首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
piRNA的生物学功能   总被引:3,自引:0,他引:3  
非编码小RNA(non-coding RNA, ncRNA)主要有siRNA(small interfering RNA)、miRNA(microRNA)和piRNA (piwi-interacting RNA)三类,其中piRNA是近年来新发现的一类小RNA分子,特异性地同Argonuat蛋白家族中的Piwi亚家族蛋白结合,主要在生殖细胞系中表达,对维持生殖系DNA完整、抑制转座子转录、抑制翻译、参与异染色质的形成、执行表观遗传调控和生殖细胞发生等均有重要作用.piRNA基因几乎遍布于整个基因组,但呈高度不连续性分布,大部分定位于20~90 kb的染色体基因簇上.与来自于双链RNA的siRNA和发卡结构miRNA不同之处是piRNA来自长单链RNA前体,或者是两股非重叠的反向转录前体,其生成与Dicer无关.作为调节RNA(riboregulator),piRNA和miRNA可能在动物起源早期就已经出现了,帮助生命进入了一个多细胞动物的时代,产生了今天的生物体复杂性和多样性.piRNA成为ncRNA的研究热点,进展飞快,有很多综述及时介绍piRNA的研究进展,本文结合siRNA、miRNA的特点介绍了关于piRNA的形成机制和作用的最新研究成果.  相似文献   

2.
Biogenesis and germline functions of piRNAs   总被引:7,自引:0,他引:7  
  相似文献   

3.
Mighty Piwis defend the germline against genome intruders   总被引:13,自引:0,他引:13  
O'Donnell KA  Boeke JD 《Cell》2007,129(1):37-44
Piwis are a germline-specific subclass of the Argonaute family of RNA interference (RNAi) effector proteins that are associated with a recently discovered group of small RNAs (piRNAs). Recent studies in Drosophila and zebrafish directly implicate Piwi proteins in piRNA biogenesis to maintain transposon silencing in the germline genome (Brennecke et al., 2007; Gunawardane et al., 2007; Houwing et al., 2007). This function may be conserved in mice as loss of Miwi2, a mouse Piwi homolog, leads to germline stem cell and meiotic defects correlated with increased transposon activity (Carmell et al., 2007).  相似文献   

4.
PIWI subfamily Argonaute proteins and small RNAs bound to them (PIWI interacting RNA, piRNA) control mobilization of transposable elements (TE) in the animal germline. piRNAs are generated by distinct genomic regions termed piRNA clusters. piRNA clusters are often extensive loci enriched in damaged fragments of TEs. New TE integration into piRNA clusters causes production of TE-specific piRNAs and repression of cognate sequences. piRNAs are thought to be generated from long single-stranded precursors encoded by piRNA clusters. Special chromatin structures might be essential to distinguish these genomic loci as a source for piRNAs. In this review, we present recent findings on the structural organization of piRNA clusters and piRNA biogenesis in Drosophila and other organisms, which are important for understanding a key epigenetic mechanism that provides defense against TE expansion.  相似文献   

5.
6.
7.
8.
Argonautes confront new small RNAs   总被引:1,自引:0,他引:1  
Argonaute is at the heart of all effector complexes in RNA interference. In the classical RNAi pathway Argonaute functions as the Slicer enzyme that cleaves an mRNA target directed by a complementary siRNA. Two recently described Argonaute protein subfamilies mediate distinct functions in RNAi. The Piwi subfamily functions in the germline through a novel class of small RNAs that are longer than Argonaute-specific siRNAs and miRNAs. Piwi-interacting RNAs (piRNAs) carry a 2'-O-methylation on their 3' end and appear to be synthesized by a Piwi Slicer dependent mechanism. Piwi/piRNA complexes in mammals and flies are directly linked to the control of transposable elements during germline development. Amplified RNAi in C. elegans is mediated by secondary siRNAs selectively bound to secondary Argonautes (SAGOs) that belong to a worm-specific Argonaute subfamily (WAGO). Secondary siRNAs are 5' triphosphorylated that may allow specific loading into SAGO complexes that are rate limiting for RNAi in C. elegans. Interestingly, SAGOs lack conserved Slicer amino acid residues and probably act in a Slicer-independent fashion.  相似文献   

9.
Argonaute proteins of the PIWI clade complexed with PIWI-interacting RNAs (piRNAs) protect the animal germline genome by silencing transposable elements. One of the leading experimental systems for studying piRNA biology is the Drosophila melanogaster ovary. In addition to classical mutagenesis, transgenic RNA interference (RNAi), which enables tissue-specific silencing of gene expression, plays a central role in piRNA research. Here, we establish a versatile toolkit focused on piRNA biology that combines germline transgenic RNAi, GFP marker lines for key proteins of the piRNA pathway, and reporter transgenes to establish genetic hierarchies. We compare constitutive, pan-germline RNAi with an equally potent transgenic RNAi system that is activated only after germ cell cyst formation. Stage-specific RNAi allows us to investigate the role of genes essential for germline cell survival, for example, nuclear RNA export or the SUMOylation pathway, in piRNA-dependent and independent transposon silencing. Our work forms the basis for an expandable genetic toolkit provided by the Vienna Drosophila Resource Center.  相似文献   

