首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frequency with which replication forks break down in all organisms requires that specific mechanisms ensure completion of genome duplication. In Escherichia coli a major pathway for reloading of the replicative apparatus at sites of fork breakdown is dependent on PriA helicase. PriA acts in conjunction with PriB and DnaT to effect loading of the replicative helicase DnaB back onto the lagging strand template, either at stalled fork structures or at recombination intermediates. Here we showed that PriB stimulates PriA helicase, acting to increase the apparent processivity of PriA. This stimulation correlates with the ability of PriB to form a ternary complex with PriA and DNA structures containing single-stranded DNA, suggesting that the known single-stranded DNA binding function of PriB facilitates unwinding by PriA helicase. This enhanced apparent processivity of PriA might play an important role in generating single-stranded DNA at stalled replication forks upon which to load DnaB. However, stimulation of PriA by PriB is not DNA structure-specific, demonstrating that targeting of stalled forks and recombination intermediates during replication restart likely resides with PriA alone.  相似文献   

2.
PriA and other primosome assembly proteins of Escherichia coli recruit the major replicative helicase DnaB for replisome assembly during bacteriophage Mu transposition and replication. MuA transposase catalyzes the transfer of Mu ends to target DNA, forming a potential replication fork that provides the assembly site for the replisome. However, this fork lacks the single-stranded DNA needed to load DnaB. Although no pre-existing primosome assembly sites that bind PriA were found within the Mu end sequences, PriA was able to bind to the forked DNA structure created by MuA. The helicase activity of PriA could then open the duplex to create the DnaB binding site. In a tightly coupled reaction on synthetic forked substrates, PriA promoted both the unwinding of the lagging strand arm and preprimosome assembly to load DnaB onto the lagging strand template. PriA apparently translocated 3' to 5' along the lagging strand template until sufficient single-stranded DNA was exposed for binding of DnaB, which then translocated 5' to 3' in the opposite direction. Mutant PriA lacking helicase activity was unable to promote this process, and loss of PriA helicase impaired Mu DNA replication in vivo and in vitro. This suggests that the opening of the duplex by PriA helicase is a critical step in the initiation of Mu DNA replication. Concerted helicase and primosome assembly functions would allow PriA to act as initiator on recombination intermediates and stalled replication forks. As part of the replisome, PriA may act as a mobile initiator that minimizes interruptions in chromosomal replication.  相似文献   

3.
During origin-independent replisome assembly, the replication restart protein PriC prefers to load the replication fork helicase, DnaB, to stalled replication forks where there is a gap in the nascent leading strand. However, this activity can be obstructed if the 5'-end of the nascent lagging strand is near the template branch point. Here we provide biochemical evidence that the helicase activities of Rep and PriA function to unwind the nascent lagging strand DNA at such stalled replication forks. PriC then loads the replicative helicase, DnaB, onto the newly generated, single-stranded template for the purposes of replisome assembly and duplex unwinding ahead of the replication fork. Direct rescue of replication forks by the Rep-PriC and PriA-PriC pathways in this manner may contribute to genomic stability by avoiding the potential dangers of fork breakage inherent to recombination-dependent restart pathways.  相似文献   

4.
Escherichia coli PriA is a primosome assembly protein with 3' to 5' helicase activity whose apparent function is to promote resumption of DNA synthesis following replication-fork arrest. Here, we describe how initiation of helicase activity on DNA forks is influenced by both fork structure and by single-strand DNA-binding protein. PriA could recognize and unwind forked substrates where one or both arms were primarily duplex, and PriA required a small (two bases or larger) single-stranded gap at the fork in order to initiate unwinding. The helicase was most active on substrates with a duplex lagging-strand arm and a single-stranded leading-strand arm. On this substrate, PriA was capable of translocating on either the leading or lagging strands to unwind the duplex ahead of the fork or the lagging-strand duplex, respectively. Fork-specific binding apparently orients the helicase domain to unwind the lagging-strand duplex. Binding of single-strand-binding protein to forked templates could inhibit unwinding of the duplex ahead of the fork but not unwinding of the lagging-strand duplex or translocation on the lagging-strand template. While single-strand-binding protein could inhibit binding of PriA to the minimal, unforked DNA substrates, it could not inhibit PriA binding to forked substrates. In the cell, single-strand-binding protein and fork structure may direct PriA helicase to translocate along the lagging-strand template of forked structures such that the primosome is specifically assembled on that DNA strand.  相似文献   

