首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small heat shock proteins and their role in human disease   总被引:2,自引:0,他引:2  
Sun Y  MacRae TH 《The FEBS journal》2005,272(11):2613-2627
Small heat shock proteins (sHSPs) function as molecular chaperones, preventing stress induced aggregation of partially denatured proteins and promoting their return to native conformations when favorable conditions pertain. Sequence similarity between sHSPs resides predominately in an internal stretch of residues termed the alpha-crystallin domain, a region usually flanked by two extensions. The poorly conserved N-terminal extension influences oligomer construction and chaperone activity, whereas the flexible C-terminal extension stabilizes quaternary structure and enhances protein/substrate complex solubility. sHSP polypeptides assemble into dynamic oligomers which undergo subunit exchange and they bind a wide range of cellular substrates. As molecular chaperones, the sHSPs protect protein structure and activity, thereby preventing disease, but they may contribute to cell malfunction when perturbed. For example, sHSPs prevent cataract in the mammalian lens and guard against ischemic and reperfusion injury due to heart attack and stroke. On the other hand, mutated sHSPs are implicated in diseases such as desmin-related myopathy and they have an uncertain relationship to neurological disorders including Parkinson's and Alzheimer's disease. This review explores the involvement of sHSPs in disease and their potential for therapeutic intervention.  相似文献   

2.
McHaourab HS  Lin YL  Spiller BW 《Biochemistry》2012,51(25):5105-5112
How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the α-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved α-crystallin domain nor does it disturb the interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the α-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent β-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.  相似文献   

3.
The ability of small heat shock proteins (sHSPs) to prevent thermal aggregation of other proteins may require disassembly and reassembly of sHSP oligomers. We investigated the role of changes in sHSP oligomerization by studying a mutant with reduced oligomeric stability. In HSP16.6, the single sHSP in the cyanobacterium Synechocystis sp. PCC 6803, the mutation L66A causes oligomer instability and reduced chaperone activity in vitro. Because thermotolerance of Synechocystis depends on HSP16.6, a phenotype that is enhanced in a deltaClpB1 strain, the effect of mutations can also be assayed in vivo. L66A causes severe defects in thermotolerance, suggesting that oligomeric stability of sHSPs is required for cellular function. This hypothesis was supported by a selection for intragenic suppressors of L66A, which identified mutations that stabilize oligomers of both L66A and wild-type HSP16.6. Analysis of both over- and under-oligomerizing mutants suggests that sHSPs must disassemble before they can release substrates. Furthermore, the suppressor mutations not only restore in vivo activity to L66A, they also ameliorate chaperone defects in vitro, and thus provide the first direct evidence for a chaperone function of an sHSP in cellular thermotolerance.  相似文献   

4.
HSPB6 is a member of the human small heat shock protein (sHSP) family, a conserved group of molecular chaperones that bind partially unfolded proteins and prevent them from aggregating. In vertebrate sHSPs the poorly structured N-terminal domain has been implicated in both chaperone activity and the formation of higher-order oligomers. These two functionally important properties are likely intertwined at the sequence level, complicating attempts to delineate the regions that define them. Differing from the prototypical α-crystallins human HSPB6 has been shown to only form dimers in solution making it more amendable to explore the determinants of chaperoning activity alone. Using a systematic and iterative deletion strategy, we have extensively investigated the role of the N-terminal domain on the chaperone activity of this sHSP. As determined by size-exclusion chromatography and small-angle X-ray scattering, most mutants had a dimeric structure closely resembling that of wild-type HSPB6. The chaperone-like activity was tested using three different substrates, whereby no single truncation, except for complete removal of the N-terminal domain, showed full loss of activity, pointing to the presence of multiple sites for binding unfolding proteins. Intriguingly, we found that the stretch encompassing residues 31 to 35, which is nearly fully conserved across vertebrate sHSPs, acts as a negative regulator of activity, as its deletion greatly enhanced chaperoning capability. Further single point mutational analysis revealed an interplay between the highly conserved residues Q31 and F33 in fine-tuning its function.  相似文献   

