首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non‐lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age‐ and diet‐induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole‐body insulin sensitivity. OPA1‐elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole‐body metabolism.  相似文献   

2.
The present study was conducted to correlate the cellular and molecular alterations in Alzheimer's pathology employing streptozotocin (STZ) induced experimental rat model. The STZ was administered in rat brain bilaterally by intracerebroventricular route using stereotaxic surgery followed by donepezil dosing. The Alzheimer's related pathological marker like acetylcholinesterase (AChE) activity, tau phosphorylation and amyloid aggregation were observed after STZ administration. STZ treatment showed decreased glucose and glucose transporters (GLUT) level along with augmented level of calcium in both cortical and hippocampal regions of rat brain. Increased calcium level may correlate with endoplasmic reticulum (ER) stress and significantly increased expression of ER stress markers like GRP78, GADD and caspase-12 were observed in STZ treated rat brain. Cellular communication was also affected by STZ administration as observed by increased expression connexin 43. With this view the activation of astrocytes and microglia was also assessed and observed by augmented GFAP and cd11b expression which were partially inhibited with donepezil treatment. The significantly increased level of degenerating neurons, caspase-3 and DNA fragmentation was also observed in rat brain regions which were not inhibited with donepezil treatment and validating the clinical observations. In conclusion, study indicated the STZ induced occurrence of Alzheimer's pathology. Further, STZ administration also caused depleted glucose level, inhibited mitochondrial activity, augmented calcium levels, ER stress, altered cellular communication and neuronal death which were partially attenuated with donepezil treatment.  相似文献   

3.
Ghrelin is a gastric hormone increased during caloric restriction and fat depletion. A role of ghrelin in the regulation of lipid and energy metabolism is suggested by fat gain independent of changes in food intake during exogenous ghrelin administration in rodents. We investigated the potential effects of peripheral ghrelin administration (two times daily 200-micrograms [DOSAGE ERROR CORRECTED] sc injection for 4 days) on triglyceride content and mitochondrial and lipid metabolism gene expression in rat liver and muscles. Compared with vehicle, ghrelin increased body weight but not food intake and circulating insulin. In liver, ghrelin induced a lipogenic and glucogenic pattern of gene expression and increased triglyceride content while reducing activated (phosphorylated) stimulator of fatty acid oxidation, AMP-activated protein kinase (AMPK, all P < 0.05), with unchanged mitochondrial oxidative enzyme activities. In contrast, triglyceride content was reduced (P < 0.05) after ghrelin administration in mixed (gastrocnemius) and unchanged in oxidative (soleus) muscle. In mixed muscle, ghrelin increased (P < 0.05) mitochondrial oxidative enzyme activities independent of changes in expression of fat metabolism genes and phosphorylated AMPK. Expression of peroxisome proliferator-activated receptor-gamma, the activation of which reduces muscle fat content, was selectively increased in mixed muscle where it paralleled changes in oxidative capacities (P < 0.05). Thus ghrelin induces tissue-specific changes in mitochondrial and lipid metabolism gene expression and favors triglyceride deposition in liver over skeletal muscle. These novel effects of ghrelin in the regulation of lean tissue fat distribution and metabolism could contribute to metabolic adaptation to caloric restriction and loss of body fat.  相似文献   

4.
Ad libitum high-fat diet (HFD) induces obesity and skeletal muscle metabolic dysfunction. Liver kinase B1 (LKB1) regulates skeletal muscle metabolism by controlling the AMP-activated protein kinase family, but its importance in regulating muscle gene expression and glucose tolerance in obese mice has not been established. The purpose of this study was to determine how the lack of LKB1 in skeletal muscle (KO) affects gene expression and glucose tolerance in HFD-fed, obese mice.KO and littermate control wild-type (WT) mice were fed a standard diet or HFD for 14 weeks. RNA sequencing, and subsequent analysis were performed to assess mitochondrial content and respiration, inflammatory status, glucose and insulin tolerance, and muscle anabolic signaling.KO did not affect body weight gain on HFD, but heavily impacted mitochondria-, oxidative stress-, and inflammation-related gene expression. Accordingly, mitochondrial protein content and respiration were suppressed while inflammatory signaling and markers of oxidative stress were elevated in obese KO muscles. KO did not affect glucose or insulin tolerance. However, fasting serum insulin and skeletal muscle insulin signaling were higher in the KO mice. Furthermore, decreased muscle fiber size in skmLKB1-KO mice was associated with increased general protein ubiquitination and increased expression of several ubiquitin ligases, but not muscle ring finger 1 or atrogin-1. Taken together, these data suggest that the lack of LKB1 in skeletal muscle does not exacerbate obesity or insulin resistance in mice on a HFD, despite impaired mitochondrial content and function and elevated inflammatory signaling and oxidative stress.  相似文献   