5.
Efficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms. Modeling of this structure with fork DNA has suggested that the HMG-like domain could bind to the duplex DNA ahead of the fork, whereas the C-terminal portion of gp59 would provide the docking sites for helicase (T4 gp41), SSB (T4 gp32), and the ssDNA fork arms. To test this model, we have used random and targeted mutagenesis to generate mutations throughout gp59. We have assayed the ability of the mutant proteins to bind to fork, primed fork, and ssDNAs, to interact with SSB, to stimulate helicase activity, and to function in leading and lagging strand DNA synthesis. Our results provide strong biochemical support for the role of the N-terminal gp59 HMG motif in fork binding and the interaction of the C-terminal portion of gp59 with helicase and SSB. Our results also suggest that processive replication may involve the switching of gp59 between its interactions with helicase and SSB.  相似文献   

6.
PriA helicase plays crucial roles in restoration of arrested replication forks. It carries a "3' terminus binding pocket" in its N-terminal DNA binding domain, which is required for high affinity binding of PriA to a fork carrying a 3'-end of a nascent leading strand at the branch. We show that the abrogation of the 3' terminus recognition either by a mutation in the 3' terminus binding pocket or by the bulky modification of the 3'-end leads to unwinding of the unreplicated duplex arm on this fork, causing potential fork destabilization. This indicates a critical role of the 3' terminus binding pocket of PriA in its "stable" binding at the fork for primosome assembly. In contrast, PriA unwinds the unreplicated duplex region on a fork without a 3'-end, potentially destabilizing the fork. However, this process is inhibited by RecG helicase, capable of regressing the fork until the 3'-end of the nascent leading strand reaches the branch. PriA now stably binds to this regressed fork, stabilizing it. Using a model arrest-fork-substrate, we reconstitute the above process in vitro with RecG and PriA proteins. Our results present a novel mechanism by which two helicases function in a highly coordinated manner to generate a structure in which an arrested fork is stabilized for further repair and/or replication restart.  相似文献   

7.
Primosome assembly protein PriA functions in the assembly of the replisome at forked DNA structures. Whereas its N-terminal DNA binding domain (DBD) binds independently to DNA, the affinity of DBD protein for forked structures is relatively weak. Although the PriA helicase domain (HD) is required for high affinity fork binding, HD protein had very low affinity for DNA. It had only low levels of ATPase activity, and it hydrolyzed ATP when DNA was absent whereas PriA did not. HD catalyzed unwinding of a minimal substrate composed of a duplex with a 3' single-stranded tail. Single-strand binding protein (SSB) bound to the tail of this substrate inhibited this reaction by full-length PriA but enhanced the reaction by HD. SSB stabilized binding of PriA but not of DBD or HD to duplexes with a 5' or 3' single-stranded tail. On forked substrates SSB enhanced helicase action on the lagging-strand arm by PriA but not by HD. The results indicate that synergy of the DBD and HD allows stable binding at the interface between duplex and single-stranded DNA bound by SSB. This mode of binding may be analogous to fork binding, which orients the helicase to act on the lagging-strand side of the fork.  相似文献   

