首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the meat industry, the manipulation of fat deposition in cattle is of pivotal importance to improve production efficiency, carcass composition and ultimately meat quality. There is an increasing interest in the identification of key factors and molecular mechanisms responsible for the development of specific fat depots. This study aimed at elucidating the influence of breed and diet on adipose tissue membrane permeability and fluidity and their interplay on fat deposition in bovines. Two Portuguese autochthonous breeds, Alentejana and Barrosã, recognized as late- and early-maturing breeds, respectively, were chosen to examine the effects of breed and diet on fat deposition and on adipose membrane composition and permeability. Twenty-four male bovines from these breeds were fed on silage-based or concentrate-based diets for 11 months. Animals were slaughtered to determine their live slaughter and hot carcass weights, as well as weights of subcutaneous and visceral adipose depots. Mesenteric fat depots were excised and used to isolate adipocyte membrane vesicles where cholesterol content, fatty acid profile as well as permeability and fluidity were determined. Total accumulation of neither subcutaneous nor visceral fat was influenced by breed. In contrast, mesenteric and omental fat depots weights were higher in concentrate-fed bulls relative to silage-fed animals. Membrane fluidity and permeability to water and glycerol in mesenteric adipose tissue were found to be independent of breed and diet. Moreover, the deposition of cholesterol and unsaturated fatty acids, which may influence membrane properties, were unchanged among experimental groups. Adipose membrane lipids from the mesenteric fat depot of ruminants were rich in saturated fatty acids, and unaffected by polyunsaturated fatty acids dietary levels. Our results provide evidence against the involvement of cellular membrane permeability to glycerol on fat accumulation in mesenteric fat tissue of concentrate-fed bovines, which is consistent with the unchanged membrane lipid profile found among experimental groups.  相似文献   

3.
Extreme loss of skeletal muscle mass (atrophy) occurs in human muscles that are not used. In striking contrast, skeletal muscles do not rapidly waste away in hibernating mammals such as bears, or aestivating frogs, subjected to many months of inactivity and starvation. What factors regulate skeletal muscle mass and what mechanisms protect against muscle atrophy in some species? Severe atrophy also occurs with ageing and there is much clinical interest in reducing such loss of muscle mass and strength (sarcopenia). In the meat industry, a key aim is optimizing the control of skeletal muscle growth and meat quality. The impaired response of muscle to insulin resulting in diabetes, that is a consequence of the metabolic impact of increasing obesity and fat deposition in humans, is also of increasing clinical concern. Intensive research in these fields, combined with mouse models, is reviewed with respect to the molecular control of muscle growth (myogenesis) and atrophy/hypertrophy and fat deposition (adipogenesis) in skeletal muscle, with a focus on IGF‐1/insulin signaling. BioEssays 28: 994–1009, 2006. © 2006 Wiley Periodicals, Inc.  相似文献   

4.
Human aging is associated with a progressive loss of muscle mass and strength and a concomitant fat accumulation in form of inter-muscular adipose tissue, causing skeletal muscle function decline and immobilization. Fat accumulation can also occur as intra-muscular triglycerides (IMTG) deposition in lipid droplets, which are associated with perilipin proteins, such as Perilipin2 (Plin2). It is not known whether Plin2 expression changes with age and if this has consequences on muscle mass and strength. We studied the expression of Plin2 in the vastus lateralis (VL) muscle of both healthy subjects and patients affected by lower limb mobility limitation of different age. We found that Plin2 expression increases with age, this phenomenon being particularly evident in patients. Moreover, Plin2 expression is inversely correlated with quadriceps strength and VL thickness. To investigate the molecular mechanisms underpinning this phenomenon, we focused on IGF-1/p53 network/signalling pathway, involved in muscle physiology. We found that Plin2 expression strongly correlates with increased p53 activation and reduced IGF-1 expression. To confirm these observations made on humans, we studied mice overexpressing muscle-specific IGF-1, which are protected from sarcopenia. These mice resulted almost negative for the expression of Plin2 and p53 at two years of age. We conclude that fat deposition within skeletal muscle in form of Plin2-coated lipid droplets increases with age and is associated with decreased muscle strength and thickness, likely through an IGF-1- and p53-dependent mechanism. The data also suggest that excessive intramuscular fat accumulation could be the initial trigger for p53 activation and consequent loss of muscle mass and strength.  相似文献   

