首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Here we report the first evaluation of T-cell responses upon a second acellular pertussis booster vaccination in Dutch children at 9 years of age, 5 years after a preschool booster vaccination. Blood samples of children 9 years of age were studied longitudinally until 1 year after the second aP booster and compared with those after the first aP booster in children 4 and 6 years of age from a cross-sectional study. After stimulation with pertussis-vaccine antigens, Th1, Th2 and Th17 cytokine responses were measured and effector memory cells (CCR7-CD45RA-) were characterized by 8-colour FACS analysis. The second aP booster vaccination at pre-adolescent age in wP primed individuals did increase pertussis-specific Th1 and Th2 cytokine responses. Noticeably, almost all T-cell responses had increased with age and were already high before the booster vaccination at 9 years of age. The enhancement of T-cell immunity during the 5 year following the booster at 4 years of age is probably caused by natural boosting due to the a high circulation of pertussis. However, the incidence of pertussis is high in adolescents and adults who have only received the Dutch wP vaccine during infancy and no booster at 4 years of age. Therefore, an aP booster vaccination at adolescence or later in these populations might improve long-term immunity against pertussis and reduce the transmission to the vulnerable newborns. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN64117538.  相似文献   

2.
Although the prevalence of Bordetella parapertussis varies dramatically among studies in different populations with different vaccination regimens, there is broad agreement that whooping cough vaccines, composed only of B. pertussis antigens, provide little if any protection against B. parapertussis. In C57BL/6 mice, a B. pertussis whole-cell vaccine (wP) provided modest protection against B. parapertussis, which was dependent on IFN-γ. The wP was much more protective against an isogenic B. parapertussis strain lacking O-antigen than its wild-type counterpart. O-antigen inhibited binding of wP–induced antibodies to B. parapertussis, as well as antibody-mediated opsonophagocytosis in vitro and clearance in vivo. aP–induced antibodies also bound better in vitro to the O-antigen mutant than to wild-type B. parapertussis, but aP failed to confer protection against wild-type or O antigen–deficient B. parapertussis in mice. Interestingly, B. parapertussis–specific antibodies provided in addition to either wP or aP were sufficient to very rapidly reduce B. parapertussis numbers in mouse lungs. This study identifies a mechanism by which one pathogen escapes immunity induced by vaccination against a closely related pathogen and may explain why B. parapertussis prevalence varies substantially between populations with different vaccination strategies.  相似文献   

3.
Background:A resurgence of pertussis cases among both vaccinated and unvaccinated people raises questions about vaccine effectiveness over time. Our objective was to study the effectiveness of the pertussis vaccine and characterize the effect of waning immunity and whole-cell vaccine priming.Methods:We used the test-negative design, a nested case–control study with test-negative individuals as controls. We constructed multivariable logistic regression models to estimate odds ratios (ORs). Vaccine effectiveness was calculated as (1 – OR) × 100. We assessed waning immunity by calculating the odds of developing pertussis per year since last vaccination and evaluated the relative effectiveness of priming with acellular versus whole-cell vaccine.Results:Between Dec. 7, 2009, and Mar. 31, 2013, data on 5867 individuals (486 test-positive cases and 5381 test-negative controls) were available for analysis. Adjusted vaccine effectiveness was 80% (95% confidence interval [CI] 71% to 86%) at 15–364 days, 84% (95% CI 77% to 89%) at 1–3 years, 62% (95% CI 42% to 75%) at 4–7 years and 41% (95% CI 0% to 66%) at 8 or more years since last vaccination. We observed waning immunity with the acellular vaccine, with an adjusted OR for pertussis infection of 1.27 (95% CI 1.20 to 1.34) per year since last vaccination. Acellular, versus whole-cell, vaccine priming was associated with an increased odds of pertussis (adjusted OR 2.15, 95% CI 1.30 to 3.57).Interpretation:We observed high early effectiveness of the pertussis vaccine that rapidly declined as time since last vaccination surpassed 4 years, particularly with acellular vaccine priming. Considering whole-cell vaccine priming and/or boosters in pregnancy to optimize pertussis control may be prudent.Whooping cough, or pertussis, is a highly contagious respiratory infection that has been inadequately controlled compared with other vaccine-preventable diseases. The incidence of pertussis in Canada decreased from 156 cases per 100 000 population during the prevaccination era to a historic low of 2.0 per 100 000 in 2011, increased to 13.9 in 2012, and then decreased to 3.6 in 2013.1Ontario, Canada’s most populous province with a population of 13.5 million in 2013, experienced a localized outbreak in 2012. This outbreak started in a largely unvaccinated religious community and disproportionately affected infants, but then spread to the general population and mostly involved adolescents.2 Consequently, the outbreak raised questions about product-specific vaccine effectiveness and waning immunity.Pertussis vaccines have been available in Ontario for more than 70 years. In 1997, owing to concerns about safety and effectiveness, acellular pertussis vaccine replaced the whole-cell product that had been in use since 1984.35 In Ontario, only the 5-component acellular vaccine (containing pertussis toxoid, filamentous hemagglutinin, pertactin, and fimbriae types 2 and 3) has been available for infants and toddlers. Vaccination against pertussis is recommended at 2, 4, 6 and 18 months, and at 4–6 years. In 2003, an adolescent dose at 14–16 years was introduced, and in 2011, a program was started for single-dose adult vaccination against pertussis.6Other jurisdictions in Canada, the United States and Australia have reported lower effectiveness with the acellular product and rapidly waning immunity.711 Canada has a unique history of using a whole-cell vaccine with lower effectiveness, and also has different secular trends in pertussis incidence and vaccination coverage, necessitating local evaluation of the effectiveness of the pertussis vaccine to inform vaccination policy. Our objective was to study the effectiveness of the pertussis vaccine in Ontario while characterizing the effect of waning immunity and whole-cell vaccine priming.  相似文献   