5.
6.
The endoplasmic reticulum (ER) plays a key role in the regulation of protein folding, lipid synthesis, calcium homeostasis, and serves as a primary site of sphingolipid biosynthesis. ER stress (ER dysfunction) participates in the development of mitochondrial dysfunction during aging. Mitochondria are in close contact with the ER through shared mitochondria associated membranes (MAM). Alteration of sphingolipids contributes to mitochondria-driven cell injury. Cardiolipin is a phospholipid that is critical to maintain enzyme activity in the electron transport chain. The aim of the current study was to characterize the changes in sphingolipids and cardiolipin in ER, MAM, and mitochondria during the progression of aging in young (3 mo.), middle (18 mo.), and aged (24 mo.) C57Bl/6 mouse hearts. ER stress increased in hearts from 18 mo. mice and mice exhibited mitochondrial dysfunction by 24 mo. Hearts were pooled to isolate ER, MAM, and subsarcolemmal mitochondria (SSM). LC-MS/MS quantification of lipid content showed that aging increased ceramide content in ER and MAM. In addition, the contents of sphingomyelin and monohexosylceramides are also increased in the ER from aged mice. Aging increased the total cardiolipin content in the ER. Aging did not alter the total cardiolipin content in mitochondria or MAM yet altered the composition of cardiolipin with aging in line with increased oxidative stress compared to young mice. These results indicate that alteration of sphingolipids can contribute to the ER stress and mitochondrial dysfunction that occurs during aging.  相似文献   

7.

Background

Recent studies showed a link between a high fat diet (HFD)-induced obesity and lipid accumulation in non-adipose tissues, such as skeletal muscle and liver, and insulin resistance (IR). Although the mechanisms responsible for IR in those tissues are different, oxidative stress and mitochondrial dysfunction have been implicated in the disease process. We tested the hypothesis that HFD induced mitochondrial DNA (mtDNA) damage and that this damage is associated with mitochondrial dysfunction, oxidative stress, and induction of markers of endoplasmic reticulum (ER) stress, protein degradation and apoptosis in skeletal muscle and liver in a mouse model of obesity-induced IR.

Methodology/Principal Findings

C57BL/6J male mice were fed either a HFD (60% fat) or normal chow (NC) (10% fat) for 16 weeks. We found that HFD-induced IR correlated with increased mtDNA damage, mitochondrial dysfunction and markers of oxidative stress in skeletal muscle and liver. Also, a HFD causes a change in the expression level of DNA repair enzymes in both nuclei and mitochondria in skeletal muscle and liver. Furthermore, a HFD leads to activation of ER stress, protein degradation and apoptosis in skeletal muscle and liver, and significantly reduced the content of two major proteins involved in insulin signaling, Akt and IRS-1 in skeletal muscle, and Akt in liver. Basal p-Akt level was not significantly influenced by HFD feeding in skeletal muscle and liver.

Conclusions/Significance

This study provides new evidence that HFD-induced mtDNA damage correlates with mitochondrial dysfunction and increased oxidative stress in skeletal muscle and liver, which is associated with the induction of markers of ER stress, protein degradation and apoptosis.  相似文献   

8.
Overweight and obesity correspond with metabolic syndromes, such as glucose intolerance and type 2 diabetes. The objective of this study was to determine whether decreased thermogenesis mass and glucose intolerance are directly related to changes in body mass in Mongolian gerbils. High body weight gerbils displayed increase in total body fat mass especially epididymal fat pad, and decrease in nonshivering thermogenesis, as indicated by depressed mitochondrial protein content and uncoupling protein-1 content in brown adipose tissue. No variations of sirtuin 1 and subunit IV of cytochrome oxidase expression were found in brown adipose tissue and skeletal muscle between the two groups. High body weight gerbils showed increased serum leptin and insulin concentrations but surprisingly increased glucose tolerance, suggesting a difference from other obese species in the regulation of glucose metabolism. Serum leptin levels were negatively correlated with UCP1 content in BAT and positively correlated with energy intake and insulin concentration. Our data suggest that leptin may be involved in thermogenesis regulation, insulin secretion and glucose metabolism in HBW gerbils.  相似文献   