8.
In the bacteriophage T4 DNA replication system, T4 gene 59 protein binds preferentially to fork DNA and accelerates the loading of the T4 41 helicase. 59 protein also binds the T4 32 single-stranded DNA-binding protein that coats the lagging strand template. Here we explore the function of the strong affinity between the 32 and 59 proteins at the replication fork. We show that, in contrast to the 59 helicase loader, 32 protein does not bind forked DNA more tightly than linear DNA. 32 protein displays a strong binding polarity on fork DNA, binding with much higher affinity to the 5' single-stranded lagging strand template arm of a model fork, than to the 3' single-stranded leading strand arm. 59 protein promotes the binding of 32 protein on forks too short for cooperative binding by 32 protein. We show that 32 protein is required for helicase-dependent leading strand DNA synthesis when the helicase is loaded by 59 protein. However, 32 protein is not required for leading strand synthesis when helicase is loaded, less efficiently, without 59 protein. Leading strand synthesis by wild type T4 polymerase is strongly inhibited when 59 protein is present without 32 protein. Because 59 protein can load the helicase on forks without 32 protein, our results are best explained by a model in which 59 helicase loader at the fork prevents the coupling of the leading strand polymerase and the helicase, unless the position of 59 protein is shifted by its association with 32 protein.  相似文献   

9.
PriA helicase and SSB interact physically and functionally   总被引:5,自引:2,他引:3  
PriA helicase is the major DNA replication restart initiator in Escherichia coli and acts to reload the replicative helicase DnaB back onto the chromosome at repaired replication forks and D-loops formed by recombination. We have discovered that PriA-catalysed unwinding of branched DNA substrates is stimulated specifically by contact with the single-strand DNA binding protein of E.coli, SSB. This stimulation requires binding of SSB to the initial DNA substrate and is effected via a physical interaction between PriA and the C-terminus of SSB. Stimulation of PriA by the SSB C-terminus may act to ensure that efficient PriA-catalysed reloading of DnaB occurs only onto the lagging strand template of repaired forks and D-loops. Correlation between the DNA repair and recombination defects of strains harbouring an SSB C-terminal mutation with inhibition of this SSB–PriA interaction in vitro suggests that SSB plays a critical role in facilitating PriA-directed replication restart. Taken together with previous data, these findings indicate that protein–protein interactions involving SSB may coordinate replication fork reloading from start to finish.  相似文献   

10.
The initiation of DNA synthesis on forked DNA templates is a vital process in the replication and maintenance of cellular chromosomes. Two proteins that promote replisome assembly on DNA forks have so far been identified. In phage T4 development the gene 59 protein (gp59) assembles replisomes at D-loops, the sites of homologous strand exchange. Bacterial PriA protein plays an analogous function, most probably restarting replication after replication fork arrest with the aid of homologous recombination proteins, and PriA is also required for phage Mu replication by transposition. Gp59 and PriA exhibit similar DNA fork binding activities, but PriA also has a 3' to 5' helicase activity that can promote duplex opening for replisome assembly. The helicase activity allows PriA's repertoire of templates to be more diverse than that of gp59. It may give PriA the versatility to restart DNA replication without recombination on arrested replication forks that lack appropriate duplex openings.  相似文献   

11.
Primosomes are nucleoprotein assemblies designed for the activation of DNA replication forks. Their primary role is to recruit the replicative helicase onto single-stranded DNA. The "replication restart" primosome, defined in Escherichia coli, is involved in the reactivation of arrested replication forks. Binding of the PriA protein to forked DNA triggers its assembly. PriA is conserved in bacteria, but its primosomal partners are not. In Bacillus subtilis, genetic analysis has revealed three primosomal proteins, DnaB, DnaD, and DnaI, that have no obvious homologues in E. coli. Interestingly, they are involved in primosome function both at arrested replication forks and at the chromosomal origin. Our biochemical analysis of the DnaB and DnaD proteins unravels their role in primosome assembly. They are both multimeric and bind individually to DNA. Furthermore, DnaD stimulates DnaB binding activities. DnaD alone and the DnaD/DnaB pair interact specifically with PriA of B. subtilis on several DNA substrates. This suggests that the nucleoprotein assembly is sequential in the PriA, DnaD, DnaB order. The preferred DNA substrate mimics an arrested DNA replication fork with unreplicated lagging strand, structurally identical to a product of recombinational repair of a stalled replication fork.  相似文献   