4.
Bordetella pertussis infection remains an important public health problem worldwide despite decades of routine vaccination. A key indicator of the impact of vaccination programmes is the inter-epidemic period, which is expected to increase with vaccine uptake if there is significant herd immunity. Based on empirical data from 64 countries across the five continents over the past 30–70 years, we document the observed relationship between the average inter-epidemic period, birth rate and vaccine coverage. We then use a mathematical model to explore the range of scenarios for duration of immunity and transmission resulting from repeat infections that are consistent with empirical evidence. Estimates of pertussis periodicity ranged between 2 and 4.6 years, with a strong association with susceptible recruitment rate, defined as birth rate × (1 − vaccine coverage). Periodicity increased by 1.27 years on average after the introduction of national vaccination programmes (95% CI: 1.13, 1.41 years), indicative of increased herd immunity. Mathematical models suggest that the observed patterns of pertussis periodicity are equally consistent with loss of immunity that is not as rapid as currently thought, or with negligible transmission generated by repeat infections. We conclude that both vaccine coverage and birth rate drive pertussis periodicity globally and that vaccination induces strong herd immunity effects. A better understanding of the role of repeat infections in pertussis transmission is critical to refine existing control strategies.  相似文献   

5.
《Biologicals》2014,42(2):123-127
In Poland, where the wP vaccine has been used since 1960, pertussis rates increased in the mid-1990s. In 2012, the rate of pertussis recognised by surveillance was unexpectedly found to be two-fold higher than in the previous decade. Quality measures on potency and vaccine working seeds were introduced, to confirm the possible impact of manufacturing inconsistency or potency lowering on the observed increase in pertussis. Shewhart charts on potency values for lots released between 2001 and 2013 did not reveal any significant fluctuations. Working seeds of three vaccine strains used within last decade for wP manufacturing belong to the PFGE group III and were highly related. According to PFGE and SDS-PAGE data, all vaccine strains were found consistent according profiling on the genomic and protein levels. According to the sequencing data, they harboured ptxA2, ptxC1, prn1, fim2-1, fim3-1, tcfA2, ptxP1 and were assigned as MLST-2 type. Other factors apart from vaccine manufacturing inconsistency might be responsible for the increase in pertussis noted in 2012 in Poland.  相似文献   

