首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation in aggression among species can be due to a number of proximate and ultimate factors, leading to patterns of divergent and convergent evolution of behavior among even closely related species. Caribbean Anolis lizards are well known for their convergence in microhabitat use and morphology, but they also display marked convergence in social behavior and patterns of aggression. We studied 18 Anolis species across six ecomorphs on four different Caribbean islands to test four main hypotheses. We hypothesized that species differences in aggression would be due to species differences in circulating testosterone (T), a steroid hormone implicated in numerous studies across vertebrate taxa as a primary determinant of social behavior; more aggressive species were expected to have higher baseline concentrations of T and corticosterone. We further hypothesized that low-T species would increase T and corticosterone levels during a social challenge. Within three of the four island assemblages studied we found differences in T levels among species within an island that differ in aggression, but in the opposite pattern than predicted: more aggressive species had lower baseline T than the least aggressive species. The fourth island, Puerto Rico, showed the pattern of baseline T levels among species we predicted. There were no patterns of corticosterone levels among species or ecomorphs. One of the two species tested increased T in response to a social challenge, but neither species elevated corticosterone. Our results suggest that it is possible for similarities in aggression among closely related species to evolve via different proximate mechanisms.  相似文献   

2.
Species with alternative reproductive tacts are good models to investigate the poorly understood question of whether individual variation within sexes results from the same physiological mechanisms that control variation between sexes. We have shown previously that adult male tree lizards, Urosaurus ornatus, of different throat color morphs express different levels of aggression in the laboratory. Further field results support the suggestion that the two morphs practice alternative reproductive tactics because the two morphs express different levels of aggressive behavior under field conditions and exhibit dramatic and opposite responses to aggressive challenges. However, despite these behavioral differences, the two morphs do not differ in levels of testosterone or corticosterone either in undisturbed situations or following aggressive challenge. These results are consistent with the relative plasticity hypothesis which proposes that organizational, rather than activational, actions of steroid hormones will be more important in morph differentiation when morphs are fixed in adult life, as they are in tree lizards. These results also support the hypothesis that steroid hormonal levels are insensitive to social modulation in males of species such as U. ornatus without paternal care.  相似文献   

3.
The associations among aggression, testosterone (T), and reproductive success have been well studied, particularly in male birds. In many species, males challenged with simulated or real territorial intrusions increase T and levels of aggression, outcomes linked to higher dominance status and greater reproductive success. For females, the patterns are less clear. Females behave aggressively towards one another, and in some species, females respond to a social challenge with increases in T, but in other species they do not. Prior work on female dark-eyed juncos (Junco hyemalis) had shown that experimental elevation of T increases social status and intrasexual aggression. Here, we conducted two experiments designed to answer three questions: Are endogenous concentrations of T associated with dominance status in captive female juncos? Does dominance status influence readiness to breed in female juncos? And do captive females increase T in response to a challenge? In the first experiment, we introduced two females to a breeding aviary, allowed them to form a dominance relationship and then introduced a male. We found that dominant females were more likely to breed than subordinates, but that dominance status was not predicted by circulating T. In the second experiment, we allowed a resident male and female to establish ownership of a breeding aviary (territory) then introduced a second, intruder female. We found that resident females were aggressive towards and dominant over intruders, but T did not increase during aggressive interactions. We suggest that during the breeding season, intrasexual aggression between females may influence reproductive success, but not be dependent upon fluctuations in T. Selection may have favored independence of aggression from T because high concentrations of T could interfere with normal ovulation or produce detrimental maternal effects.  相似文献   

4.
Testosterone or its metabolite, estrogen, regulates aggression in males of many mammalian species. Because plasma testosterone levels are typically positively correlated with both aggression and reproduction, aggression is expected to be higher when males are in reproductive condition. However, in some photoperiodic species such as Siberian hamsters (Phodopus sungorus), males are significantly more aggressive in short day lengths when the testes are regressed and circulating testosterone concentrations are reduced. These results led to the formation of the hypothesis that aggression is modulated independently of circulating steroids in Siberian hamsters. Thus, recent studies have been designed to characterize the role of other neuroendocrine factors in modulating aggression. However, aggression may be mediated by testosterone or estrogen despite basal concentrations of these steroids by increasing sensitivity to steroids in specific brain regions. Consistent with this hypothesis, we found that males housed under short days have increased expression of estrogen receptor alpha in the bed nucleus of the stria terminalis, medial amygdala, and central amygdala. Neural activation in response to an aggressive encounter was also examined across photoperiod.  相似文献   