9.
The major goal of this study was to examine the ability of several antioxidants namely, vitamin E, beta-carotene and N-acetylcysteine, to protect the brain from oxidative stress induced by lipopolysaccharide (LPS, endotoxin). LPS, a component of the bacterial wall of gram-negative bacteria, has been recognized as one of the most potent bacterial products in the induction of host inflammatory responses and tissue injury and was used in this study to mimic infections. LPS injection resulted in a significant increase in the stress indices, plasma corticosterone and glucose concentration, a significant alteration of the brain oxidative status observed as elevation of the level of malondialdehyde (MDA, index of lipid peroxidation) and reduction of reduced glutathione (GSH), and a disturbance in the brain energy metabolism presented as a reduction in the ATP/ADP ratio and an increase in the mitochondrial/cytosolic hexokinase ratio. However, the activities of brain superoxide dismutase and Na+, K+-ATPase and contents of cholesterol and phospholipids were not altered. Administration of the aforementioned antioxidants prior to LPS injection ameliorated the oxidative stress by reducing levels of MDA, restoring GSH content and normalizing the mitochondrial/cytosolic hexokinase ratio in the brain in addition to lowering levels of plasma corticosterone and glucose. In conclusion, this study showed the increased free radical generation during infections and LPS-induced stress. It also suggests that brain oxidative status and energy is disturbed.  相似文献   

10.
To address the potential role of lipotoxicity and mitochondrial function in insulin resistance, we studied mice with high-level expression of uncoupling protein-1 in skeletal muscle (UCP-H mice). Body weight, body length, and bone mineral density were decreased in UCP-H mice compared with wild-type littermates. Forelimb grip strength and muscle mass were strikingly decreased, whereas muscle triglyceride content was increased fivefold in UCP-H mice. Electron microscopy demonstrated lipid accumulation and large mitochondria with abnormal architecture in UCP-H skeletal muscle. ATP content and key mitochondrial proteins were decreased in UCP-H muscle. Despite mitochondrial dysfunction and increased intramyocellular fat, fasting serum glucose was 22% lower and insulin-stimulated glucose transport 80% higher in UCP-H animals. These beneficial effects on glucose metabolism were associated with increased AMP kinase and hexokinase activities, as well as elevated levels of GLUT4 and myocyte enhancer factor-2 proteins A and D in skeletal muscle. These results suggest that UCP-H mice have a mitochondrial myopathy due to depleted energy stores sufficient to compromise growth and impair muscle function. Enhanced skeletal muscle glucose transport in this setting suggests that excess intramyocellular lipid and mitochondrial dysfunction are not sufficient to cause insulin resistance in mice.  相似文献   

11.
Extensively burned patients often suffer from sepsis, a complication that enhances postburn hypermetabolism and contributes to increased incidence of multiple organ failure, morbidity and mortality. Despite the clinical importance of burn sepsis, the molecular and cellular mechanisms of such infection-related metabolic derangements and organ dysfunction are still largely unknown. We recently found that upon endoplasmic reticulum (ER) stress, the white adipose tissue (WAT) interacts with the liver via inflammatory and metabolic signals leading to profound hepatic alterations, including hepatocyte apoptosis and hepatic fatty infiltration. We therefore hypothesized that burn plus infection causes an increase in lipolysis of WAT after major burn, partially through induction of ER stress, contributing to hyperlipidemia and profound hepatic lipid infiltration. We used a two-hit rat model of 60% total body surface area scald burn, followed by intraperitoneal (IP) injection of Pseudomonas Aeruginosa-derived lipopolysaccharide (LPS) 3 d postburn. One day later, animals were euthanized and liver and epididymal WAT (EWAT) samples were collected for gene expression, protein analysis and histological study of inflammasome activation, ER stress, apoptosis and lipid metabolism. Our results showed that burn plus LPS profoundly increased lipolysis in WAT associated with significantly increased hepatic lipid infiltration. Burn plus LPS augmented ER stress by upregulating CHOP and activating ATF6, inducing NLRP3 inflammasome activation and leading to increased apoptosis and lipolysis in WAT with a distinct enzymatic mechanism related to inhibition of AMPK signaling. In conclusion, burn sepsis causes profound alterations in WAT and liver that are associated with changes in organ function and structure.  相似文献   