6.
Bordetella pertussis causes whooping cough, a severe and prolonged respiratory disease that results inhas high morbidity and mortality rates, particularly in developing countries. The number incidence of whooping cough cases is increasing in many countries despite high vaccine coverage. Causes for the re‐emergence of the disease include the limited duration of protection conferred by the acellular pertussis vaccines (aP)s and pathogenic adaptations that involve antigenic divergence from vaccine strains. Therefore, current vaccines therefore need to be improved. In the present study, we focused on five autotransporters: namely SphB1, BatB, SphB2, Phg, and Vag8, which were previously found to be expressed by B. bronchiseptica during the course of infection in rats and examined their protective efficiencies as vaccine antigens. The passenger domains of these proteins were produced in recombinant forms and used as antigens. An intranasal murine challenge assay showed that immunization with a mixture of SphB1 and Vag8 (SV) significantly reduced bacterial load in the lower respiratory tract and a combination of aP and SV acts synergistically in effects of conferring protection against B. pertussis infection, implying that these antigens have potential as components to for improvinge th the currently available acellular pertussis vaccine.
  相似文献   

7.
A trial of the efficacy of a plain whole cell pertussis vaccine was conducted in Sweden. In this non-blinded trial 525 infants aged 2 months who were born on days with an even number received three doses of vaccine one month apart and 615 infants of the same age who were born on days with an odd number were enrolled as controls. During the 18 months of follow up there were 55 cases of pertussis. The attack rate was 1·5% (8/525) among the vaccinated children and 7·6% (47/615) among the unvaccinated children (p<0·001). The estimated efficacy of the vaccine was 80% (95% confidence interval 58 to 90).The estimated efficacy of pertussis vaccine was similar to that observed in British trials over 30 years ago.  相似文献   

8.
We investigated the effects of updating age-specific social contact matrices to match evolving demography on vaccine impact estimates. We used a dynamic transmission model of tuberculosis in India as a case study. We modelled four incremental methods to update contact matrices over time, where each method incorporated its predecessor: fixed contact matrix (M0), preserved contact reciprocity (M1), preserved contact assortativity (M2), and preserved average contacts per individual (M3). We updated the contact matrices of a deterministic compartmental model of tuberculosis transmission, calibrated to epidemiologic data between 2000 and 2019 derived from India. We additionally calibrated the M0, M2, and M3 models to the 2050 TB incidence rate projected by the calibrated M1 model. We stratified age into three groups, children (<15y), adults (≥15y, <65y), and the elderly (≥65y), using World Population Prospects demographic data, between which we applied POLYMOD-derived social contact matrices. We simulated an M72-AS01E-like tuberculosis vaccine delivered from 2027 and estimated the per cent TB incidence rate reduction (IRR) in 2050 under each update method. We found that vaccine impact estimates in all age groups remained relatively stable between the M0–M3 models, irrespective of vaccine-targeting by age group. The maximum difference in impact, observed following adult-targeted vaccination, was 7% in the elderly, in whom we observed IRRs of 19% (uncertainty range 13–32), 20% (UR 13–31), 22% (UR 14–37), and 26% (UR 18–38) following M0, M1, M2 and M3 updates, respectively. We found that model-based TB vaccine impact estimates were relatively insensitive to demography-matched contact matrix updates in an India-like demographic and epidemiologic scenario. Current model-based TB vaccine impact estimates may be reasonably robust to the lack of contact matrix updates, but further research is needed to confirm and generalise this finding.  相似文献   

9.

Background

Little is known on the effectiveness of influenza vaccine in ESRD patients. This study compared the incidence of hospitalization, morbidity, and mortality in end-stage renal disease (ESRD) patients undergoing hemodialysis (HD) between cohorts with and without influenza vaccination.

Methods

We used the insurance claims data from 1998 to 2009 in Taiwan to determine the incidence of these events within one year after influenza vaccination in the vaccine (N = 831) and the non-vaccine (N = 3187) cohorts. The vaccine cohort to the non-vaccine cohort incidence rate ratio and hazard ratio (HR) of morbidities and mortality were measured.

Results

The age-specific analysis showed that the elderly in the vaccine cohort had lower hospitalization rate (100.8 vs. 133.9 per 100 person-years), contributing to an overall HR of 0.81 (95% confidence interval (CI) 0.72–0.90). The vaccine cohort also had an adjusted HR of 0.85 [95% CI 0.75–0.96] for heart disease. The corresponding incidence of pneumonia and influenza was 22.4 versus 17.2 per 100 person-years, but with an adjusted HR of 0.80 (95% CI 0.64–1.02). The vaccine cohort had lowered risks than the non-vaccine cohort for intensive care unit (ICU) admission (adjusted HR 0.20, 95% CI 0.12–0.33) and mortality (adjusted HR 0.50, 95% CI 0.41–0.60). The time-dependent Cox model revealed an overall adjusted HR for mortality of 0.30 (95% CI 0.26–0.35) after counting vaccination for multi-years.