5.
Small heat shock proteins (sHSPs) are ubiquitous chaperones that bind and sequester non-native proteins preventing their aggregation. Despite extensive studies of sHSPs chaperone activity, the location of the bound substrate within the sHSP oligomer has not been determined. In this paper, we used cryoelectron microscopy (cryoEM) to visualize destabilized mutants of T4 lysozyme (T4L) bound to engineered variants of the small heat shock protein Hsp16.5. In contrast to wild type Hsp16.5, binding of T4L to these variants does not induce oligomer heterogeneity enabling cryoEM analysis of the complexes. CryoEM image reconstruction reveals the sequestration of T4L in the interior of the Hsp16.5 oligomer primarily interacting with the buried N-terminal domain but also tethered by contacts with the α-crystallin domain shell. Analysis of Hsp16.5-WT/T4L complexes uncovers oligomer expansion as a requirement for high affinity binding. In contrast, a low affinity mode of binding is found to involve T4L binding on the outer surface of the oligomer bridging the formation of large complexes of Hsp16.5. These mechanistic principles were validated by cryoEM analysis of an expanded variant of Hsp16.5 in complex with T4L and Hsp16.5-R107G, which is equivalent to a mutant of human αB-crystallin linked to cardiomyopathy. In both cases, high affinity binding is found to involve conformational changes in the N-terminal region consistent with a central role of this region in substrate recognition.  相似文献   

6.
The small heat shock proteins (sHSPs) are a diverse family of molecular chaperones. It is well established that these proteins are crucial components of the plant heat shock response. They also have important roles in other stress responses and in normal development. We have conducted a comparative sequence analysis of the sHSPs in three complete angiosperms genomes: Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa. Our phylogenetic analysis has identified four additional plant sHSP subfamilies and thus has increased the number of plant sHSP subfamilies from 7 to 11. We have also identified a number of novel sHSP genes in each genome that lack close homologs in other genomes. Using publicly available gene expression data and predicted secondary structures, we have determined that the sHSPs in plants are far more diverse in sequence, expression profile, and in structure than had been previously known. Some of the newly identified subfamilies are not stress regulated, may not posses the highly conserved large oligomer structure, and may not even function as molecular chaperones. We found no consistent evolutionary patterns across the three species studied. For example, gene conversion was found among the sHSPs in O. sativa but not in A. thaliana or P. trichocarpa. Among the three species, P. trichocarpa had the most sHSPs. This was due to an expansion of the cytosolic I sHSPs that was not seen in the other two species. Our analysis indicates that the sHSPs are a dynamic protein family in angiosperms with unexpected levels of diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Crystal structure and assembly of a eukaryotic small heat shock protein.   总被引:23,自引:0,他引:23  
The 2.7 A structure of wheat HSP16.9, a member of the small heat shock proteins (sHSPs), indicates how its alpha-crystallin domain and flanking extensions assemble into a dodecameric double disk. The folding of the monomer and assembly of the oligomer are mutually interdependent, involving strand exchange, helix swapping, loose knots and hinged extensions. In support of the chaperone mechanism, the substrate-bound dimers, in temperature-dependent equilibrium with higher assembly forms, have unfolded N-terminal arms and exposed conserved hydrophobic binding sites on the alpha-crystallin domain. The structure also provides a model by which members of the sHSP protein family bind unfolded substrates, which are involved in a variety of neurodegenerative diseases and cataract formation.  相似文献   