5.
We used a 9.6 K cattle muscle/fat cDNA microarray to study gene expression differences between the longuissimus dorsi (LD) muscle of Japanese Black (JB) and Holstein (HOL) cattle. JB cattle exhibit an unusual ability to accumulate intramuscular adipose tissue with fat melting points lower than that in other breeds. The LD biopsies from three JB (Tajima strain) and three HOL animals were used in this breed comparison. Seventeen genes were identified as preferentially expressed in LD samples from JB and seven genes were found to be expressed more highly in HOL. The expression of six selected differentially expressed genes was confirmed by quantitative real-time PCR. The genes more highly expressed in JB are associated with unsaturated fatty acid synthesis, fat deposition, and the thyroid hormone pathway. These results are consistent with the increased amounts and proportions of monounsaturated fatty acids observed in the muscle of JB animals. By discovering as yet uncharacterized genes that are differentially regulated in this comparison, the work may lead us to a better understanding of the regulatory pathways involved in the development of intramuscular adipose tissue.  相似文献   

6.
Obesity and type 2 diabetes constitute leading public health problems worldwide. Studies have shown that insulin resistance affiliated with these conditions is associated with skeletal muscle lipid accumulation, while the latter is associated with mitochondrial dysfunctions. However, the initiation and regulation of mitochondrial biogenesis rely heavily on approximately 1000 nuclear-encoded mitochondrial regulatory proteins. In this study, we targeted the ubiquinol-cytochrome c reductase core protein I gene, a nuclear-encoded component of mitochondrial complex III, for its association with subcutaneous fat depth (SFD) and skeletal muscle lipid accumulation (SMLA) using cattle as a model. Four promoter polymorphisms were identified and genotyped on approximately 250 Wagyu x Limousin F2 progeny. Statistical analysis revealed that two completely linked polymorphic sites, g.13487C>T and g.13709G>C (r2 = 1), were significantly associated with both SFD (p < 0.01) and SMLA (p < 0.0001). The difference between TTCC and CCGG haplotypes was 0.178 cm for SFD and 0.624 scores for SMLA. Interestingly, the former haplotype produced higher promoter activities than the latter by 43% to 49% in three cell lines (p < 0.05). In addition to Rett syndrome and breast/ovarian cancer observed in other studies, we report evidence for the first time, to our knowledge, that overexpression of ubiquinol-cytochrome c reductase core protein I might affect mitochondrial morphology and/or physiology and lead to development of obesity and related conditions.  相似文献   

7.
Fat cell accumulation in skeletal muscle is a major characteristic of various disorders, such as obesity, sarcopenia and dystrophies. Moreover, these fat cells could be involved in muscle homeostasis regulation as previously described for adipocytes in bone marrow. Despite recent advances on the topic, no clearly characterized mouse model is currently available to study fat accumulation within skeletal muscle. Here, we report a detailed characterization of a mouse model of skeletal muscle fat cell accumulation after degeneration induced by intra-muscular injection of glycerol. Information is provided on the kinetics of degeneration/fat deposition, including the quantity of fat deposited based on various parameters such as glycerol concentration, age, sex and strain of mice. Finally, these fat cells are characterized as true white adipocytes morphologically and molecularly. Our study shows that the mouse adipocyte accumulation within skeletal muscle after glycerol degeneration is a reproducible, transposable and easy model to use. This mouse model should allow a more comprehensive understanding of the impact of adipocyte accumulation in skeletal muscle pathophysiology.  相似文献   