Conclusions

ESRD patients with HD receiving the influenza vaccination could have reduced risks of pneumonia/influenza and other morbidities, ICU stay, hospitalization and death, particularly for the elderly.  相似文献   

10.

Background

Three phase 2b, double-blind, placebo-controlled, randomized efficacy trials have tested recombinant Adenovirus serotype-5 (rAd5)-vector preventive HIV-1 vaccines: MRKAd5 HIV-1 gag/pol/nef in Step and Phambili, and DNA/rAd5 HIV-1 env/gag/pol in HVTN505. Due to efficacy futility observed at the first interim analysis in Step and HVTN505, participants of all three studies were unblinded to their vaccination assignments during the study but continued follow–up. Rigorous meta-analysis can provide crucial information to advise the future utility of rAd5-vector vaccines.

Methods

We included participant-level data from all three efficacy trials, and three Phase 1–2 trials evaluating the HVTN505 vaccine regimen. We predefined two co-primary analysis cohorts for assessing the vaccine effect on HIV-1 acquisition. The modified-intention-to-treat (MITT) cohort included all randomly assigned participants HIV-1 uninfected at study entry, who received at least the first vaccine/placebo, and the Ad5 cohort included MITT participants who received at least one dose of rAd5-HIV vaccine or rAd5-placebo. Multivariable Cox regression models were used to estimate hazard ratios (HRs) of HIV-1 infection (vaccine vs. placebo) and evaluate HR variation across vaccine regimens, time since vaccination, and subgroups using interaction tests.

Findings

Results are similar for the MITT and Ad5 cohorts; we summarize MITT cohort results. Pooled across the efficacy trials, over all follow-up time 403 (n = 224 vaccine; n = 179 placebo) of 6266 MITT participants acquired HIV-1, with a non-significantly higher incidence in vaccine recipients (HR 1.21, 95% CI 0.99–1.48, P = 0.06). The HRs significantly differed by vaccine regimen (interaction P = 0.03; MRKAd5 HR 1.41, 95% CI 1.11–1.78, P = 0.005 vs. DNA/rAd5 HR 0.88, 95% CI 0.61–1.26, P = 0.48). Results were similar when including the Phase 1–2 trials. Exploratory analyses based on the efficacy trials supported that the MRKAd5 vaccine-increased risk was concentrated in Ad5-positive or uncircumcised men early in follow-up, and in Ad5-negative or circumcised men later. Overall, MRKAd5 vaccine-increased risk was evident across subgroups except in circumcised Ad5-negative men (HR 0.97, 95% CI 0.58−1.63, P = 0.91); there was little evidence that the DNA/rAd5 vaccine, that was tested in this subgroup, increased risk (HR 0.88, 95% CI 0.61–1.26, P = 0.48). When restricting the analysis of Step and Phambili to follow-up time before unblinding, 114 (n = 65 vaccine; n = 49 placebo) of 3770 MITT participants acquired HIV-1, with a non-significantly higher incidence in MRKAd5 vaccine recipients (HR 1.30, 95% CI 0.89–1.14, P = 0.18).

Interpretation and Significance

The data support increased risk of HIV-1 infection by MRKAd5 over all follow-up time, but do not support increased risk of HIV-1 infection by DNA/rAd5. This study provides a rationale for including monitoring plans enabling detection of increased susceptibility to infection in HIV-1 at-risk populations.  相似文献   

11.
Pertussis is a highly infectious respiratory disease of humans caused by the bacterium Bordetella pertussis. Despite high vaccination coverage, pertussis has re-emerged globally. Causes for the re-emergence of pertussis include limited duration of protection conferred by acellular pertussis vaccines (aP) and pathogen adaptation. Pathogen adaptations involve antigenic divergence with vaccine strains, the emergence of strains which show enhanced in vitro expression of a number of virulence-associated genes and of strains that do not express pertactin, an important aP component. Clearly, the identification of more effective B. pertussis vaccine antigens is of utmost importance. To identify novel antigens, we used proteomics to identify B. pertussis proteins regulated by the master virulence regulatory system BvgAS in vitro. Five candidates proteins were selected and it was confirmed that they were also expressed in the lungs of naïve mice seven days after infection. The five proteins were expressed in recombinant form, adjuvanted with alum and used to immunize mice as stand-alone antigens. Subsequent respiratory challenge showed that immunization with the autotransporters Vag8 and SphB1 significantly reduced bacterial load in the lungs. Whilst these antigens induced strong opsonizing antibody responses, we found that none of the tested alum-adjuvanted vaccines - including a three-component aP - reduced bacterial load in the nasopharynx, suggesting that alternative immunological responses may be required for efficient bacterial clearance from the nasopharynx.  相似文献   