8.
Knowledge of the interactive domains on the surface of small heat shock proteins (sHSPs) is necessary for understanding the assembly of complexes and the activity as molecular chaperones. The primary sequences of 26 sHSP molecular chaperones were aligned and compared. In the interactive beta3 sequence, 73DRFSVNLDVKHFS85 of human alphaB crystallin, Ser-76, Asn-78, Lys-82, and His-83 were identified as nonconserved residues on the exposed surface of the alpha crystallin core domain. Site-directed mutagenesis produced the mutant alphaB crystallins: S76E, N78G, K82Q, and H83F. Domain swapping with homologous beta3 sequences, 32EKFEVGLDVQFFT44 from Caenorhabditis elegans sHSP12.2 or 69DKFVIFLDVKHFS81 from alphaA crystallin, resulted in the mutant alphaB crystallins, CE1 and alphaA1, respectively. Decreased chaperone activity was observed with the point mutants N78G, K82Q, and H83F and with the mutant, CE1, in aggregation assays using betaL crystallin, alcohol dehydrogenase (ADH), or citrate synthase (CS). The S76E mutant had minimal effect on chaperone activity, and domain swapping with alphaA crystallin had no effect on chaperone activity. The mutations that resulted in altered chaperone activity, produced minimal modification to the secondary, tertiary, and quaternary structure of human alphaB crystallin as determined by ultraviolet circular dichroism spectroscopy, chymotrypsin proteolysis, and size exclusion chromatography. Chaperone activity was influenced by the amount of unfolding of the target proteins and independent of complex size. The results characterized the importance of the exposed side chains of Glu-78, Lys-82, and His-83 in the interactive beta3 sequence of the alpha crystallin core domain in alphaB crystallin for chaperone function.  相似文献   

9.
Small heat shock proteins (sHSPs) are a ubiquitous class of molecular chaperones that interacts with substrates to prevent their irreversible insolubilization during denaturation. How sHSPs interact with substrates remains poorly defined. To investigate the role of the conserved C-terminal alpha-crystallin domain versus the variable N-terminal arm in substrate interactions, we compared two closely related dodecameric plant sHSPs, Hsp18.1 and Hsp16.9, and four chimeras of these two sHSPs, in which all or part of the N-terminal arm was switched. The efficiency of substrate protection and formation of sHSP-substrate complexes by these sHSPs with three different model substrates, firefly luciferase, citrate synthase, and malate dehydrogenase (MDH) provide new insights into sHSP/substrate interactions. Results indicate that different substrates have varying affinities for different domains of the sHSP. For luciferase and citrate synthase, the efficiency of substrate protection was determined by the identity of the N-terminal arm in the chimeric proteins. In contrast, for MDH, efficient protection clearly required interactions with the alpha-crystallin domain in addition to the N-terminal arm. Furthermore, we show that sHSP-substrate complexes with varying stability and composition can protect substrate equally, and substrate protection is not correlated with sHSP oligomeric stability for all substrates. Protection of MDH by the dimeric chimera composed of the Hsp16.9 N-terminal arm and Hsp18.1 alpha-crystallin domain supports the model that a dimeric form of the sHSP can bind and protect substrate. In total, results demonstrate that sHSP-substrate interactions are complex, likely involve multiple sites on the sHSP, and vary depending on substrate.  相似文献   

10.
Small heat shock proteins (sHSPs) and the related alpha-crystallins are ubiquitous chaperones linked to neurodegenerative diseases, myopathies, and cataract. To better define their mechanism of chaperone action, we used hydrogen/deuterium exchange and mass spectrometry (HXMS) to monitor conformational changes during complex formation between the structurally defined sHSPs, pea PsHsp18.1, and wheat TaHsp16.9, and the heat-denatured model substrates malate dehydrogenase (MDH) and firefly luciferase. Remarkably, we found that even when complexed with substrate, the highly dynamic local structure of the sHSPs, especially in the N-terminal arm (>70% exchange in 5 s), remains unchanged. These results, coupled with sHSP-substrate complex stability, indicate that sHSPs do not adopt new secondary structure when binding substrate and suggest sHSPs are tethered to substrate at multiple sites that are locally dynamic, a feature that likely facilitates recognition and refolding of sHSP-bound substrate by the Hsp70/DnaK chaperone system. Both substrates were found to be stabilized in a partially unfolded state that is observed only in the presence of sHSP. Furthermore, peptide-level HXMS showed MDH was substantially protected in two core regions (residues 95-156 and 228-252), which overlap with the MDH structure protected in the GroEL-bound MDH refolding intermediate. Significantly, despite differences in the size and structure of TaHsp16.9-MDH and PsHsp18.1-MDH complexes, peptide-level HXMS patterns for MDH in both complexes are virtually identical, indicating that stabilized MDH thermal unfolding intermediates are not determined by the identity of the sHSP.  相似文献   