12.
Hexose-6-phosphate dehydrogenase (H6PD) is the initial component of a pentose phosphate pathway inside the endoplasmic reticulum (ER) that generates NADPH for ER enzymes. In liver H6PD is required for the 11-oxoreductase activity of 11beta-hydroxysteroid dehydrogenase type 1, which converts inactive 11-oxo-glucocorticoids to their active 11-hydroxyl counterparts; consequently, H6PD null mice are relatively insensitive to glucocorticoids, exhibiting fasting hypoglycemia, increased insulin sensitivity despite elevated circulating levels of corticosterone, and increased basal and insulin-stimulated glucose uptake in muscles normally enriched in type II (fast) fibers, which have increased glycogen content. Here, we show that H6PD null mice develop a severe skeletal myopathy characterized by switching of type II to type I (slow) fibers. Running wheel activity and electrically stimulated force generation in isolated skeletal muscle are both markedly reduced. Affected muscles have normal sarcomeric structure at the electron microscopy level but contain large intrafibrillar membranous vacuoles and abnormal triads indicative of defects in structure and function of the sarcoplasmic reticulum (SR). SR proteins involved in calcium metabolism, including the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), calreticulin, and calsequestrin, show dysregulated expression. Microarray analysis and real-time PCR demonstrate overexpression of genes encoding proteins in the unfolded protein response pathway. We propose that the absence of H6PD induces a progressive myopathy by altering the SR redox state, thereby impairing protein folding and activating the unfolded protein response pathway. These studies thus define a novel metabolic pathway that links ER stress to skeletal muscle integrity and function.  相似文献   

13.
The development of insulin resistance is the primary step in the etiology of type 2 diabetes mellitus. There are several risk factors associated with insulin resistance, yet the basic biological mechanisms that promote its development are still unclear. There is growing literature that suggests mitochondrial dysfunction and/or oxidative stress play prominent roles in defects in glucose metabolism. Here, we tested whether increased expression of CuZn-superoxide dismutase (Sod1) or Mn-superoxide dismutase (Sod2) prevented obesity-induced changes in oxidative stress and metabolism. Both Sod1 and Sod2 overexpressing mice were protected from high fat diet-induced glucose intolerance. Lipid oxidation (F2-isoprostanes) was significantly increased in muscle and adipose with high fat feeding. Mice with increased expression of either Sod1 or Sod2 showed a significant reduction in this oxidative damage. Surprisingly, mitochondria from the muscle of high fat diet-fed mice showed no significant alteration in function. Together, our data suggest that targeting reduced oxidative damage in general may be a more applicable therapeutic target to prevent insulin resistance than is improving mitochondrial function.  相似文献   

14.
Estrogen receptors (ERs) are expressed in adipose tissue and skeletal muscle, with potential implications for glucose metabolism and insulin signaling. Previous studies examining the role of ERs in glucose metabolism have primarily used knockout mouse models of ERα and ERβ, and it is unknown whether ER expression is altered in response to an obesity-inducing high-fat diet (HFD). The purpose of the current study was to determine whether modulation of glucose metabolism in response to a HFD in intact and ovariectomized (OVX) female rats is associated with alterations in ER expression. Our results demonstrate that a 6-wk HFD (60% calories from fat) in female rats induces whole body glucose intolerance with tissue-specific effects isolated to the adipose tissue, and no observed differences in insulin-stimulated glucose uptake, GLUT4, or ERα protein expression levels in skeletal muscle. In chow-fed rats, OVX resulted in decreased ERα with a trend toward decreased GLUT4 expression in adipose tissue. Sham-treated and OVX rats fed a HFD demonstrated a decrease in ERα and GLUT4 in adipose tissue. The HFD also increased activation of stress kinases (c-jun NH?-terminal kinase and inhibitor of κB kinase β) in the sham-treated rats and decreased expression of the protective heat shock protein 72 (HSP72) in both sham-treated and OVX rats. Our findings suggest that decreased glucose metabolism and increased inflammation in adipose tissue with a HFD in female rats could stem from a significant decrease in ERα expression.  相似文献   