12.
The prediction of the lineage dynamics of influenza B viruses for the next season is one of the largest obstacles for constructing an appropriate influenza trivalent vaccine. Seasonal fluctuation of transmissibility and epidemiological interference between the two major influenza B lineages make the lineage dynamics complicated. Here we construct a parsimonious model describing the lineage dynamics while taking into account seasonal fluctuation of transmissibility and epidemiological interference. Using this model we estimated the epidemiological and evolutional parameters with the time-series data of the lineage specific isolates in Japan from the 2010–2011 season to the 2014–2015 season. The basic reproduction number is similar between Victoria and Yamagata, with a minimum value during one year as 0.82 (95% highest posterior density (HPD): 0.77–0.87) for the Yamagata and 0.83 (95% HPD: 0.74–0.92) for Victoria, the amplitude of seasonal variation of the basic reproduction number is 0.77 (95% HPD:0.66–0.87) for Yamagata and 1.05 (95% HPD: 0.89–1.02) for Victoria. The duration for which the acquired immunity is effective against infection by the Yamagata lineage is shorter than the acquired immunity for Victoria, 424.1days (95% HPD:317.4–561.5days). The reduction rate of susceptibility due to immune cross-reaction is 0.51 (95% HPD: 0.084–0.92) for the immunity obtained from the infection with Yamagata against the infection with Victoria and 0.62 (95% HPD: 0.42–0.80) for the immunity obtained from the infection with Victoria against the infection with Yamagata. Using estimated parameters, we predicted the dominant lineage in 2015–2016 season. The accuracy of this prediction is 68.8% if the emergence timings of the two lineages are known and 61.4% if the emergence timings are unknown. Estimated seasonal variation of the lineage specific reproduction number can narrow down the range of emergence timing, with an accuracy of 64.6% if the emergence times are assumed to be the time at which the estimated reproduction number exceeds one.  相似文献   

13.
BackgroundThe RTS,S/AS01 vaccine against Plasmodium falciparum malaria infection completed phase III trials in 2014 and demonstrated efficacy against clinical malaria of approximately 36% over 4 years for a 4-dose schedule in children aged 5–17 months. Pilot vaccine implementation has recently begun in 3 African countries. If the pilots demonstrate both a positive health impact and resolve remaining safety concerns, wider roll-out could be recommended from 2021 onwards. Vaccine demand may, however, outstrip initial supply. We sought to identify where vaccine introduction should be prioritised to maximise public health impact under a range of supply constraints using mathematical modelling.Methods and findingsUsing a mathematical model of P. falciparum malaria transmission and RTS,S vaccine impact, we estimated the clinical cases and deaths averted in children aged 0–5 years in sub-Saharan Africa under 2 scenarios for vaccine coverage (100% and realistic) and 2 scenarios for other interventions (current coverage and World Health Organization [WHO] Global Technical Strategy targets). We used a prioritisation algorithm to identify potential allocative efficiency gains from prioritising vaccine allocation among countries or administrative units to maximise cases or deaths averted. If malaria burden at introduction is similar to current levels—assuming realistic vaccine coverage and country-level prioritisation in areas with parasite prevalence >10%—we estimate that 4.3 million malaria cases (95% credible interval [CrI] 2.8–6.8 million) and 22,000 deaths (95% CrI 11,000–35,000) in children younger than 5 years could be averted annually at a dose constraint of 30 million. This decreases to 3.0 million cases (95% CrI 2.0–4.7 million) and 14,000 deaths (95% CrI 7,000–23,000) at a dose constraint of 20 million, and increases to 6.6 million cases (95% CrI 4.2–10.8 million) and 38,000 deaths (95% CrI 18,000–61,000) at a dose constraint of 60 million. At 100% vaccine coverage, these impact estimates increase to 5.2 million cases (95% CrI 3.5–8.2 million) and 27,000 deaths (95% CrI 14,000–43,000), 3.9 million cases (95% CrI 2.7–6.0 million) and 19,000 deaths (95% CrI 10,000–30,000), and 10.0 million cases (95% CrI 6.7–15.7 million) and 51,000 deaths (95% CrI 25,000–82,000), respectively. Under realistic vaccine coverage, if the vaccine is prioritised sub-nationally, 5.3 million cases (95% CrI 3.5–8.2 million) and 24,000 deaths (95% CrI 12,000–38,000) could be averted at a dose constraint of 30 million. Furthermore, sub-national prioritisation would allow introduction in almost double the number of countries compared to national prioritisation (21 versus 11). If vaccine introduction is prioritised in the 3 pilot countries (Ghana, Kenya, and Malawi), health impact would be reduced, but this effect becomes less substantial (change of <5%) if 50 million or more doses are available. We did not account for within-country variation in vaccine coverage, and the optimisation was based on a single outcome measure, therefore this study should be used to understand overall trends rather than guide country-specific allocation.ConclusionsThese results suggest that the impact of constraints in vaccine supply on the public health impact of the RTS,S malaria vaccine could be reduced by introducing the vaccine at the sub-national level and prioritising countries with the highest malaria incidence.