5.
Territorial aggression, displayed by male vertebrates in a reproductive context, is generally thought to be mediated by testosterone. The challenge hypothesis predicts that in socially monogamous species, territorial challenges should induce an increase in plasma testosterone concentrations, which will enhance aggressive behaviour and territory defence. This hypothesis is based on northern latitude birds and needs to be tested in tropical birds before it can be universally accepted. We tested the challenge hypothesis in an equatorial population of rufous-collared sparrows in Papallacta, Ecuador. This population shows an extended breeding period during which males aggressively guard territories. During the early breeding season, males were challenged with conspecific or heterospecific simulated territorial intrusions (STIs) lasting 10 min. Conspecific-challenged males responded more aggressively than heterospecific-challenged males. However, there was no increase in plasma testosterone in response to the conspecific STI. During the breeding season, males were challenged with conspecific STIs lasting 0, 10 or 30 min. Males behaved aggressively regardless of STI duration, and did not differ in plasma testosterone or luteinizing hormone concentrations. During the breeding season, males were implanted with testosterone-filled or empty silastic tubes and subsequently challenged with a conspecific STI. Testosterone implants significantly raised plasma testosterone concentrations, but testosterone-implanted males were not more aggressive than blank-implanted controls. Combined, these findings suggest that testosterone concentrations above breeding baseline are not related to territorial aggression in this population and therefore do not support the challenge hypothesis.  相似文献   

6.
Extensive research has focused on territorial aggression during the breeding season and the roles of circulating testosterone (T) and its conversion to 17beta-oestradiol (E2) in the brain. However, many species also defend territories in the non-breeding season, when circulating T-levels are low. The endocrine control of non-breeding territoriality is poorly understood. The male song sparrow of Washington State is highly territorial year-round, but plasma T is basal in the non-breeding season (autumn and winter). Castration has no effect on aggression in autumn, suggesting that autumnal territoriality is independent of gonadal hormones. However, non-gonadal sex steroids may regulate winter territoriality (e.g. oestrogen synthesis by brain aromatase). In this field experiment, we treated wild non-breeding male song sparrows with a specific aromatase inhibitor (fadrozole, FAD) using micro-osmotic pumps. FAD greatly reduced several aggressive behaviours. The effects of FAD were reversed by E2 replacement. Treatment did not affect body condition or plasma corticosterone, suggesting that all subjects were healthy These data indicate that E2 regulates male aggression in the non-breeding season and challenge the common belief that aggression in the non-breeding season is independent of sex steroids. More generally, these results raise fundamental questions about how sexual and/or aggressive behaviours are maintained in a variety of model vertebrate species despite low circulating levels of sex steroids or despite castration. Such non-classical endocrine mechanisms may be common among vertebrates and play an important role in the regulation of behaviour.  相似文献   

7.
In many birds and mammals, male territorial aggression is modulated by elevated circulating concentrations of the steroid hormone testosterone (T) during the breeding season. However, many species are territorial also during the non-breeding season, when plasma T levels are basal. The endocrine control of non-breeding territorial aggression differs considerably between species, and previous studies on wintering birds suggest differences between migratory and resident species. We investigated the endocrine modulation of territorial aggression during the breeding and non-breeding season in a resident population of European stonechats (Saxicola torquata rubicola). We recorded the aggressive response to a simulated territorial intrusion in spring and winter. Then, we compared the territorial aggression between seasons and in an experiment in which we blocked the androgenic and estrogenic action of T. We found no difference in the aggressive response between the breeding and the non-breeding season. However, similarly to what is found in migratory stonechats, the hormonal treatment decreased aggressive behaviors in resident males in the breeding season, whereas no effects were recorded in the non-breeding season. When we compared the aggressive responses of untreated birds with those obtained from migratory populations in a previous study, we found that territorial aggression of resident males was lower than that of migratory males during the breeding season. Our results show that in a resident population of stonechats T and/or its metabolites control territorial aggression in the breeding but not in the non-breeding season. In addition, our study supports the hypothesis that migratory status does modulate the intensity of aggressive behavior.  相似文献   