15.
The effect of fasting on calcium content and Ca2+-ATPase activity in the brain tissues of 5 weeks and 50 weeks old rats was investigated. Brain calcium content and Ca2+-ATPase activity in the microsomal and mitochondrial fractions of the brain homogenate from young and elderly rats were significantly increased by overnight–fasting. These increases were appreciably restored by a single oral administration of glucose solution (400 mg/100 g body weight) to fasted rats. In comparison with young and elderly rats, brain calcium content and microsomal Ca2+-ATPase activity were significantly elevated by increasing ages. The effect of ageing was not seen in the brain mitochondrial Ca2+-ATPase activity. When calcium (50 mg/100 g) was orally administered to young and elderly rats, brain calcium content was significantly elevated. The calcium administration–induced increase in brain calcium content was greater in elderly r crease in Ca2+-ATPase activity in the microsomal and mitochondrial fractions of brain homogenates from young rats. In aged rats, the microsomal Ca2+-ATPase activity was not further enhanced by calcium administration, although the mitochondrial enzyme activity was significantly raised. The present study demonstrates that the fasting–induced increase in brain calcium content is involved in Ca2+-ATPase activity raised in the brain microsomes and mitochondria of rats with different ages, supporting a energy–dependent mechanism in brain calcium accumulation.  相似文献   

16.
The energy metabolism changes in isolated hepatocytes at different levels of proton conductivity of cellular membranes were studied. The low doses of the uncoupler which increased hepatocyte respiration rate but did not markedly affect the mitochondrial potential caused: the reduction in total adenine nucleotide contents (ATP + ADP + AMP), the oxidation of mitochondrial NADH, the increase in the rates of glycogenolysis and net flux via phosphofructokinase without any changes in the rates of glucose, lactate and pyruvate accumulation. High doses of the uncoupler which eliminated completely oxidative phosphorylation decreased Atkinson's energy charge down to 0.5, reduced cytoplasmic NADH, induced a further increase in the glycogenolysis rate, increased the rates of glucose and lactate accumulation, heightened glucose-6-phosphate content and lowered contents of 3-phosphoglycerate and 2-oxoglutarate.  相似文献   

17.
An increased intracellular methylglyoxal (MGO) under hyperglycemia led to pancreatic beta cell death. However, its mechanism in which way with MGO induced beta cell death remains unknown. We investigated both high glucose and MGO treatment significantly inclined intracellular MGO concentration and inhibited cell viability in vitro. MGO treatment also triggered intracellular advanced glycation end products (AGEs) formation, declined mitochondrial membrane potential (MMP), increased oxidative stress and the expression of ER stress mediators Grp78/Bip and p-PERK; activated mitochondrial apoptotic pathway, which could mimic by Glo1 knockdown. Aminoguanidine (AG), a MGO scavenger, however, prevented AGEs formation and MGO-induced cell death by inhibiting oxidative stress and ER stress. Furthermore, both antioxidant N-acetylcysteine (NAC) and ER stress inhibitor 4-phenylbutyrate (4-PBA) could attenuate MGO-induced cell death through ameliorating ER stress. MGO treatment down-regulated Ire1α, a key ER stress mediator, increased JNK phosphorylation and activated mitochondrial apoptosis; down-regulated Bcl-2 expression which could be attenuated by the JNK inhibitor SP600125 and further inhibited cytochrome c leakage from mitochondria and blocked the conversion of pro caspase 3 into cleaved caspase 3, all these might contribute to the inhibition of INS-1 cell apoptosis. Ire1α down-regulation by Ire1α siRNAs mimicked MGO-induced cytotoxicity by activating the JNK phosphorylation and mitochondrial apoptotic pathway. In summary, we demonstrated that increased intracellular MGO induced cytotoxicity in INS-1 cells primarily by activating oxidative stress and further triggering mitochondrial apoptotic pathway, and ER stress-mediated Ire1α-JNK pathway. These findings may have implication on new mechanism of glucotoxicity-mediated pancreatic beta-cell dysfunction.  相似文献   