Alexandra Hogan and colleagues explore strategies to optimize vaccine allocation for maximum public health benefit in the face of potential supply constraints.  相似文献   

14.
The introduction of pertussis vaccination in the 1950s resulted in a significant decrease in the incidence of disease. However, since the 1990s many highly vaccinated countries have observed the re-emergence of the disease. One of the causes of this phenomenon might be related to the adaptation of Bordetella pertussis to vaccination. The purpose of the presented study was an investigation of the emergence and spread of vaccine antigen-deficient B. pertussis isolates in Poland and genomic characterization of the currently circulating pathogen population using PFGE, MLVA and MAST. The results revealed that all tested isolates expressed Ptx, FHA and ACT antigens but 15.4% (4/26) of isolates from 2010 to 2016 were Prn-deficient. Moreover, one TcfA-deficient isolate was collected in 2015. The genotyping showed a genetic distinction between the isolates circulating in 2010–2016 and isolates from previous periods. The majority of currently circulating isolates belonged to PFGE group IV (96.2%), type MT27 (73.1%), and carried ptxA1-ptxC2-ptxP3-prn2-tcfA2-fim2-1-fim3-1 alleles (61.5%). The unique genetic structure of the B. pertussis population in Poland has changed since 2010 and became similar to that observed in countries with aP vaccination. This could be a result of increasing use of aP vaccines (60% of primary vaccination in 2013) over wP vaccines, which have been broadly used for primary vaccination in Poland for decades.  相似文献   

15.
The epidemiology of pertussis and its prospects for control by mass vaccination in England and Wales are investigated by analyses of longitudinal records on incidence and vaccine uptake, and horizontal data on age-stratified case reports. Mathematical models of the transmission dynamics of the infection that incorporate loss of natural and vaccine-induced immunity plus variable vaccine efficacy are developed, and their predictions compared with observed trends. Analyses of case reports reveal that the individual force of infection is age dependent, with peak transmission in the 5- to 10-year-old age class. A model incorporating this age dependency, along with partial vaccine efficacy and loss of vaccine-induced immunity, generates predicted patterns that best mirror observed trends since mass vaccination was inaugurated in 1957 in England and Wales. Model projections accurately mirror the failure of mass vaccination to increase the inter-epidemic period of the infection (three years) over that pertaining before control. The analysis suggests that this is due to the impact of partial vaccine efficacy. Projected trends do not accurately reflect the low levels of pertussis incidence reported between epidemics in the periods of high vaccine uptake. This is thought to arise from a combination of factors, including loss of natural and vaccine induced immunity, biases in case reporting (where reporting efficiency is positively associated with the incidence of pertussis), and seasonal variations in transmission. Model predictions suggest that the vaccination of 88% of each birth cohort before the age of 1 year will eliminate bacterial transmission, provided the vaccine confers lifelong protection against infection. If vaccine-induced immunity is significantly less than lifelong (or if vaccination fails to protect all its recipients) repeated cohort immunization is predicted to be necessary to eliminate transmission. Future research needs are discussed, and emphasis is placed on the need for more refined data on vaccine efficacy, the duration of natural and vaccine-induced immunity and the incidence of clinical pertussis and subclinical infections (perhaps by the development of reliable serological tests). Future mathematical models will need especially to incorporate seasonality in transmission.  相似文献   

16.