11.
Small heat-shock proteins function in the insoluble protein complex   总被引:2,自引:0,他引:2  
Small heat-shock proteins (sHSPs) represent an abundant and ubiquitous family of molecular chaperones. The current model proposes that sHSPs function to prevent irreversible aggregation of non-native proteins by forming soluble complex. The chaperone activity of sHSPs is usually determined by the capacity to suppress thermally or chemically induced protein aggregation. However, sHSPs were frequently found in the insoluble complex particularly in vivo. In this report, it is clearly revealed that the insoluble sHSP/substrate complex is formed when sHSP is overloaded with non-native substrates, which is the very case under in vivo conditions. The proposal that sHSPs function to prevent the protein aggregation seems misleading. sHSPs appear to promote the elimination of protein aggregates by incorporating into the insoluble protein complex.  相似文献   

12.
Oligomerization is an essential property of small heat shock proteins (sHSPs) that appears to regulate their chaperone activity. We have examined the role of conserved hydrophobic residues that are postulated to stabilize sHSP oligomers. We identified a mutation of Synechocystis Hsp16.6 that impairs function in vivo and in vitro. The V143A mutation is in the C-terminal extension, a region predicted to form an oligomeric interaction with a hydrophobic region that includes the site of a previously characterized mutation, L66A. Both mutants were dimeric, but V143A had a stronger oligomerization defect than L66A. However, V143A protected a model substrate better than L66A. This suggests that although the two regions both play a role in oligomerization, they are not equivalent. Nevertheless, the addition of either dimeric sHSP enhanced the in vitro chaperone activity of wild type Hsp16.6, consistent with models that the sHSP dimers initiate interactions with substrates. Suppressor analysis of V143A identified mutations in the N terminus that restored activity by restabilizing the oligomer. These mutants were allele-specific and unable to suppress L66A, although they suppressed a dimeric C-terminal truncation of Hsp16.6. Conversely, suppressors of L66A were unable to suppress either V143A or the truncation, although they, like suppressors of V143A, stabilize the Hsp16.6 oligomer. We interpret these data as evidence that the mutations V143A and L66A stabilize two different dimeric structures and as further support that sHSP dimers are active species.  相似文献   

13.
Detection and Architecture of Small Heat Shock Protein Monomers   总被引:1,自引:0,他引:1  

Background

Small Heat Shock Proteins (sHSPs) are chaperone-like proteins involved in the prevention of the irreversible aggregation of misfolded proteins. Although many studies have already been conducted on sHSPs, the molecular mechanisms and structural properties of these proteins remain unclear. Here, we propose a better understanding of the architecture, organization and properties of the sHSP family through structural and functional annotations. We focused on the Alpha Crystallin Domain (ACD), a sandwich fold that is the hallmark of the sHSP family.

Methodology/Principal Findings

We developed a new approach for detecting sHSPs and delineating ACDs based on an iterative Hidden Markov Model algorithm using a multiple alignment profile generated from structural data on ACD. Using this procedure on the UniProt databank, we found 4478 sequences identified as sHSPs, showing a very good coverage with the corresponding PROSITE and Pfam profiles. ACD was then delimited and structurally annotated. We showed that taxonomic-based groups of sHSPs (animals, plants, bacteria) have unique features regarding the length of their ACD and, more specifically, the length of a large loop within ACD. We detailed highly conserved residues and patterns specific to the whole family or to some groups of sHSPs. For 96% of studied sHSPs, we identified in the C-terminal region a conserved I/V/L-X-I/V/L motif that acts as an anchor in the oligomerization process. The fragment defined from the end of ACD to the end of this motif has a mean length of 14 residues and was named the C-terminal Anchoring Module (CAM).