8.
9.
Increasing experimental and observational evidence in both animals and humans suggests that early life events are important in setting later fat mass. This includes both the number of adipocytes and the relative distribution of both brown and white adipose tissue. Brown adipose tissue is characterised as possessing a unique uncoupling protein (UCP)1 which enables the rapid generation of large amounts of heat and is most abundant in the newborn. In large mammals such as sheep and humans, brown fat that is located around the major internal organs, is largely lost during the postnatal period. However, it is retained in small and discrete areas into adulthood when it is sensitive to environmental cues such as changes in ambient temperature or day length. The extent to which brown adipose tissue is lost or replaced by white adipose tissue and/or undergoes a process of transdifferentiation remains controversial. Small amounts of UCP1 can also be present in skeletal muscle which now appears to share the same common precursor cell as brown adipose tissue. The functional consequences of UCP1 in muscle remain to be confirmed but it could contribute to dietary induced thermogenesis. Challenges in elucidating the primary mechanisms regulating adipose tissue development include changes in methylation status of key genes during development in different species, strains and adipose depots. A greater understanding of the mechanisms by which early life events regulate adipose tissue distribution in young offspring are likely to provide important insights for novel interventions that may prevent excess adiposity in later life.  相似文献   

10.
A growing body of evidence is pointing out the pathophysiological role of fat accumulation in different organs. Ectopic fat depots within heart, liver, skeletal muscle, kidney, and pancreas as well as around blood vessels might be more associated to cardiometabolic risk than classical variables, such as body mass index. Among different mechanisms, lipid metabolism appears to be particularly influenced by ectopic fat depots. Indeed, intracellular accumulation of nonesterified fatty acids, and triglycerides promotes endoplasmic reticulum stress, mitochondrial uncoupling, oxidative stress, and altered membrane composition/function, finally promoting inflammatory response and cell death. The dysfunctional adipose tissue was shown to induce both local and systemic effects, with relevant clinical consequences. Epicardial fat and myocardial steatosis have been associated with the development of atrial fibrillation and ventricular dysfunction. Similarly perivascular adipose tissue appears to trigger atherosclerosis and hypertension. Nonalcoholic fatty liver disease has been recognized both as the hepatic manifestation of metabolic syndrome and as a cardiovascular (CV) risk factor. Importantly, the renal sinus fat emerged as a potential player in kidney dysfunction. Finally, both skeletal muscle and pancreatic fat depots have been indicated as potential endocrine modulators of insulin resistance. Considering the global rise in the prevalence of obesity, the understanding of mechanisms underlying ectopic fat accumulation represents an urgent need, with potential clinical implications for CV risk stratification. Here, we attempt to update the current knowledge of the different ectopic fat depots, focusing on underlying mechanisms and potential clinical implications.  相似文献   

11.
In this study, we investigated whether cacao liquor procyanidin (CLPr) extract, which consists of 4.3% catechin, 6.1% epicatechin, 39.4% procyanidins and others, ameliorated hyperglycemia and obesity in C57BL/6 mice fed a control or high-fat diet for 13 weeks. CLPr suppressed high-fat diet-induced hyperglycemia, glucose intolerance and fat accumulation in white adipose tissue. CLPr also promoted translocation of glucose transporter 4 (GLUT4) and phosphorylation of AMP-activated protein kinase α (AMPKα) in the plasma membrane of skeletal muscle and brown adipose tissue. Phosphorylation of AMPKα was also enhanced in the liver and white adipose tissue. CLPr up-regulated the gene and protein expression levels of uncoupling protein (UCP)-1 in brown adipose tissue and UCP-3 in skeletal muscle. These results indicate that CLPr is a beneficial food material for the prevention of hyperglycemia and obesity. Activation of AMPKα, translocation of GLUT4 and up-regulation of UCP expression in skeletal muscle and adipose tissue are involved in the molecular mechanisms by which CLPr prevents hyperglycemia and obesity.  相似文献   