12.
In bacteria, several salvage responses to DNA replication arrest culminate in reassembly of the replisome on inactivated forks to resume replication. The PriA DNA helicase is a prominent trigger of this replication restart process, preceded in many cases by a repair and/or remodeling of the arrested fork, which can be performed by many specific proteins. The mechanisms that target these rescue effectors to damaged forks in the cell are unknown. We report that the single-stranded DNA binding (SSB) protein is the key factor that links PriA to active chromosomal replication forks in vivo. This targeting mechanism determines the efficiency by which PriA reaches its specific DNA-binding site in vitro and directs replication restart in vivo. The RecG and RecQ DNA helicases, which are involved in intricate replication reactivation pathways, also associate with the chromosomal replication forks by similarly interacting with SSB. These results identify SSB as a platform for linking a 'repair toolbox' with active replication forks, providing a first line of rescue responses to accidental arrest.  相似文献   

13.
A hand-off mechanism for primosome assembly in replication restart   总被引:2,自引:0,他引:2  
Collapsed DNA replication forks must be reactivated through origin-independent reloading of the replication machinery (replisome) to ensure complete duplication of cellular genomes. In E. coli, the PriA-dependent pathway is the major replication restart mechanism and requires primosome proteins PriA, PriB, and DnaT for replisome reloading. However, the molecular mechanisms that regulate origin-independent replisome loading are not fully understood. Here, we demonstrate that assembly of primosome protein complexes represents a key regulatory mechanism, as inherently weak PriA-PriB and PriB-DnaT interactions are strongly stimulated by single-stranded DNA. Furthermore, the binding site on PriB for single-stranded DNA partially overlaps the binding sites for PriA and DnaT, suggesting a dynamic primosome assembly process in which single-stranded DNA is handed off from one primosome protein to another as a repaired replication fork is reactivated. This model helps explain how origin-independent initiation of DNA replication is restricted to repaired replication forks, preventing overreplication of the genome.  相似文献   

14.
15.
Initiation of bacteriophage Mu DNA replication by transposition requires the disassembly of the transpososome that catalyses strand exchange and the assembly of a replisome promoted by PriA, PriB, PriC and DnaT proteins, which function in the host to restart stalled replication forks. Once the molecular chaperone ClpX weakens the very tight binding of the transpososome to the Mu ends, host disassembly factors (MRFalpha-DF) promote the dissociation of the transpososome from the DNA template and the assembly of a new nucleoprotein complex. Prereplisome factors (MRFalpha-PR) further alter the complex, allowing PriA binding and loading of major replicative helicase DnaB onto the template promoted by the restart proteins. MRFalpha-PR is essential for DnaB loading by restart proteins even on the deproteinized Mu fork whereas MRFalpha-DF is not required on the deproteinized template. When the transition from transpososome to replisome was reconstituted using MRFalpha-DF and MRFalpha-PR, initiation of Mu DNA replication was strictly dependent upon added PriC and PriA helicase. In contrast, initiation on the deproteinized template was predominantly dependent upon PriB and did not require PriA's helicase activity. The results indicate that transition mechanisms beginning with the transpososome disassembly can determine the pathway of replisome assembly by restart proteins.  相似文献   

16.
Rescue of arrested and collapsed replication forks is essential for maintenance of genomic integrity. One system for origin of replication-independent loading of the DnaB replicative helicase and subsequent replisome reassembly requires the structure-specific recognition factor PriA and the assembly factors PriB and DnaT. Here, we provide biochemical evidence for an alternate system for DnaB loading that requires only PriC. Furthermore, the choice of which system is utilized during restart is dictated by the nature of the structure of the stalled replication fork. PriA-dependent reactions are most robust on fork structures with no gaps in the leading strand, such as is found at the junction of a D loop, while the PriC-dependent system preferentially utilizes fork structures with large gaps in the leading strand. These observations suggest that the type of initial damage on the DNA template and how the inactivated fork is processed ultimately influence the choice of enzymatic restart pathway.  相似文献   