8.
The challenge hypothesis poses that in socially monogamous vertebrates, males increase circulating testosterone in response to aggressive challenges to promote intense and persistent aggression. However, in bird species that raise only a single brood during short breeding seasons as well as those with essential male parental care, males lack the well-documented testosterone response to social challenges. We tested male behavioral and hormonal responses to social challenges in a neotropical bird species, the buff-breasted wren (Thryothorus leucotis), which is single-brooded with extensive male parental care, but in contrast to most species studied to date, has a long breeding season. We presented live female, male, and paired decoys with song playback for 30 min during pre-breeding and breeding periods. Males responded aggressively to all intruders, but male decoys elicited somewhat weaker responses overall. Responses to female decoys were most intense during pre-breeding, whereas pair decoys elicited stronger responses at breeding. Plasma testosterone concentrations did not differ between challenged and unchallenged males, or among males exposed to different decoys or during different seasons. Plasma corticosterone in pre-breeding males was higher in challenged than unchallenged males and varied positively with the duration of social challenge. Circulating dehydroepiandrosterone concentrations were similar in challenged and unchallenged males, but correlated positively with the proportion of time males spent in close proximity to the decoy. Both testosterone and corticosterone results support recent findings, suggesting that brood number and essential male care, but not breeding-season length, may be important determinants of male hormonal responsiveness during aggressive interactions.  相似文献   

9.
To examine how developmental experiences alter neural pathways associated with adult social behavior, we cross-fostered pups between the more aggressive and monogamous California mouse (Peromyscus californicus) and the less aggressive and polygamous white-footed mouse (P. leucopus). Cross-fostered males became more like their foster parents when tested as adults. Male white-footed mice became more aggressive only in an aggression test in a neutral arena, whereas the territorial California mice became less aggressive in resident-intruder aggression test, as measured by attack latency. Only the species that displayed a change in resident-intruder aggression showed a change in arginine vasopressin (AVP) levels: cross-fostered California mice had significantly lower levels of AVP-immunoreactive (AVP-ir) staining than controls in the bed nucleus of the stria terminalis (BNST) and the supraoptic nucleus (SON) and a nonsignificant trend toward lower levels in the medial amygdala (MA). Neither species showed changes in AVP-ir staining in a control area, the paraventricular nucleus (PVN). The changes in AVP-ir staining in the BNST and SON may not be caused by stress because cross-fostering was not associated with changes in adult plasma concentrations of two steroid hormones, corticosterone and testosterone, that have been associated with stress-related alterations in AVP pathways. These results suggest that manipulating the early parental environment can directly alter both a neurotransmitter system and species-typical patterns of social behavior, but that these effects may vary between species and under different social contexts.  相似文献   

10.
While social interactions influence vertebrate endocrine regulation, the dynamics of regulation in relation to specific behaviors have not been clearly elucidated. In the current study, we investigated whether androgens (testosterone) or glucocorticoids (cortisol) play a functional role in aggressive offspring defense behavior in wild smallmouth bass (Micropterus dolomieu), a teleost fish with sole paternal care. We measured circulating testosterone and cortisol concentrations in plasma samples taken from parental males following a simulated nest intrusion by a common nest predator, the bluegill sunfish (Lepomis macrochirus). To understand whether endocrine regulation changes across the parental care period, we looked both at males guarding fresh eggs and at males guarding hatched embryos. Plasma testosterone levels increased in males subjected to a simulated nest intrusion when compared to sham controls. Testosterone concentrations in males guarding embryos were lower than in males guarding fresh eggs, but circulating testosterone was positively correlated with the level of aggression towards the nest predator at both offspring development stages. However, there was no increase in cortisol levels following a simulated nest intrusion, and no relationship between cortisol and any measured parameter. These results suggest that androgens play an important role in promoting aggressive nest defense behavior in teleost fish.  相似文献   