12.
Transgenic animals that over- or underexpress a protein of interest have been used to study obesity development, prevention, and susceptibility to diet-induced obesity such as a high-fat diet. Several transgenic models are resistant to diet-induced obesity including those that overexpress the insulin-sensitive glucose transporter, GLUT4, in adipose tissue only. In this animal there is increased adipose tissue mass but the animal maintains its insulin sensitivity. The overexpression of lipoprotein lipase (LPL) in skeletal muscle and the elimination of a protein kinase A subunit both resulted in lean and obesity resistant animals. By directing the production of the diphtheria toxin A chain to adipose tissue only the resulting animals not only had less adipose tissue mass but were resistant to MSG-induced obesity. Conversely, transgenic models with decreased brown adipose tissue or its function have all resulted in obese animals, highlighting the importance of thermoregulation in body weight maintenance. The use of transgenic technology in the field of obesity has emphasized the regional differences among fat pads as well as the dissimilarity between genders in fuel metabolism. Several transgenic models have separated obesity from insulin resistance allowing the importance of each state to be studied individually. Results using transgenic animals have re-emphasized that obesity is a polygenic disease.  相似文献   

13.
14.
People with obesity, especially extreme obesity, are at risk for many health problems. However, the responsible genes remain unknown in >95% of severe obesity cases. Our previous genome-wide scan of Wagyu x Limousin F2 cattle crosses with extreme phenotypes revealed a molecular marker significantly associated with intramuscular fat deposition. Characterization of this marker showed that it is orthologous to the human gene KIAA1462 located on HSA10p11.23, where a major quantitative trait locus for morbid obesity has been reported. The newly identified mitochondrial poly(A) polymerase associated domain containing 1 (PAPD1) gene, which is located near this marker, is particularly interesting because the polymerase is required for the polyadenylation and stabilization of mammalian mitochondrial mRNAs. In the present study, both cDNA and genomic DNA sequences were annotated for the bovine PAPD1 gene and ten genetic markers were detected in the promoter and exon 1 region. Among seven markers assayed on approximately 250 Wagyu x Limousin F2 animals, two single nucleotide polymorphisms (SNPs) in the promoter region were significantly associated with intramuscular fat (P<0.05). However, there was a significant interaction (P<0.05) between a third SNP, which causes an amino acid change in coding exon 1, and each of these two promoter SNPs on intramuscular fat deposition. In particular, the differences between double heterozygous animals at two polymorphic sites and the slim genotype animals exceeded 2.3 standard deviations for the trait in both cases. Our study provides evidence for a new mechanism--the involvement of compound heterosis in extreme obesity, which warrants further examination.  相似文献   

15.
Mechanisms responsible for excellent marbling in Japanese black cattle, Wagyu, remain to be established. Because both muscle cells and intramuscular adipocytes are developed from mesenchymal progenitor cells during early muscle development, we hypothesized that intramuscular progenitor cells in Wagyu cattle have attenuated myogenic capacity in favor of adipogenesis, leading to high marbling but reduced muscle growth. Biceps femoris muscle biopsy samples were obtained from both Angus (n=3) and Wagyu (n=3) cattle at 12 months of age. Compared with Angus, the density of satellite cells was much lower in Wagyu muscle (by 45.8±10%, P<0.05). Consistently, the formation of myotubes from muscle-derived progenitor cells was also lower (by 64.2±12.9%, P<0.05), but adipogenic capacity was greater in Wagyu. The average muscle fiber diameter was larger in Wagyu (by 23.9±6.8%, P=0.089) despite less muscle mass, suggesting less muscle fiber formation in Wagyu compared with Angus cattle. Because satellite cells are derived from fetal myogenic cells, the reduction in satellite cell density together with lower muscle fiber formation suggests that myogenesis was attenuated during early muscle development in Wagyu cattle. Given the shared pool of mesenchymal progenitor cells, the attenuated myogenesis likely shifts progenitor cells to adipogenesis during early development, which may contribute to high intramuscular adipocyte formation in Wagyu cattle.  相似文献   