Background

The GAVI Alliance supported10-valent pneumococcal conjugate vaccine (PCV10) introduction in Kenya. We estimated the cost-effectiveness of introducing either PCV10 or the13-valent vaccine (PCV13) from a societal perspective and explored the incremental impact of including indirect vaccine effects.

Methods

The costs and effects of pneumococcal vaccination among infants born in Kenya in 2010 were assessed using a decision analytic model comparing PCV10 or PCV13, in turn, with no vaccination. Direct vaccine effects were estimated as a reduction in the incidence of pneumococcal meningitis, sepsis, bacteraemic pneumonia and non-bacteraemic pneumonia. Pneumococcal disease incidence was extrapolated from a population-based hospital surveillance system in Kilifi and adjustments were made for variable access to care across Kenya. We used vaccine efficacy estimates from a trial in The Gambia and accounted for serotype distribution in Kilifi. We estimated indirect vaccine protection and serotype replacement by extrapolating from the USA. Multivariable sensitivity analysis was conducted using Monte Carlo simulation. We assumed a vaccine price of US$ 3.50 per dose.

Findings

The annual cost of delivering PCV10 was approximately US$14 million. We projected a 42.7% reduction in pneumococcal disease episodes leading to a US$1.97 million reduction in treatment costs and a 6.1% reduction in childhood mortality annually. In the base case analysis, costs per discounted DALY and per death averted by PCV10, amounted to US$ 59 (95% CI 26–103) and US$ 1,958 (95% CI 866–3,425), respectively. PCV13 introduction improved the cost-effectiveness ratios by approximately 20% and inclusion of indirect effects improved cost-effectiveness ratios by 43–56%. The break-even prices for introduction of PCV10 and PCV13 are US$ 0.41 and 0.51, respectively.

Conclusions

Introducing either PCV10 or PCV13 in Kenya is highly cost-effective from a societal perspective. Indirect effects, if they occur, would significantly improve the cost-effectiveness.  相似文献   

17.

Background

It is important for public health and within the HIV vaccine development field to understand the potential population level impact of an HIV vaccine of partial efficacy—both in preventing infection and in reducing viral load in vaccinated individuals who become infected—in the context of a realistic future implementation scenario in resource limited settings.

Methods

An individual level model of HIV transmission, progression and the effect of antiretroviral therapy was used to predict the outcome to 2060 of introduction in 2025 of a partially effective vaccine with various combinations of efficacy characteristics, in the context of continued ART roll-out in southern Africa.

Results

In the context of our base case epidemic (in 2015 HIV prevalence 28% and incidence 1.7 per 100 person years), a vaccine with only 30% preventative efficacy could make a substantial difference in the rate with which HIV incidence declines; the impact on incidence in relative terms is projected to increase over time, with a projected 67% lower HIV incidence in 2060 compared with no vaccine introduction. The projected mean decline in the general adult population death rate 2040–2060 is 11%. A vaccine with no prevention efficacy but which reduces viral load by 1 log is predicted to result in a modest (14%) reduction in HIV incidence and an 8% reduction in death rate in the general adult population (mean 2040–2060). These effects were broadly similar in multivariable uncertainty analysis.

Interpretation

Introduction of a partially effective preventive HIV vaccine would make a substantial long-term impact on HIV epidemics in southern Africa, in addition to the effects of ART. Development of an HIV vaccine, even of relatively low apparent efficacy at the individual level, remains a critical global public health goal.  相似文献   

18.

Background

Malariometric parameters are often primary endpoints of efficacy trials of malaria vaccine candidates. This study aims to describe the epidemiology of malaria prior to the conduct of a series of drug and vaccine trials in a rural area of Burkina Faso.

Methods

Malaria incidence was prospectively evaluated over one year follow-up among two cohorts of children aged 0–5 years living in the Saponé health district. The parents of 1089 children comprising a passive case detection cohort were encouraged to seek care from the local health clinic at any time their child felt sick. Among this cohort, 555 children were randomly selected for inclusion in an active surveillance sub-cohort evaluated for clinical malaria during twice weekly home visits. Malaria prevalence was evaluated by cross-sectional survey during the low and high transmission seasons.