11.
We investigated the relationship between aggressive behavior and circulating androgens in the context of agonistic social interaction and examined the effect of this interaction on the androgen-aggression relationship in response to a subsequent social challenge in male Anolis carolinensis lizards. Individuals comprising an aggressive encounter group were exposed to an aggressive conspecific male for 10 min per day during a 5-day encounter period, while controls were exposed to a neutral stimulus for the same period. On the sixth day, their responses to an intruder test were observed. At intervals, individuals were sacrificed to monitor plasma androgen levels. Structural equation modeling (SEM) was used to test three a priori interaction models of the relationship between social stimulus, aggressive behavior, and androgen. Model 1 posits that exposure to a social stimulus influences androgen and aggressive behavior independently. In Model 2, a social stimulus triggers aggressive behavior, which in turn increases circulating levels of androgen. In Model 3, exposure to a social stimulus influences circulating androgen levels, which in turn triggers aggressive behavior. During the 5 days of the encounter period, circulating testosterone (T) levels of the aggressive encounter group followed the same pattern as their aggressive behavioral responses, while the control group did not show significant changes in their aggressive behavior or T level. Our SEM results supported Model 2. A means analysis showed that during the intruder test, animals with 5 days of aggressive encounters showed more aggressive responses than did control animals, while their circulating androgen levels did not differ. This further supports Model 2, suggesting that an animal's own aggressive behavior may trigger increases in levels of plasma androgen.  相似文献   

12.
Individual hormone profiles can be important generators of phenotypic variation. Despite this, work on the consequences of hormone profiles has traditionally ignored the large inter-individual variation within natural populations. However, recent research has advocated the need to explicitly consider this variation and address its consequences for selection. One of the key steps in this process is examining repeatability in hormone profiles and their links to behavioral traits under selection. In this study we show that individuals within a free-ranging population of the Australian lizard Egernia whitii exhibit temporal repeatability in their circulating baseline testosterone concentrations as well as their aggressive response towards conspecific intruders. Furthermore, we show significant, sex-specific links between testosterone and aggression. Specifically, testosterone and aggression is negatively linked in males, while there is no relationship in females. As conspecific aggression has significant consequences for fitness-related traits (parental care, mating strategies) in this species, inter-individual variation in testosterone concentrations, through their effects on aggression, could have important implications for individual fitness. We discuss the potential causes and consequences of hormonal repeatability as well as provide explanations for its sex-specific links with aggression. Specifically, we suggest that these patterns are the result of alternative hormonal pathways governing aggression within Egernia and may indicate a decoupling of aggression and testosterone across the sexes.  相似文献   

13.
Studies in birds show that testosterone (T) concentrations vary over the annual cycle depending on mating system and life history traits. Socially monogamous species show pairing behavior throughout the year and low levels of male-male aggression and are underrepresented in these studies, yet the function of testosterone could be particularly important for sexual and social interactions occurring outside the breeding season. We measured fecal T concentrations over the annual cycle and the frequency of interactions between male and female downy woodpeckers (Picoides pubescens) from late fall through early spring. We validated the fecal assay by collecting blood in conjunction with a subsample of our fecal samples: fecal T correlated with circulating levels in the blood. The annual peak level of T in males was relatively low and short-lived, similar to that of other bird species with low levels of male-male aggression and high paternal care. The annual cycle of female T resembled the male pattern, and the ratio of male T to female T was close to 1.0. Likewise, the frequency of aggression among females was similar to the frequency among males. Overall, testosterone levels in both sexes were variable, even in winter. In other bird species, sexual behavior during nonbreeding periods correlates with circulating levels of T in males. Based on this observation, we tested the hypothesis that T in winter was positively related to the frequency of interaction between mated downy woodpeckers. The results showed no such relationship. We discuss this finding and further relate the annual cycle of T in both males and females to behaviors that appear to facilitate mate choice and retention of the pair bond during conspecific challenge.  相似文献   