Conclusions/Significance

This work annotates structural components of ACD and quantifies properties of several thousand sHSPs. It gives a more accurate overview of the architecture of sHSP monomers.  相似文献   

14.
15.
Small heat shock proteins (sHSPs) emerged early in evolution and occur in all domains of life and nearly in all species, including humans. Mutations in four sHSPs (HspB1, HspB3, HspB5, HspB8) are associated with neuromuscular disorders. The aim of this study is to investigate the evolutionary forces shaping these sHSPs during vertebrate evolution. We performed comparative evolutionary analyses on a set of orthologous sHSP sequences, based on the ratio of non-synonymous: synonymous substitution rates for each codon. We found that these sHSPs had been historically exposed to different degrees of purifying selection, decreasing in this order: HspB8 > HspB1, HspB5 > HspB3. Within each sHSP, regions with different degrees of purifying selection can be discerned, resulting in characteristic selective pressure profiles. The conserved α-crystallin domains were exposed to the most stringent purifying selection compared to the flanking regions, supporting a ''dimorphic pattern'' of evolution. Thus, during vertebrate evolution the different sequence partitions were exposed to different and measurable degrees of selective pressures. Among the disease-associated mutations, most are missense mutations primarily in HspB1 and to a lesser extent in the other sHSPs. Our data provide an explanation for this disparate incidence. Contrary to the expectation, most missense mutations cause dominant disease phenotypes. Theoretical considerations support a connection between the historic exposure of these sHSP genes to a high degree of purifying selection and the unusual prevalence of genetic dominance of the associated disease phenotypes. Our study puts the genetics of inheritable sHSP-borne diseases into the context of vertebrate evolution. Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-022-01268-y.  相似文献   

16.
Kim KP  Yu JH  Park SM  Koo HJ  Hong CB 《BMB reports》2011,44(12):816-820
There is a broad range of different small heat shock proteins (sHSPs) that have diverse structural and functional characteristics. To better understand the functional role of mitochondrial sHSP, NtHSP24.6 was expressed in Escherichia coli with a hexahistidine tag and purified. The protein was analyzed by non-denaturing PAGE, chemical cross-linking and size exclusion chromatography and the H6NtHSP24.6 protein was found to form a dimer in solution. The in vitro functional analysis of H6NtHSP24.6 using firefly luciferase and citrate synthase demonstrated that this protein displays typical molecular chaperone activity. When cell lysates of E. coli were heated after the addition of H6NtHSP24.6, a broad range of proteins from 10 to 160 kD in size remained in the soluble state. These results suggest that NtHSP24.6 forms a dimer and can function as a molecular chaperone to protect a diverse range of proteins from thermal aggregation.  相似文献   

17.
Mammalian small heat shock proteins (sHSP) form polydisperse and dynamic oligomers that undergo equilibrium subunit exchange. Current models of their chaperone activity hypothesize that recognition and binding of protein non-native states involve changes in the oligomeric state. The equivalent thermodynamic representation is a set of three coupled equilibria that includes the sHSP oligomeric equilibrium, the substrate folding equilibrium, and the equilibrium binding between the sHSP and the substrate non-native states. To test this hypothesis and define the binding-competent oligomeric state of human Hsp27, we have perturbed the two former equilibria and quantitatively determined the consequences on binding. The substrate is a set of T4 lysozyme (T4L) mutants that bind under conditions that favor the folded state over the unfolded state by 10(2)-10(4)-fold. The concentration-dependent oligomer equilibrium of Hsp27 was perturbed by mutations that alter the relative stability of two major oligomeric states including phosphorylation-mimicking mutations that result in the dissociation to a small multimer over a wide range of concentrations. Correlation of binding isotherms with size exclusion chromatography analysis of the Hsp27 oligomer equilibrium demonstrates that the multimer is the binding-competent state. Binding occurs through two modes, each characterized by different affinity and number of binding sites, and results in T4L.Hsp27 complexes of different hydrodynamic properties. Mutants of the Hsp27 phosphorylation mimic that reverse the reduction in oligomer size also reduce the extent of T4L binding. Taken together, these results suggest a central role for the oligomeric equilibrium in regulating the chaperone activity of sHSP. The mutants identify sequence features important for modulating this equilibrium.  相似文献   

