is an interferon-inducible transmembrane protein which can directly inhibit the release of enveloped virus particles from infected cells, and its anti-viral activity is reported to be related to the specific topological arrangement of its four structural domains. The N-terminal cytoplasmic tail of feline BST2 (fBST2) is characterized by a shorter N-terminal region compared to those of other known homologs. In this study, we investigated the functional impact of modifying the cytoplasmic tail region of fBST2 and its molecular mechanism. The fBST2 protein with the addition of a peptide at the N-terminus retained anti-release activity against human immunodeficiency virus type-1 and pseudovirus based on feline immunodeficiency virus at a weaker level compared with the wild-type fBST2. However, the fBST2 protein with addition of a peptide internally in the ectodomain proximal to the GPI anchor still retained its anti-viral activity well. Notably, the N-glycosylation state and the cell surface level of the N-terminally modified variants were unlike those of the wild-type protein, while no difference was observed in their intracellular localizations. However, in contrast to human BST2, the wild-type fBST2 did not show the ability to activate NF-κB. Consistent with previous reports, our findings showed that adding a peptide in the cytoplasmic tail region of fBST2 may influence its anti-viral activity. The shorter N-terminal cytoplasmic region of fBST2 compared with human BST2 did not apparently affect its anti-viral activity, which is independent of its N-glycosylation and ability to activate NF-κB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号