14.
Studies investigating relationships between social parameters (such as dominance rank, rates of aggressive and sexual behaviors) and androgen (particularly, testosterone) levels in male primates have yielded inconsistent results. In the present study, we address the relationship between androgens, male dominance rank and rank-associated behaviors in two groups of captive chimpanzees, a species characterized by a pronounced dominance hierarchy between adult males. By combining behavioral observations with urinary testosterone (T) measurements, we found that the differences in T concentrations between males were small and not obviously related to their dominance rank. T levels were not related to the rates of initiated aggression and copulatory behavior, but a significant negative relationship between male T level and the rates of strong aggression received was apparent. Our findings, combined with those of others, suggest that any relationship between dominance rank and T depends upon the extent to which individual rank-associated behaviors (e.g. aggressive/sexual) are themselves related to T.  相似文献   

15.
We tested the challenge hypothesis for the hormonal regulation of aggression in chicks of the black-headed gull, Larus ridibundus. Chicks of this species are highly aggressive toward conspecifics, but never to peers that hatched from the same clutch (modal clutch size is three). Therefore, in the first experiment small families were housed together in large groups (challenged condition) and compared to families kept isolated (nonchallenged condition). As expected, in the challenged condition during the initial stage of territory establishment basal levels of testosterone (T) were clearly higher than those in the nonchallenged condition. In the second experiment we tested the effect of a short social challenge on short-term T-fluctuations. The design was based on an earlier experiment, showing that after temporary T-treatment chicks become very sensitive to social challenges while having low basal T-levels. We now show that these social challenges induce brief elevations in plasma T-levels. These peaks are similar to those in previously untreated chicks but untreated chicks do not respond with aggression to a challenge. Therefore, we conclude that the initial exposure to elevated T-levels increases the sensitivity to brief changes in T induced by social challenges. In this way exposure to T, that may be detrimental for development, is minimized while birds remain able to defend territories. This is the first report showing that the challenge hypothesis as established for adult birds, is also applicable for aggressive behavior in young birds outside the sexual context. Furthermore we suggest that a phase of priming with T is necessary to obtain the high behavioral responsiveness to a challenge.  相似文献   

16.
Radioimmunoassay of serum testosterone (T) was used to characterize circulating T levels in mice from birth to sexual maturity. Until 25 days of age, serum T levels ranged from 1 to 4 ng/ml. A significant increase in T concentrations was observed in 30-day-old males, followed by a secondary rise in serum T between Days 45 and 50 of life. The latter increment was associated with the appearance of extreme individual variation in circulating T levels which was also observed in adult (120 days) males. The most rapid growth of accessory sex organs occurred between 30 and 50 days of age, the period preceding attainment of peak serum-T levels. The first incidence of intermale aggression coincided with a prepubertal rise in circulating T, but adult levels of fighting were present prior to the secondary increase in T observed between 45 and 50 days of age. Although animals involved in a fight did not differ with respect to weight of the accessory sex organs or serum T concentrations, the male that weighed more than his opponent usually won an encounter. Compared to males in encounters in which no fighting occurred, animals that won or lost an aggressive encounter showed significantly greater accessory sex organ development. While circulating T is required for the initiation and maintenance of intermale aggression, it is apparent that additional factors are related to the onset of fighting and the establishment of dominance/ subordinance relationships in mice.  相似文献   

17.
In the nonbreeding season, some bird species express high levels of aggression despite basal plasma testosterone (T) concentrations. Consequently, nonreproductive aggression is believed to be independent of plasma T. In the present study, we investigated the effect of castration on nonreproductive aggressive behavior in yearling male European starlings (Sturnus vulgaris). We paired castrated (Cx) with control (C) males in dyadic trials during three test periods (December, January-February, and March-April), and by using an infrared camera, we defined which male was the most aggressive one when both males were competing over access to a nest box to roost in. During each of the three periods, Cx males behaved more aggressively than C males but differences between groups did not reach significance. When analyzing the results of the three periods together, Cx males were found to be significantly more aggressive than C males. Likewise, when considering only the second and third period (when plasma T levels of C males were significantly higher than those of Cx males) the same result was obtained. Furthermore, in the third period, aggression tended to be lower than in the first and second period, although T concentrations of C males were highest in this period. Our data thus clearly show that nonreproductive aggression in yearling male starlings is independent of gonadal sex steroids and suggest it even increases by castration.  相似文献   