16.
研究发现在甘油诱导的小鼠肌肉损伤修复过程中可能存在肌间脂的沉积,而肌肉分泌因子(myokines)作为特殊的蛋白参与了肌肉与脂肪的多种生理过程.为研究肌肉内注射甘油后对肌间脂生成的影响,以及注射后肌肉分泌因子在肌肉损伤后修复及肌间脂沉积过程中的表达趋势,本文选用三月龄C57BL/6品系小鼠,右腿胫骨前肌注射50% HBSS(V/V)甘油,左腿胫骨前肌注射等量的HBSS缓冲液作为对照.取注射后不同时期小鼠的胫骨前肌,冰冻切片技术检测肌肉再生及肌间脂沉积状况,实时定量PCR检测各分泌因子(IL-6、IL-15、MSTN、FNDC5、FGF21、myonectin和Insl6)的mRNA表达变化,酶联免疫分析(ELISA)检测分泌因子的蛋白表达变化.结果表明,在甘油诱导的肌肉损伤再生修复过程中存在肌间脂的生成,同时IL-6、Insl6、FGF21和IL-15的mRNA相对表达量在肌肉损伤修复过程中的前、中期变化明显,而MSTN和myonectin的mRNA相对表达量则在中、后期变化明显. IL-6、Insl6的蛋白表达量在前、中期明显升高.综上所述,甘油注射可引起肌肉损伤修复,并在这一过程中伴随着肌间脂的沉积,而肌肉分泌因子作为肌肉与脂肪之间的信息交换因子可能参与了肌肉损伤后的再生修复以及肌间脂的形成.  相似文献   

17.
18.
Lipin, a lipodystrophy and obesity gene   总被引:3,自引:0,他引:3  
Phan J  Reue K 《Cell metabolism》2005,1(1):73-83
Lipodystrophy and obesity represent extreme and opposite ends of the adiposity spectrum and have typically been attributed to alterations in the expression or function of distinct sets of genes. We previously demonstrated that lipin deficiency impairs adipocyte differentiation and causes lipodystrophy in the mouse. Using two different tissue-specific lipin transgenic mouse strains, we now demonstrate that enhanced lipin expression in either adipose tissue or skeletal muscle promotes obesity. This occurs through diverse mechanisms in the two tissues, with lipin levels in adipose tissue influencing the fat storage capacity of the adipocyte, and lipin levels in skeletal muscle acting as a determinant of whole-body energy expenditure and fat utilization. Thus, variations in lipin levels alone are sufficient to induce extreme states of adiposity and may represent a mechanism by which adipose tissue and skeletal muscle modulate fat mass and energy balance.  相似文献   

19.
The objective of this study was to identify specific bovine genes expressed within skeletal muscle that are associated with intramuscular fat deposition. Twenty-eight Angus-Simmental cross steers and heifers were harvested at the University of Illinois Meat Science Laboratory. Four pairs of animals were identified based on similar adjusted backfat thickness but differing amounts of intramuscular fat within each pair. RNA was extracted from muscle samples devoid of visible fat and microarray analysis was performed. Based on this analysis, 9 genes were selected and expression was subsequently confirmed by qPCR. Expression levels of MYH3, HOXD10, MXRA8, and CASQ2 were increased in animals with high marbling, whereas levels of NPNT, MRC1, DNER, and CYPB4 were decreased in high marbled animals. The remaining gene, ACTN2 was determined to be a false positive and was, therefore, excluded from further study. Despite the positive results of the preliminary study, associations between gene expression and intramuscular fat content did not extend to the larger population of cattle. A significant negative association existed between expression of MRC1 and marbling level (P = 0.04). Therefore, this study was unable to identify a particular skeletal muscle gene set whose expression correlated well with marbling levels in the larger population of beef cattle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号