Results

Number of episodes per child ranged from 0 to 6 per year. Cumulative incidence was 67.4% in the passive and 86.2% in the active cohort and was highest among children 0–1 years. Clinical malaria prevalence was 9.8% in the low and 13.0% in the high season (p>0.05). Median days to first malaria episode ranged from 187 (95% CI 180–193) among children 0–1 years to 228 (95% CI 212, 242) among children 4–5 years. The alternative parasite thresholds for the malaria case definition that achieved optimal sensitivity and specificity (70–80%) were 3150 parasites/µl in the high and 1350 parasites/µl in the low season.

Conclusion

Clinical malaria burden was highest among the youngest age group children, who may represent the most appropriate target population for malaria vaccine candidate development. The pyrogenic threshold of parasitaemia varied markedly by season, suggesting a value for alternative parasitaemia levels in the malaria case defintion. Regional epidemiology of malaria described, Sapone area field centers are positioned for future conduct of malaria vaccine trials.  相似文献   

19.

Background

Although the detrimental impact of major depressive disorder (MDD) at the individual level has been described, its global epidemiology remains unclear given limitations in the data. Here we present the modelled epidemiological profile of MDD dealing with heterogeneity in the data, enforcing internal consistency between epidemiological parameters and making estimates for world regions with no empirical data. These estimates were used to quantify the burden of MDD for the Global Burden of Disease Study 2010 (GBD 2010).

Method

Analyses drew on data from our existing literature review of the epidemiology of MDD. DisMod-MR, the latest version of the generic disease modelling system redesigned as a Bayesian meta-regression tool, derived prevalence by age, year and sex for 21 regions. Prior epidemiological knowledge, study- and country-level covariates adjusted sub-optimal raw data.

Results

There were over 298 million cases of MDD globally at any point in time in 2010, with the highest proportion of cases occurring between 25 and 34 years. Global point prevalence was very similar across time (4.4% (95% uncertainty: 4.2–4.7%) in 1990, 4.4% (4.1–4.7%) in 2005 and 2010), but higher in females (5.5% (5.0–6.0%) compared to males (3.2% (3.0–3.6%) in 2010. Regions in conflict had higher prevalence than those with no conflict. The annual incidence of an episode of MDD followed a similar age and regional pattern to prevalence but was about one and a half times higher, consistent with an average duration of 37.7 weeks.

Conclusion

We were able to integrate available data, including those from high quality surveys and sub-optimal studies, into a model adjusting for known methodological sources of heterogeneity. We were also able to estimate the epidemiology of MDD in regions with no available data. This informed GBD 2010 and the public health field, with a clearer understanding of the global distribution of MDD.  相似文献   

20.
BackgroundIndia has set a goal to eliminate measles and rubella/Congenital Rubella Syndrome (CRS) by 2023. Towards this goal, India conducted nationwide supplementary immunization activity (SIA) with measles-rubella containing vaccine (MRCV) targeting children aged between 9 months to <15 years and established a hospital-based sentinel surveillance for CRS. Reliable data about incidence of CRS is necessary to monitor progress towards the elimination goal.MethodsWe conducted serosurveys in 2019–20 among pregnant women attending antenatal clinics of 6 hospitals, which were also sentinel sites for CRS surveillance, to estimate the prevalence of IgG antibodies against rubella. We systematically sampled 1800 women attending antenatal clinics and tested their sera for IgG antibodies against rubella. We used rubella seroprevalence data from the current survey and the survey conducted in 2017 among antenatal women from another 6 CRS surveillance sites to construct a catalytic models to estimate the incidence and burden of CRS.ResultThe seroprevalence of rubella antibodies was 82.3% (95% CI: 80.4–84.0). Rubella seropositivity did not differ by age group and educational status. Based on the constant and age-dependent force of infection models, we estimated that the annual incidence of CRS in India was 225.58 per 100,000 live births (95% CI: 217.49–232.41) and 65.47 per 100,000 live births (95% CI: 41.60–104.16) respectively. This translated to an estimated 14,520 (95% CI: 9,225–23,100) and 50,028 (95% CI: 48,234–51,543) infants with CRS every year based on age-dependent and constant force of infection models respectively.ConclusionsOur findings indicated that about one fifth of women in the reproductive age group in India were susceptible for rubella. The estimates of CRS incidence will serve as a baseline to monitor the impact of MRCV SIAs, as well progress towards the elimination goal of rubella/CRS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号