18.
Transgenic (UCP1-TG) mice with ectopic expression of UCP1 in skeletal muscle (SM) show a phenotype of increased energy expenditure, improved glucose tolerance and increase substrate metabolism in SM. To investigate the potential role of skeletal muscle AMPKα2 activation in the metabolic phenotype of UCP1-TG mice we generated double transgenic (DTG) mice, by crossing of UCP1-TG mice with DN-AMPKα2 mice overexpressing a dominant negative α2 subunit of AMPK in SM which resulted in an impaired AMPKα2 activity by 90±9% in SM of DTG mice. Biometric analysis of young male mice showed decreased body weight, lean and fat mass for both UCP1-TG and DTG compared to WT and DN-AMPKα2 mice. Energy intake and weight-specific total energy expenditure were increased, both in UCP1-TG and DTG mice. Moreover, glucose tolerance, insulin sensitivity and fatty acid oxidation were not altered in DTG compared to UCP1-TG. Also uncoupling induced induction and secretion of fibroblast growth factor 21 (FGF21) from SM was preserved in DTG mice. However, voluntary physical cage activity as well as ad libitum running wheel access during night uncovered a severe activity intolerance of DTG mice. Histological analysis showed a progressive degenerative morphology in SM of DTG mice which was not observed in SM of UCP1-TG mice. Moreover, ATP-depletion related cellular stress response via heat shock protein 70 was highly induced, whereas capillarization regulator VEGF was suppressed in DTG muscle. In addition, AMPKα2-mediated induction of mitophagy regulator ULK1 was suppressed in DTG mice, as well as mitochondrial respiratory capacity and content. In conclusion, we demonstrate that AMPKα2 is dispensable for SM mitochondrial uncoupling induced metabolic effects on whole body energy balance, glucose homeostasis and insulin sensitivity. But strikingly, activation of AMPKα2 seems crucial for maintaining SM function, integrity and the ability to compensate chronic metabolic stress induced by SM mitochondrial uncoupling.  相似文献   

19.
大鼠运动性疲劳模型的建立   总被引:5,自引:0,他引:5  
目的建立大鼠运动疲劳模型,观察运动疲劳对大鼠各项生理、生化指标的影响。方法20只大鼠随机分为正常对照组和运动疲劳模型组,运动疲劳模型组大鼠每日按照方案进行锻炼。实验结束后大鼠检测相关指标:血清MDA含量和红细胞SOD活性,肝脏与骨骼肌MDA含量、SOD活性,骨骼肌线粒体游离钙离子含量,骨骼肌线粒体膜电位,下丘脑神经递质。电镜观察骨骼肌线粒体细微结构。结果运动疲劳模型组大鼠造模2周以后其血清、肝和骨骼肌MDA含量均有显著升高,红细胞和骨骼肌SOD活性均有显著降低,骨骼肌线粒体膜电位显著性降低,骨骼肌线粒体游离Ca2+含量有显著性降低,下丘脑GABA、5-HT含量有显著升高,下丘脑DA、ACh含量有显著性下降,电镜观察显示骨骼肌超微结构改变并以线粒体改变较为明显。结论大鼠跑台运动2周可造成运动疲劳模型,并造成大鼠骨骼肌线粒体损伤。  相似文献   

20.
Iron is an essential element for crucial biological function; whereas excess iron sedimentation impairs the main functions of tissues or organs. Cumulative researches have shown that the disturbances in iron metabolism, especially iron overload is closely concatenating with bone loss. Nevertheless, the specific process of iron overload-induced apoptosis in osteoblasts has not been thoroughly studied. In this study, our purpose is to elucidate the mechanism of osteoblast apoptosis induced by iron overload via the MC3T3-E1 cell line. Ferric ammonium citrate (FAC) was utilized to simulate iron overload conditions in vitro. These results showed that treatment with FAC dose-dependently induced the apoptosis of MC3T3-E1 cells at 48 h, dysfunction of iron metabolism, and increased intracellular reactive oxygen species (ROS) levels. Following, FAC does-dependently caused the calcium dyshomeostasis, decreased the calcium concentration in endoplasmic reticulum (ER), but increased the crosstalk between ER and mitochondria, and calcium concentration in the mitochondria. Moreover, FAC dose-dependently decreased mitochondrial membrane potential (MMP) and enhanced the expression of apoptosis related proteins (Bax, Cyto-C and C-caspase3). We furthermore revealed that FAC treatment activated the ER-mediated cell apoptosis via p-eIF2α/ATF4/CHOP pathway in MC3T3-E1 osteoblasts cells. In addition, pretreatment with the N-acetylcysteine (NAC) or Tauroursodeoxycholate Sodium (TUDC) attenuated cell apoptosis, ROS levels, mitochondria fragmentation and ER stress-related protein expression, and recovered the protein expression related to iron metabolism. In conclusion, our finding suggested that iron overload induced apoptosis via eliciting ER stress, which resulted in mitochondrial dysfunction and activated p-eIF2α/ATF4/CHOP pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号