18.
19.
The small heat shock proteins (sHSPs) are a virtually ubiquitous and diverse group of molecular chaperones that can bind and protect unfolding proteins from irreversible aggregation. It has been suggested that intrinsic disorder of the N-terminal arm (NTA) of sHSPs is important for substrate recognition. To investigate conformations of the NTA that could recognize substrates we performed replica exchange molecular dynamics simulations. Behavior at normal and stress temperatures of the dimeric building blocks of dodecameric HSPs from wheat (Ta16.9) and pea (Ps18.1) were compared because they display high sequence similarity, but Ps18.1 is more efficient in binding specific substrates. In our simulations, the NTAs of the dimer are flexible and dynamic; however, rather than exhibiting highly extended conformations they retain considerable α-helical character and contacts with the conserved α-crystallin domain (ACD). Network analysis and clustering methods reveal that there are two major conformational forms designated either “open” or “closed” based on the relative position of the two NTAs and their hydrophobic solvent accessible surface area. The equilibrium constant for the closed to open transition is significantly different for Ta16.9 and Ps18.1, with the latter showing more open conformations at elevated temperature correlated with its more effective chaperone activity. In addition, the Ps18.1 NTAs have more hydrophobic solvent accessible surface than those of Ta16.9. NTA hydrophobic patches are comparable in size to the area buried in many protein-protein interactions, which would enable sHSPs to bind early unfolding intermediates. Reduced interactions of the Ps18.1 NTAs with each other and with the ACD contribute to the differences in dynamics and hydrophobic surface area of the two sHSPs. These data support a major role for the conformational equilibrium of the NTA in substrate binding and indicate features of the NTA that contribute to sHSP chaperone efficiency.  相似文献   

20.
The small heat shock proteins (sHSPs) are a virtually ubiquitous and diverse group of molecular chaperones that can bind and protect unfolding proteins from irreversible aggregation. It has been suggested that intrinsic disorder of the N-terminal arm (NTA) of sHSPs is important for substrate recognition. To investigate conformations of the NTA that could recognize substrates we performed replica exchange molecular dynamics simulations. Behavior at normal and stress temperatures of the dimeric building blocks of dodecameric HSPs from wheat (Ta16.9) and pea (Ps18.1) were compared because they display high sequence similarity, but Ps18.1 is more efficient in binding specific substrates. In our simulations, the NTAs of the dimer are flexible and dynamic; however, rather than exhibiting highly extended conformations they retain considerable α-helical character and contacts with the conserved α-crystallin domain (ACD). Network analysis and clustering methods reveal that there are two major conformational forms designated either “open” or “closed” based on the relative position of the two NTAs and their hydrophobic solvent accessible surface area. The equilibrium constant for the closed to open transition is significantly different for Ta16.9 and Ps18.1, with the latter showing more open conformations at elevated temperature correlated with its more effective chaperone activity. In addition, the Ps18.1 NTAs have more hydrophobic solvent accessible surface than those of Ta16.9. NTA hydrophobic patches are comparable in size to the area buried in many protein-protein interactions, which would enable sHSPs to bind early unfolding intermediates. Reduced interactions of the Ps18.1 NTAs with each other and with the ACD contribute to the differences in dynamics and hydrophobic surface area of the two sHSPs. These data support a major role for the conformational equilibrium of the NTA in substrate binding and indicate features of the NTA that contribute to sHSP chaperone efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号