18.
The challenge hypothesis (J. C. Wingfield, R. E. Hegner, B. G. Ball, and A. M. Duffy, 1990, Am. Nat. 136, 829-846) proposes that in birds, reptiles, and fish, "the frequency or intensity of reproductive aggression as an effect of T[estosterone] is strongest in situations of social instability, such as during the formation of dominance relationships, the establishment of territorial boundaries, or challenges by a conspecific male for a territory or access to mates" (p. 833). To determine the extension of this hypothesis to mammalian species, we tested predictions of the hypothesis in a nonpaternal, seasonal breeding, prosimian primate (ring-tailed lemurs, Lemur catta). Semi-free-ranging males were studied during periods of social stability (premating period) and instability (mating period). The annual mating season consists of several days during which males fight for access to promiscuous group females as each individually becomes sexually receptive for 1 day. Male rates of aggression were compared to fecal testosterone levels within premating and mating periods. In the premating period male rate of aggression was not significantly correlated with testosterone level. By contrast, during the mating season testosterone and aggression levels were positively and significantly correlated. However, on days just preceding estrus, male rate of aggression was not significantly correlated with testosterone, but on days of estrus, when aggressive challenges peaked sharply, testosterone and aggression were highly positively correlated. These results suggest that the challenge hypothesis applies to mammals as well as to birds, reptiles, and fish. In addition, elevations in testosterone were tightly circumscribed around days of estrus, suggesting a compromise between costs and benefits of elevated testosterone levels.  相似文献   

19.
Elevated circulating testosterone levels are hypothesized to allow male animals to direct resources into territorial and mating behaviors at the expense of reducing paternal care of offspring. For this hypothesis to apply, testosterone must facilitate territorial/mating behaviors and have antagonistic effects on paternal care, but this pattern has only been supported in some, not all, species. I tested whether androgens correlate with aggressive behaviors in male house wrens ( Troglodytes aedon), a double‐brooded species where paternal and aggressive behaviors overlap temporally. House wrens may therefore benefit from having a hormonal mechanism that allows males to rapidly change behavioral states. However, I found no evidence that androgens (testosterone and 5α‐dihydrotestosterone) relate to aggression in house wrens: Androgens did not increase in response to playback, and endogenous‐circulating androgens were not correlated with how aggressively males responded to those playbacks. Moreover, androgen levels were low during the pre‐breeding stage of the second brood, when many males establish new territories and attract new mates. This study adds to a growing body of the literature suggesting that the relationship between circulating androgens and aggressive behavior is more complex than originally thought.  相似文献   

20.
Mockingbirds (Mimus polyglottos) show intense territorial activity in the autumn as newcomers attempt to establish space within resident populations. Examination of autumnal territorial behavior showed that unmated males sing more and engage in more territorial fights than mated males. Newcomers that have just acquired space also sing more and show more territorial fights than birds resident to the population for at least one prior season. Among established residents, the average number of territorial fights was greater in birds that shared more territory boundaries with new residents. Radioimmunoassay of plasma samples taken from males during the molt and following the onset of territorial defense showed that during both periods plasma concentrations of testosterone (T), dihydrotestosterone (DHT), and estradiol were basal or below the sensitivity of the assay system. Moreover, groups of males that differed in song and territorial aggression did not differ in plasma concentrations of T, DHT, or luteinizing hormone (LH). Hormone analyses confirm measurements on several other avian species suggesting that sex steroid concentrations are low in the fall and winter and that variations in aggressive behavior at this time of year may be unrelated to LH and androgen levels. Our observations contribute to a growing body of work in temperate passerines indicating that the role of androgens in mediating aggressive challenge may be restricted to the breeding season. The possible hormonal basis (if any) of song and territorial aggression in mockingbirds outside the breeding season remains obscure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号