17.
HEL308 is a superfamily II DNA helicase, conserved from archaea through to humans. HEL308 family members were originally isolated by their similarity to the Drosophila melanogaster Mus308 protein, which contributes to the repair of replication-blocking lesions such as DNA interstrand cross-links. Biochemical studies have established that human HEL308 is an ATP-dependent enzyme that unwinds DNA with a 3' to 5' polarity, but little else is know about its mechanism. Here, we show that GFP-tagged HEL308 localizes to replication forks following camptothecin treatment. Moreover, HEL308 colocalizes with two factors involved in the repair of damaged forks by homologous recombination, Rad51 and FANCD2. Purified HEL308 requires a 3' single-stranded DNA region to load and unwind duplex DNA structures. When incubated with substrates that model stalled replication forks, HEL308 preferentially unwinds the parental strands of a structure that models a fork with a nascent lagging strand, and the unwinding action of HEL308 is specifically stimulated by human replication protein A. Finally, we show that HEL308 appears to target and unwind from the junction between single-stranded to double-stranded DNA on model fork structures. Together, our results suggest that one role for HEL308 at sites of blocked replication might be to open up the parental strands to facilitate the loading of subsequent factors required for replication restart.  相似文献   

18.
In bacteria, PriA protein, a conserved DEXH‐type DNA helicase, plays a central role in replication restart at stalled replication forks. Its unique DNA‐binding property allows it to recognize and stabilize stalled forks and the structures derived from them. Cells must cope with fork stalls caused by various replication stresses to complete replication of the entire genome. Failure of the stalled fork stabilization process and eventual restart could lead to various forms of genomic instability. The low viability of priA null cells indicates a frequent occurrence of fork stall during normal growth that needs to be properly processed. PriA specifically recognizes the 3′‐terminus of the nascent leading strand or the invading strand in a displacement (D)‐loop by the three‐prime terminus binding pocket (TT‐pocket) present in its unique DNA binding domain. Elucidation of the structural basis for recognition of arrested forks by PriA should provide useful insight into how stalled forks are recognized in eukaryotes.  相似文献   

19.
In this paper we compare the effect of single-stranded DNA-binding proteins of bacteriophage T7 (gene 2.5 protein) and of Escherichia coli (SSB) at the T7 replication fork. The T7 gene 4 protein acts processively as helicase to promote leading strand synthesis and distributively as primase to initiate lagging strand synthesis by T7 DNA polymerase. On a nicked double-stranded template, the formation of a replication fork requires partial strand displacement so that gene 4 protein may bind to the displaced strand and unwind the helix catalytically. Both the T7 gene 2.5 protein and E. coli SSB act stoichiometrically to promote this initial strand displacement step. Once initiated, processive leading strand synthesis is not greatly stimulated by the single-stranded DNA-binding proteins. However, the T7 gene 2.5 protein, but not E. coli SSB, increases the frequency of initiation of lagging strand synthesis by greater than 10-fold. The results suggest a specific interaction of the T7 gene 2.5 protein with the T7 replication apparatus.  相似文献   

20.
In E. coli, the regression of stalled DNA replication forks is catalyzed by the DNA helicase RecG. One means of gaining access to the fork is by binding to the single strand binding protein or SSB. This interaction occurs via the wedge domain of RecG and the intrinsically disordered linker (IDL) of SSB, in a manner similar to that of SH3 domains binding to PXXP motif‐containing ligands in eukaryotic cells. During loading, SSB remodels the wedge domain so that the helicase domains bind to the parental, duplex DNA, permitting the helicase to translocate using thermal energy. This translocation may be used to clear the fork of obstacles, prior to the initiation of fork regression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号