10.
Argonaute proteins: mediators of RNA silencing   总被引:10,自引:0,他引:10  
Peters L  Meister G 《Molecular cell》2007,26(5):611-623
Small regulatory RNAs such as short interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi interacting RNAs (piRNAs) have been discovered in the past, and it is becoming more and more apparent that these small molecules have key regulatory functions. Small RNAs are found in all higher eukaryotes and play important roles in cellular processes as diverse as development, stress response, or transposon silencing. Soon after the discovery of small regulatory RNAs, members of the Argonaute protein family were identified as their major cellular protein interactors. This review focuses on the various cellular functions of mammalian Argonaute proteins in conjunction with the different small RNA species that are known today.  相似文献   

11.
The Piwi proteins of the Argonaute superfamily are required for normal germline development in Drosophila, zebrafish, and mice and associate with 24-30 nucleotide RNAs termed piRNAs. We identify a class of 21 nucleotide RNAs, previously named 21U-RNAs, as the piRNAs of C. elegans. Piwi and piRNA expression is restricted to the male and female germline and independent of many proteins in other small-RNA pathways, including DCR-1. We show that Piwi is specifically required to silence Tc3, but not other Tc/mariner DNA transposons. Tc3 excision rates in the germline are increased at least 100-fold in piwi mutants as compared to wild-type. We find no evidence for a Ping-Pong model for piRNA amplification in C. elegans. Instead, we demonstrate that Piwi acts upstream of an endogenous siRNA pathway in Tc3 silencing. These data might suggest a link between piRNA and siRNA function.  相似文献   

12.
13.
Small RNAs mediate gene silencing by binding Argonaute/Piwi proteins to regulate target RNAs. Here, we describe small RNA profiling of the adult testes of Callithrix jacchus, the common marmoset. The most abundant class of small RNAs in the adult testis was piRNAs, although 353 novel miRNAs but few endo-siRNAs were also identified. MARWI, a marmoset homolog of mouse MIWI and a very abundant PIWI in adult testes, associates with piRNAs that show characteristics of mouse pachytene piRNAs. As in other mammals, most marmoset piRNAs are derived from conserved clustered regions in the genome, which are annotated as intergenic regions. However, unlike in mice, marmoset piRNA clusters are also found on the X chromosome, suggesting escape from meiotic sex chromosome inactivation by the X-linked clusters. Some of the piRNA clusters identified contain antisense-orientated pseudogenes, suggesting the possibility that pseudogene-derived piRNAs may regulate parental functional protein-coding genes. More piRNAs map to transposable element (TE) subfamilies when they have copies in piRNA clusters. In addition, the strand bias observed for piRNAs mapped to each TE subfamily correlates with the polarity of copies inserted in clusters. These findings suggest that pachytene piRNA clusters determine the abundance and strand-bias of TE-derived piRNAs, may regulate protein-coding genes via pseudogene-derived piRNAs, and may even play roles in meiosis in the adult marmoset testis.  相似文献   

14.
15.
16.
17.
18.
piRNA和PIWI蛋白的功能机制研究进展   总被引:1,自引:0,他引:1  
赵爽  刘默芳 《生命科学》2010,(7):623-627
piRNA是2006年7月在动物生殖细胞中发现的一类新小分子非编码RNA。piRNA特异地与PIWI家族蛋白相互作用,因此,被命名为PIWI-interacting RNA,简称piRNA。这类长度在26~32核苷酸的小分子非编码RNA代表了一个生殖细胞转座子沉默的独特小RNA通路。它们可能通过与PIWI家族蛋白质相互作用,在表观遗传学水平和转录后水平沉默转座子等基因组自私性遗传元件,参与生殖干细胞自我维持和分化命运决定、减数分裂、精子形成等生殖相关事件。在piRNA发现后短短数年的时间,对其生物发生、功能及作用机制的研究都取得了诸多重大突破。该文就piRNA研究的最新研究进展作一简述。  相似文献   

19.
The role of piRNA and Piwi proteins in regulation of germline development   总被引:1,自引:0,他引:1  
A new group of small noncoding RNAs of 24-30 nucleotides in length, piRNAs, are mainly expressed in germline cells. They form complexes with Piwi proteins, members of the Argonaute family and unlike other small RNAs they are created without RNase Dicer participation. They are present in male and female germinal cells of numerous animals, from flies to humans. The piRNA biogenesis mechanism is unknown, however, it is postulated that they are formed from long single-stranded RNA precursors coded by repetitive sequences occurring in the genome. A large part of piRNA corresponds to retrotranspozon sequences, which may indicate their participation in silencing the mobile elements and maintaining genome integrity of germinal cells. However, disruption of the piRNA biosynthesis pathway and mutations genes encoding Piwi proteins cause the activation of transpozons and a number of defects in the course of gametogenesis, resulting in reproduction disturbance. In this review, the current state of knowledge on the structure, biogenesis and function of piRNA and their interactions with Piwi proteins is presented.  相似文献   

20.
The Argonaute protein family   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号